rust/src/librustc/middle/trans/common.rs

1009 lines
30 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Code that is useful in various trans modules.
use driver::session;
use driver::session::Session;
use lib::llvm::{ValueRef, BasicBlockRef, BuilderRef};
use lib::llvm::{True, False, Bool};
use lib::llvm::llvm;
use lib;
use middle::lang_items::LangItem;
use middle::trans::base;
use middle::trans::build;
use middle::trans::cleanup;
use middle::trans::datum;
use middle::trans::datum::{Datum, Lvalue};
use middle::trans::debuginfo;
use middle::trans::type_::Type;
use middle::ty::substs;
use middle::ty;
use middle::typeck;
use util::ppaux::Repr;
use extra::arena::TypedArena;
use std::c_str::ToCStr;
use std::cast::transmute;
use std::cast;
use std::cell::{Cell, RefCell};
use std::hashmap::HashMap;
use std::libc::{c_uint, c_longlong, c_ulonglong, c_char};
use syntax::ast::{Ident};
use syntax::ast_map::{Path, PathElem, PathPrettyName};
use syntax::codemap::Span;
use syntax::parse::token;
use syntax::{ast, ast_map};
pub use middle::trans::context::CrateContext;
fn type_is_newtype_immediate(ccx: &CrateContext, ty: ty::t) -> bool {
match ty::get(ty).sty {
ty::ty_struct(def_id, ref substs) => {
let fields = ty::struct_fields(ccx.tcx, def_id, substs);
fields.len() == 1 &&
fields[0].ident.name == token::special_idents::unnamed_field.name &&
type_is_immediate(ccx, fields[0].mt.ty)
}
_ => false
}
}
pub fn type_is_immediate(ccx: &CrateContext, ty: ty::t) -> bool {
use middle::trans::machine::llsize_of_alloc;
use middle::trans::type_of::sizing_type_of;
let tcx = ccx.tcx;
let simple = ty::type_is_scalar(ty) || ty::type_is_boxed(ty) ||
ty::type_is_unique(ty) || ty::type_is_region_ptr(ty) ||
type_is_newtype_immediate(ccx, ty) || ty::type_is_bot(ty) ||
ty::type_is_simd(tcx, ty);
if simple {
return true;
}
match ty::get(ty).sty {
ty::ty_bot => true,
ty::ty_struct(..) | ty::ty_enum(..) | ty::ty_tup(..) => {
let llty = sizing_type_of(ccx, ty);
llsize_of_alloc(ccx, llty) <= llsize_of_alloc(ccx, ccx.int_type)
}
_ => type_is_zero_size(ccx, ty)
}
}
pub fn type_is_zero_size(ccx: &CrateContext, ty: ty::t) -> bool {
/*!
* Identify types which have size zero at runtime.
*/
use middle::trans::machine::llsize_of_alloc;
use middle::trans::type_of::sizing_type_of;
let llty = sizing_type_of(ccx, ty);
llsize_of_alloc(ccx, llty) == 0
}
pub fn return_type_is_void(ccx: &CrateContext, ty: ty::t) -> bool {
/*!
* Identifies types which we declare to be equivalent to `void`
* in C for the purpose of function return types. These are
* `()`, bot, and uninhabited enums. Note that all such types
* are also zero-size, but not all zero-size types use a `void`
* return type (in order to aid with C ABI compatibility).
*/
ty::type_is_nil(ty) || ty::type_is_bot(ty) || ty::type_is_empty(ccx.tcx, ty)
}
pub fn gensym_name(name: &str) -> (Ident, PathElem) {
let name = token::gensym(name);
let ident = Ident::new(name);
(ident, PathPrettyName(ident, name as u64))
}
pub struct tydesc_info {
ty: ty::t,
tydesc: ValueRef,
size: ValueRef,
align: ValueRef,
name: ValueRef,
take_glue: Cell<Option<ValueRef>>,
drop_glue: Cell<Option<ValueRef>>,
visit_glue: Cell<Option<ValueRef>>,
}
/*
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* Most "externs" are implicitly declared (automatically) as a result of a
* user declaring an extern _module_ dependency; this causes the rust driver
* to locate an extern crate, scan its compilation metadata, and emit extern
* declarations for any symbols used by the declaring crate.
