rust/src/libsyntax/ast.rs
2014-10-10 20:30:32 -04:00

1429 lines
41 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The Rust abstract syntax tree.
use codemap::{Span, Spanned, DUMMY_SP, ExpnId};
use abi::Abi;
use ast_util;
use owned_slice::OwnedSlice;
use parse::token::{InternedString, str_to_ident};
use parse::token;
use ptr::P;
use std::fmt;
use std::num::Zero;
use std::fmt::Show;
use std::rc::Rc;
use serialize::{Encodable, Decodable, Encoder, Decoder};
// FIXME #6993: in librustc, uses of "ident" should be replaced
// by just "Name".
/// An identifier contains a Name (index into the interner
/// table) and a SyntaxContext to track renaming and
/// macro expansion per Flatt et al., "Macros
/// That Work Together"
#[deriving(Clone, Hash, PartialOrd, Eq, Ord)]
pub struct Ident {
pub name: Name,
pub ctxt: SyntaxContext
}
impl Ident {
/// Construct an identifier with the given name and an empty context:
pub fn new(name: Name) -> Ident { Ident {name: name, ctxt: EMPTY_CTXT}}
pub fn as_str<'a>(&'a self) -> &'a str {
self.name.as_str()
}
pub fn encode_with_hygiene(&self) -> String {
format!("\x00name_{:u},ctxt_{:u}\x00",
self.name.uint(),
self.ctxt)
}
}
impl Show for Ident {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}#{}", self.name, self.ctxt)
}
}
impl Show for Name {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Name(nm) = *self;
write!(f, "\"{}\"({})", token::get_name(*self).get(), nm)
}
}
impl PartialEq for Ident {
fn eq(&self, other: &Ident) -> bool {
if self.ctxt == other.ctxt {
self.name == other.name
} else {
// IF YOU SEE ONE OF THESE FAILS: it means that you're comparing
// idents that have different contexts. You can't fix this without
// knowing whether the comparison should be hygienic or non-hygienic.
// if it should be non-hygienic (most things are), just compare the
// 'name' fields of the idents. Or, even better, replace the idents
// with Name's.
//
// On the other hand, if the comparison does need to be hygienic,
// one example and its non-hygienic counterpart would be:
// syntax::parse::token::mtwt_token_eq
// syntax::ext::tt::macro_parser::token_name_eq
fail!("not allowed to compare these idents: {:?}, {:?}. \
Probably related to issue \\#6993", self, other);
}
}
fn ne(&self, other: &Ident) -> bool {
! self.eq(other)
}
}
/// A SyntaxContext represents a chain of macro-expandings
/// and renamings. Each macro expansion corresponds to
/// a fresh uint
// I'm representing this syntax context as an index into
// a table, in order to work around a compiler bug
// that's causing unreleased memory to cause core dumps
// and also perhaps to save some work in destructor checks.
// the special uint '0' will be used to indicate an empty
// syntax context.
// this uint is a reference to a table stored in thread-local
// storage.
pub type SyntaxContext = u32;
pub const EMPTY_CTXT : SyntaxContext = 0;
pub const ILLEGAL_CTXT : SyntaxContext = 1;
/// A name is a part of an identifier, representing a string or gensym. It's
/// the result of interning.
#[deriving(Eq, Ord, PartialEq, PartialOrd, Hash, Encodable, Decodable, Clone)]
pub struct Name(pub u32);
impl Name {
pub fn as_str<'a>(&'a self) -> &'a str {
unsafe {
// FIXME #12938: can't use copy_lifetime since &str isn't a &T
::std::mem::transmute(token::get_name(*self).get())
}
}
pub fn uint(&self) -> uint {
let Name(nm) = *self;
nm as uint
}
pub fn ident(&self) -> Ident {
Ident { name: *self, ctxt: 0 }
}
}
/// A mark represents a unique id associated with a macro expansion
pub type Mrk = u32;
impl<S: Encoder<E>, E> Encodable<S, E> for Ident {
fn encode(&self, s: &mut S) -> Result<(), E> {
s.emit_str(token::get_ident(*self).get())
}
}
impl<D:Decoder<E>, E> Decodable<D, E> for Ident {
fn decode(d: &mut D) -> Result<Ident, E> {
Ok(str_to_ident(try!(d.read_str()).as_slice()))
}
}
/// Function name (not all functions have names)
pub type FnIdent = Option<Ident>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Lifetime {
pub id: NodeId,
pub span: Span,
pub name: Name
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct LifetimeDef {
pub lifetime: Lifetime,
pub bounds: Vec<Lifetime>
}
/// A "Path" is essentially Rust's notion of a name; for instance:
/// std::cmp::PartialEq . It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Path {
pub span: Span,
/// A `::foo` path, is relative to the crate root rather than current
/// module (like paths in an import).