*
* A "foreign" is an extern that references C (or other non-rust ABI) code.
* There is no metadata to scan for extern references so in these cases either
* a header-digester like bindgen, or manual function prototypes, have to
* serve as declarators. So these are usually given explicitly as prototype
* declarations, in rust code, with ABI attributes on them noting which ABI to
* link via.
*
* An "upcall" is a foreign call generated by the compiler (not corresponding
* to any user-written call in the code) into the runtime library, to perform
* some helper task such as bringing a task to life, allocating memory, etc.
*
*/
pub struct NodeInfo {
id: ast::NodeId,
span: Span,
}
pub fn expr_info(expr: &ast::Expr) -> NodeInfo {
NodeInfo { id: expr.id, span: expr.span }
}
pub struct Stats {
n_static_tydescs: Cell<uint>,
n_glues_created: Cell<uint>,
n_null_glues: Cell<uint>,
n_real_glues: Cell<uint>,
n_fns: Cell<uint>,
n_monos: Cell<uint>,
n_inlines: Cell<uint>,
n_closures: Cell<uint>,
n_llvm_insns: Cell<uint>,
llvm_insns: RefCell<HashMap<~str, uint>>,
// (ident, time-in-ms, llvm-instructions)
fn_stats: RefCell<~[(~str, uint, uint)]>,
}
pub struct BuilderRef_res {
B: BuilderRef,
}
impl Drop for BuilderRef_res {
fn drop(&mut self) {
unsafe {
llvm::LLVMDisposeBuilder(self.B);
}
}
}
pub fn BuilderRef_res(B: BuilderRef) -> BuilderRef_res {
BuilderRef_res {
B: B
}
}
pub type ExternMap = HashMap<~str, ValueRef>;
// Here `self_ty` is the real type of the self parameter to this method. It
// will only be set in the case of default methods.
pub struct param_substs {
tys: ~[ty::t],
self_ty: Option<ty::t>,
vtables: Option<typeck::vtable_res>,
self_vtables: Option<typeck::vtable_param_res>
}
impl param_substs {
pub fn validate(&self) {
for t in self.tys.iter() { assert!(!ty::type_needs_infer(*t)); }
for t in self.self_ty.iter() { assert!(!ty::type_needs_infer(*t)); }
}
}
fn param_substs_to_str(this: &param_substs, tcx: ty::ctxt) -> ~str {
format!("param_substs \\{tys:{}, vtables:{}\\}",
this.tys.repr(tcx),
this.vtables.repr(tcx))
}
impl Repr for param_substs {
fn repr(&self, tcx: ty::ctxt) -> ~str {
param_substs_to_str(self, tcx)
}
}
// work around bizarre resolve errors
type RvalueDatum = datum::Datum<datum::Rvalue>;
type LvalueDatum = datum::Datum<datum::Lvalue>;
// Function context. Every LLVM function we create will have one of
// these.
pub struct FunctionContext<'a> {
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
// address of the first instruction in the sequence of
// instructions for this function that will go in the .text
// section of the executable we're generating.
llfn: ValueRef,
// The implicit environment argument that arrives in the function we're
// creating.
llenv: Cell<ValueRef>,
// The place to store the return value. If the return type is immediate,
// this is an alloca in the function. Otherwise, it's the hidden first
// parameter to the function. After function construction, this should
// always be Some.
llretptr: Cell<Option<ValueRef>>,
entry_bcx: RefCell<Option<&'a Block<'a>>>,
// These elements: "hoisted basic blocks" containing
// administrative activities that have to happen in only one place in
// the function, due to LLVM's quirks.
// A marker for the place where we want to insert the function's static
// allocas, so that LLVM will coalesce them into a single alloca call.
alloca_insert_pt: Cell<Option<ValueRef>>,
llreturn: Cell<Option<BasicBlockRef>>,
// The 'self' value currently in use in this function, if there
// is one.
//
// NB: This is the type of the self *variable*, not the self *type*. The
// self type is set only for default methods, while the self variable is
// set for all methods.
llself: Cell<Option<LvalueDatum>>,
// The a value alloca'd for calls to upcalls.rust_personality. Used when
// outputting the resume instruction.
personality: Cell<Option<ValueRef>>,
// True if the caller expects this fn to use the out pointer to
// return. Either way, your code should write into llretptr, but if
// this value is false, llretptr will be a local alloca.
caller_expects_out_pointer: bool,
// Maps arguments to allocas created for them in llallocas.
llargs: RefCell<HashMap<ast::NodeId, LvalueDatum>>,
// Maps the def_ids for local variables to the allocas created for
// them in llallocas.
lllocals: RefCell<HashMap<ast::NodeId, LvalueDatum>>,
// Same as above, but for closure upvars
llupvars: RefCell<HashMap<ast::NodeId, ValueRef>>,
// The NodeId of the function, or -1 if it doesn't correspond to
// a user-defined function.
id: ast::NodeId,
// If this function is being monomorphized, this contains the type
// substitutions used.
param_substs: Option<@param_substs>,
// The source span and nesting context where this function comes from, for
// error reporting and symbol generation.
span: Option<Span>,
path: Path,
// The arena that blocks are allocated from.
block_arena: TypedArena<Block<'a>>,
// This function's enclosing crate context.
ccx: @CrateContext,
// Used and maintained by the debuginfo module.
debug_context: debuginfo::FunctionDebugContext,
// Cleanup scopes.
scopes: RefCell<~[cleanup::CleanupScope<'a>]>,
}
impl<'a> FunctionContext<'a> {
pub fn arg_pos(&self, arg: uint) -> uint {
if self.caller_expects_out_pointer {
arg + 2u
} else {
arg + 1u
}
}
pub fn out_arg_pos(&self) -> uint {
assert!(self.caller_expects_out_pointer);
0u
}
pub fn env_arg_pos(&self) -> uint {
if self.caller_expects_out_pointer {
1u
} else {
0u
}
}
pub fn cleanup(&self) {
unsafe {
llvm::LLVMInstructionEraseFromParent(self.alloca_insert_pt
.get()
.unwrap());
}
// Remove the cycle between fcx and bcx, so memory can be freed
self.entry_bcx.set(None);
}
pub fn get_llreturn(&self) -> BasicBlockRef {
if self.llreturn.get().is_none() {
self.llreturn.set(Some(base::mk_return_basic_block(self.llfn)));
}
self.llreturn.get().unwrap()
}
pub fn new_block(&'a self,
is_lpad: bool,
name: &str,
opt_node_id: Option<ast::NodeId>)
-> &'a Block<'a> {
unsafe {
let llbb = name.with_c_str(|buf| {
llvm::LLVMAppendBasicBlockInContext(self.ccx.llcx,
self.llfn,
buf)
});
Block::new(llbb, is_lpad, opt_node_id, self)
}
}
pub fn new_id_block(&'a self,
name: &str,
node_id: ast::NodeId)
-> &'a Block<'a> {
self.new_block(false, name, Some(node_id))
}
pub fn new_temp_block(&'a self,
name: &str)
-> &'a Block<'a> {
self.new_block(false, name, None)
}
pub fn join_blocks(&'a self,
id: ast::NodeId,
in_cxs: &[&'a Block<'a>])
-> &'a Block<'a> {
let out = self.new_id_block("join", id);
let mut reachable = false;
for bcx in in_cxs.iter() {
if !bcx.unreachable.get() {
build::Br(*bcx, out.llbb);
reachable = true;
}
}
if !reachable {
build::Unreachable(out);
}
return out;
}
}
pub fn warn_not_to_commit(ccx: &mut CrateContext, msg: &str) {
if !ccx.do_not_commit_warning_issued.get() {
ccx.do_not_commit_warning_issued.set(true);
ccx.sess.warn(msg.to_str() + " -- do not commit like this!");
}
}
// Heap selectors. Indicate which heap something should go on.
#[deriving(Eq)]
pub enum heap {
heap_managed,
heap_exchange,
heap_exchange_closure
}
// Basic block context. We create a block context for each basic block
// (single-entry, single-exit sequence of instructions) we generate from Rust
// code. Each basic block we generate is attached to a function, typically
// with many basic blocks per function. All the basic blocks attached to a
// function are organized as a directed graph.
pub struct Block<'a> {
// The BasicBlockRef returned from a call to
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
// block to the function pointed to by llfn. We insert
// instructions into that block by way of this block context.
// The block pointing to this one in the function's digraph.
llbb: BasicBlockRef,
terminated: Cell<bool>,
unreachable: Cell<bool>,
// Is this block part of a landing pad?
is_lpad: bool,
// AST node-id associated with this block, if any. Used for
// debugging purposes only.
opt_node_id: Option<ast::NodeId>,
// The function context for the function to which this block is
// attached.
fcx: &'a FunctionContext<'a>,
}
impl<'a> Block<'a> {
pub fn new<'a>(
llbb: BasicBlockRef,
is_lpad: bool,
opt_node_id: Option<ast::NodeId>,
fcx: &'a FunctionContext<'a>)
-> &'a Block<'a> {
fcx.block_arena.alloc(Block {
llbb: llbb,
terminated: Cell::new(false),
unreachable: Cell::new(false),
is_lpad: is_lpad,
opt_node_id: opt_node_id,
fcx: fcx
})
}
pub fn ccx(&self) -> @CrateContext { self.fcx.ccx }
pub fn tcx(&self) -> ty::ctxt {
self.fcx.ccx.tcx
}
pub fn sess(&self) -> Session { self.fcx.ccx.sess }
pub fn ident(&self, ident: Ident) -> @str {
token::ident_to_str(&ident)
}
pub fn node_id_to_str(&self, id: ast::NodeId) -> ~str {
ast_map::node_id_to_str(self.tcx().items, id, self.sess().intr())
}
pub fn expr_to_str(&self, e: &ast::Expr) -> ~str {
e.repr(self.tcx())
}
pub fn expr_is_lval(&self, e: &ast::Expr) -> bool {
ty::expr_is_lval(self.tcx(), self.ccx().maps.method_map, e)
}
pub fn expr_kind(&self, e: &ast::Expr) -> ty::ExprKind {
ty::expr_kind(self.tcx(), self.ccx().maps.method_map, e)
}
pub fn def(&self, nid: ast::NodeId) -> ast::Def {
let def_map = self.tcx().def_map.borrow();
match def_map.get().find(&nid) {
Some(&v) => v,
None => {
self.tcx().sess.bug(format!(
"No def associated with node id {:?}", nid));
}
}
}
pub fn val_to_str(&self, val: ValueRef) -> ~str {
self.ccx().tn.val_to_str(val)
}
pub fn llty_str(&self, ty: Type) -> ~str {
self.ccx().tn.type_to_str(ty)
}
pub fn ty_to_str(&self, t: ty::t) -> ~str {
t.repr(self.tcx())
}
pub fn to_str(&self) -> ~str {
let blk: *Block = self;
format!("[block {}]", blk)
}
}
pub struct Result<'a> {
bcx: &'a Block<'a>,
val: ValueRef
}
pub fn rslt<'a>(bcx: &'a Block<'a>, val: ValueRef) -> Result<'a> {
Result {
bcx: bcx,
val: val,
}
}
impl<'a> Result<'a> {
pub fn unpack(&self, bcx: &mut &'a Block<'a>) -> ValueRef {
*bcx = self.bcx;
return self.val;
}
}
pub fn val_ty(v: ValueRef) -> Type {
unsafe {
Type::from_ref(llvm::LLVMTypeOf(v))
}
}
// Let T be the content of a box @T. tuplify_box_ty(t) returns the
// representation of @T as a tuple (i.e., the ty::t version of what T_box()
// returns).
pub fn tuplify_box_ty(tcx: ty::ctxt, t: ty::t) -> ty::t {
let ptr = ty::mk_ptr(
tcx,
ty::mt {ty: ty::mk_i8(), mutbl: ast::MutImmutable}
);
return ty::mk_tup(tcx, ~[ty::mk_uint(), ty::mk_type(tcx),
ptr, ptr,
t]);
}
// LLVM constant constructors.
pub fn C_null(t: Type) -> ValueRef {
unsafe {
llvm::LLVMConstNull(t.to_ref())
}
}
pub fn C_undef(t: Type) -> ValueRef {
unsafe {
llvm::LLVMGetUndef(t.to_ref())
}
}
pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef {
unsafe {
llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool)
}
}
pub fn C_floating(s: &str, t: Type) -> ValueRef {
unsafe {
s.with_c_str(|buf| llvm::LLVMConstRealOfString(t.to_ref(), buf))
}
}
pub fn C_nil() -> ValueRef {
C_struct([], false)
}
pub fn C_bool(val: bool) -> ValueRef {
C_integral(Type::bool(), val as u64, false)
}
pub fn C_i1(val: bool) -> ValueRef {
C_integral(Type::i1(), val as u64, false)
}
pub fn C_i32(i: i32) -> ValueRef {
return C_integral(Type::i32(), i as u64, true);
}
pub fn C_i64(i: i64) -> ValueRef {
return C_integral(Type::i64(), i as u64, true);
}
pub fn C_u64(i: u64) -> ValueRef {
return C_integral(Type::i64(), i, false);
}
pub fn C_int(cx: &CrateContext, i: int) -> ValueRef {
return C_integral(cx.int_type, i as u64, true);
}
pub fn C_uint(cx: &CrateContext, i: uint) -> ValueRef {
return C_integral(cx.int_type, i as u64, false);
}
pub fn C_u8(i: uint) -> ValueRef {
return C_integral(Type::i8(), i as u64, false);
}
// This is a 'c-like' raw string, which differs from
// our boxed-and-length-annotated strings.
pub fn C_cstr(cx: &CrateContext, s: @str) -> ValueRef {
unsafe {
{
let const_cstr_cache = cx.const_cstr_cache.borrow();
match const_cstr_cache.get().find_equiv(&s) {
Some(&llval) => return llval,
None => ()
}
}
let sc = llvm::LLVMConstStringInContext(cx.llcx,
s.as_ptr() as *c_char, s.len() as c_uint,
False);
let gsym = token::gensym("str");
let g = format!("str{}", gsym).with_c_str(|buf| {
llvm::LLVMAddGlobal(cx.llmod, val_ty(sc).to_ref(), buf)
});
llvm::LLVMSetInitializer(g, sc);
llvm::LLVMSetGlobalConstant(g, True);
lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage);
let mut const_cstr_cache = cx.const_cstr_cache.borrow_mut();
const_cstr_cache.get().insert(s, g);
g
}
}
// NB: Do not use `do_spill_noroot` to make this into a constant string, or
// you will be kicked off fast isel. See issue #4352 for an example of this.
pub fn C_str_slice(cx: &CrateContext, s: @str) -> ValueRef {
unsafe {
let len = s.len();
let cs = llvm::LLVMConstPointerCast(C_cstr(cx, s), Type::i8p().to_ref());
C_struct([cs, C_uint(cx, len)], false)
}
}
pub fn C_binary_slice(cx: &CrateContext, data: &[u8]) -> ValueRef {
unsafe {
let len = data.len();
let lldata = C_bytes(data);
let gsym = token::gensym("binary");
let g = format!("binary{}", gsym).with_c_str(|buf| {
llvm::LLVMAddGlobal(cx.llmod, val_ty(lldata).to_ref(), buf)
});
llvm::LLVMSetInitializer(g, lldata);
llvm::LLVMSetGlobalConstant(g, True);
lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage);
let cs = llvm::LLVMConstPointerCast(g, Type::i8p().to_ref());
C_struct([cs, C_uint(cx, len)], false)
}
}
pub fn C_zero_byte_arr(size: uint) -> ValueRef {
unsafe {
let mut i = 0u;
let mut elts: ~[ValueRef] = ~[];
while i < size { elts.push(C_u8(0u)); i += 1u; }
return llvm::LLVMConstArray(Type::i8().to_ref(),
elts.as_ptr(), elts.len() as c_uint);
}
}
pub fn C_struct(elts: &[ValueRef], packed: bool) -> ValueRef {
unsafe {
llvm::LLVMConstStructInContext(base::task_llcx(),
elts.as_ptr(), elts.len() as c_uint,
packed as Bool)
}
}
pub fn C_named_struct(T: Type, elts: &[ValueRef]) -> ValueRef {
unsafe {
llvm::LLVMConstNamedStruct(T.to_ref(), elts.as_ptr(), elts.len() as c_uint)
}
}
pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef {
unsafe {
return llvm::LLVMConstArray(ty.to_ref(), elts.as_ptr(), elts.len() as c_uint);
}
}
pub fn C_bytes(bytes: &[u8]) -> ValueRef {
unsafe {
let ptr = cast::transmute(bytes.as_ptr());
return llvm::LLVMConstStringInContext(base::task_llcx(), ptr, bytes.len() as c_uint, True);
}
}
pub fn get_param(fndecl: ValueRef, param: uint) -> ValueRef {
unsafe {
llvm::LLVMGetParam(fndecl, param as c_uint)
}
}
pub fn const_get_elt(cx: &CrateContext, v: ValueRef, us: &[c_uint])
-> ValueRef {
unsafe {
let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);
debug!("const_get_elt(v={}, us={:?}, r={})",
cx.tn.val_to_str(v), us, cx.tn.val_to_str(r));
return r;
}
}
pub fn is_const(v: ValueRef) -> bool {
unsafe {
llvm::LLVMIsConstant(v) == True
}
}
pub fn const_to_int(v: ValueRef) -> c_longlong {
unsafe {
llvm::LLVMConstIntGetSExtValue(v)
}
}
pub fn const_to_uint(v: ValueRef) -> c_ulonglong {
unsafe {
llvm::LLVMConstIntGetZExtValue(v)
}
}
pub fn is_undef(val: ValueRef) -> bool {
unsafe {
llvm::LLVMIsUndef(val) != False
}
}
pub fn is_null(val: ValueRef) -> bool {
unsafe {
llvm::LLVMIsNull(val) != False
}
}
// Used to identify cached monomorphized functions and vtables
#[deriving(Eq,IterBytes)]
pub enum mono_param_id {
mono_precise(ty::t, Option<@~[mono_id]>),
mono_any,
mono_repr(uint /* size */,
uint /* align */,
MonoDataClass,
datum::RvalueMode),
}
#[deriving(Eq,IterBytes)]
pub enum MonoDataClass {
MonoBits, // Anything not treated differently from arbitrary integer data
MonoNonNull, // Non-null pointers (used for optional-pointer optimization)
// FIXME(#3547)---scalars and floats are
// treated differently in most ABIs. But we
// should be doing something more detailed
// here.
MonoFloat
}
pub fn mono_data_classify(t: ty::t) -> MonoDataClass {
match ty::get(t).sty {
ty::ty_float(_) => MonoFloat,
ty::ty_rptr(..) | ty::ty_uniq(..) | ty::ty_box(..) |
ty::ty_str(ty::vstore_uniq) | ty::ty_vec(_, ty::vstore_uniq) |
ty::ty_str(ty::vstore_box) | ty::ty_vec(_, ty::vstore_box) |
ty::ty_bare_fn(..) => MonoNonNull,
// Is that everything? Would closures or slices qualify?
_ => MonoBits
}
}
#[deriving(Eq,IterBytes)]
pub struct mono_id_ {
def: ast::DefId,
params: ~[mono_param_id]
}
pub type mono_id = @mono_id_;
pub fn umax(cx: &Block, a: ValueRef, b: ValueRef) -> ValueRef {
let cond = build::ICmp(cx, lib::llvm::IntULT, a, b);
return build::Select(cx, cond, b, a);
}
pub fn umin(cx: &Block, a: ValueRef, b: ValueRef) -> ValueRef {
let cond = build::ICmp(cx, lib::llvm::IntULT, a, b);
return build::Select(cx, cond, a, b);
}
pub fn align_to(cx: &Block, off: ValueRef, align: ValueRef) -> ValueRef {
let mask = build::Sub(cx, align, C_int(cx.ccx(), 1));
let bumped = build::Add(cx, off, mask);
return build::And(cx, bumped, build::Not(cx, mask));
}
pub fn path_str(sess: session::Session, p: &[PathElem]) -> ~str {
let mut r = ~"";
let mut first = true;
for e in p.iter() {
match *e {
ast_map::PathName(s) | ast_map::PathMod(s) |
ast_map::PathPrettyName(s, _) => {
if first {
first = false
} else {
r.push_str("::")
}
r.push_str(sess.str_of(s));
}
}
}
r
}
pub fn monomorphize_type(bcx: &Block, t: ty::t) -> ty::t {
match bcx.fcx.param_substs {
Some(substs) => {
ty::subst_tps(bcx.tcx(), substs.tys, substs.self_ty, t)
}
_ => {
assert!(!ty::type_has_params(t));
assert!(!ty::type_has_self(t));
t
}
}
}
pub fn node_id_type(bcx: &Block, id: ast::NodeId) -> ty::t {
let tcx = bcx.tcx();
let t = ty::node_id_to_type(tcx, id);
monomorphize_type(bcx, t)
}
pub fn expr_ty(bcx: &Block, ex: &ast::Expr) -> ty::t {
node_id_type(bcx, ex.id)
}
pub fn expr_ty_adjusted(bcx: &Block, ex: &ast::Expr) -> ty::t {
let tcx = bcx.tcx();
let t = ty::expr_ty_adjusted(tcx, ex);
monomorphize_type(bcx, t)
}
pub fn node_id_type_params(bcx: &Block, id: ast::NodeId) -> ~[ty::t] {
let tcx = bcx.tcx();
let params = ty::node_id_to_type_params(tcx, id);
if !params.iter().all(|t| !ty::type_needs_infer(*t)) {
bcx.sess().bug(
format!("Type parameters for node {} include inference types: {}",
id, params.map(|t| bcx.ty_to_str(*t)).connect(",")));
}
match bcx.fcx.param_substs {
Some(substs) => {
params.iter().map(|t| {
ty::subst_tps(tcx, substs.tys, substs.self_ty, *t)
}).collect()
}
_ => params
}
}
pub fn node_vtables(bcx: &Block, id: ast::NodeId)
-> Option<typeck::vtable_res> {
let vtable_map = bcx.ccx().maps.vtable_map.borrow();
let raw_vtables = vtable_map.get().find(&id);
raw_vtables.map(|vts| resolve_vtables_in_fn_ctxt(bcx.fcx, *vts))
}
// Apply the typaram substitutions in the FunctionContext to some
// vtables. This should eliminate any vtable_params.
pub fn resolve_vtables_in_fn_ctxt(fcx: &FunctionContext, vts: typeck::vtable_res)
-> typeck::vtable_res {
resolve_vtables_under_param_substs(fcx.ccx.tcx,
fcx.param_substs,
vts)
}
pub fn resolve_vtables_under_param_substs(tcx: ty::ctxt,
param_substs: Option<@param_substs>,
vts: typeck::vtable_res)
-> typeck::vtable_res {
@vts.iter().map(|ds|
resolve_param_vtables_under_param_substs(tcx,
param_substs,
*ds))
.collect()
}
pub fn resolve_param_vtables_under_param_substs(
tcx: ty::ctxt,
param_substs: Option<@param_substs>,
ds: typeck::vtable_param_res)
-> typeck::vtable_param_res {
@ds.iter().map(
|d| resolve_vtable_under_param_substs(tcx,
param_substs,
d))
.collect()
}
pub fn resolve_vtable_under_param_substs(tcx: ty::ctxt,
param_substs: Option<@param_substs>,
vt: &typeck::vtable_origin)
-> typeck::vtable_origin {
match *vt {
typeck::vtable_static(trait_id, ref tys, sub) => {
let tys = match param_substs {
Some(substs) => {
tys.iter().map(|t| {
ty::subst_tps(tcx, substs.tys, substs.self_ty, *t)
}).collect()
}
_ => tys.to_owned()
};
typeck::vtable_static(
trait_id, tys,
resolve_vtables_under_param_substs(tcx, param_substs, sub))
}
typeck::vtable_param(n_param, n_bound) => {
match param_substs {
Some(substs) => {
find_vtable(tcx, substs, n_param, n_bound)
}
_ => {
tcx.sess.bug(format!(
"resolve_vtable_under_param_substs: asked to lookup \
but no vtables in the fn_ctxt!"))
}
}
}
}
}
pub fn find_vtable(tcx: ty::ctxt,
ps: &param_substs,
n_param: typeck::param_index,
n_bound: uint)
-> typeck::vtable_origin {
debug!("find_vtable(n_param={:?}, n_bound={}, ps={})",
n_param, n_bound, ps.repr(tcx));
let param_bounds = match n_param {
typeck::param_self => ps.self_vtables.expect("self vtables missing"),
typeck::param_numbered(n) => {
let tables = ps.vtables
.expect("vtables missing where they are needed");
tables[n]
}
};
param_bounds[n_bound].clone()
}
pub fn dummy_substs(tps: ~[ty::t]) -> ty::substs {
substs {
regions: ty::ErasedRegions,
self_ty: None,
tps: tps
}
}
pub fn filename_and_line_num_from_span(bcx: &Block, span: Span)
-> (ValueRef, ValueRef) {
let loc = bcx.sess().parse_sess.cm.lookup_char_pos(span.lo);
let filename_cstr = C_cstr(bcx.ccx(), loc.file.name);
let filename = build::PointerCast(bcx, filename_cstr, Type::i8p());
let line = C_int(bcx.ccx(), loc.line as int);
(filename, line)
}
// Casts a Rust bool value to an i1.
pub fn bool_to_i1(bcx: &Block, llval: ValueRef) -> ValueRef {
build::ICmp(bcx, lib::llvm::IntNE, llval, C_bool(false))
}
pub fn langcall(bcx: &Block,
span: Option<Span>,
msg: &str,
li: LangItem)
-> ast::DefId {
match bcx.tcx().lang_items.require(li) {
Ok(id) => id,
Err(s) => {
let msg = format!("{} {}", msg, s);
match span {
Some(span) => { bcx.tcx().sess.span_fatal(span, msg); }
None => { bcx.tcx().sess.fatal(msg); }
}
}
}
}