pub global: bool,
/// The segments in the path: the things separated by `::`.
pub segments: Vec<PathSegment> ,
}
/// A segment of a path: an identifier, an optional lifetime, and a set of
/// types.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct PathSegment {
/// The identifier portion of this path segment.
pub identifier: Ident,
/// The lifetime parameters for this path segment.
pub lifetimes: Vec<Lifetime>,
/// The type parameters for this path segment, if present.
pub types: OwnedSlice<P<Ty>>,
}
pub type CrateNum = u32;
pub type NodeId = u32;
#[deriving(Clone, Eq, Ord, PartialOrd, PartialEq, Encodable, Decodable, Hash, Show)]
pub struct DefId {
pub krate: CrateNum,
pub node: NodeId,
}
/// Item definitions in the currently-compiled crate would have the CrateNum
/// LOCAL_CRATE in their DefId.
pub const LOCAL_CRATE: CrateNum = 0;
pub const CRATE_NODE_ID: NodeId = 0;
/// When parsing and doing expansions, we initially give all AST nodes this AST
/// node value. Then later, in the renumber pass, we renumber them to have
/// small, positive ids.
pub const DUMMY_NODE_ID: NodeId = -1;
/// The AST represents all type param bounds as types.
/// typeck::collect::compute_bounds matches these against
/// the "special" built-in traits (see middle::lang_items) and
/// detects Copy, Send and Sync.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum TyParamBound {
TraitTyParamBound(TraitRef),
UnboxedFnTyParamBound(P<UnboxedFnBound>),
RegionTyParamBound(Lifetime)
}
pub type TyParamBounds = OwnedSlice<TyParamBound>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct UnboxedFnBound {
pub path: Path,
pub decl: P<FnDecl>,
pub lifetimes: Vec<LifetimeDef>,
pub ref_id: NodeId,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct TyParam {
pub ident: Ident,
pub id: NodeId,
pub bounds: TyParamBounds,
pub unbound: Option<TyParamBound>,
pub default: Option<P<Ty>>,
pub span: Span
}
/// Represents lifetimes and type parameters attached to a declaration
/// of a function, enum, trait, etc.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Generics {
pub lifetimes: Vec<LifetimeDef>,
pub ty_params: OwnedSlice<TyParam>,
pub where_clause: WhereClause,
}
impl Generics {
pub fn is_parameterized(&self) -> bool {
self.lifetimes.len() + self.ty_params.len() > 0
}
pub fn is_lt_parameterized(&self) -> bool {
self.lifetimes.len() > 0
}
pub fn is_type_parameterized(&self) -> bool {
self.ty_params.len() > 0
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct WhereClause {
pub id: NodeId,
pub predicates: Vec<WherePredicate>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct WherePredicate {
pub id: NodeId,
pub span: Span,
pub ident: Ident,
pub bounds: OwnedSlice<TyParamBound>,
}
/// The set of MetaItems that define the compilation environment of the crate,
/// used to drive conditional compilation
pub type CrateConfig = Vec<P<MetaItem>> ;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Crate {
pub module: Mod,
pub attrs: Vec<Attribute>,
pub config: CrateConfig,
pub span: Span,
pub exported_macros: Vec<P<Item>>
}
pub type MetaItem = Spanned<MetaItem_>;
#[deriving(Clone, Eq, Encodable, Decodable, Hash, Show)]
pub enum MetaItem_ {
MetaWord(InternedString),
MetaList(InternedString, Vec<P<MetaItem>>),
MetaNameValue(InternedString, Lit),
}
// can't be derived because the MetaList requires an unordered comparison
impl PartialEq for MetaItem_ {
fn eq(&self, other: &MetaItem_) -> bool {
match *self {
MetaWord(ref ns) => match *other {
MetaWord(ref no) => (*ns) == (*no),
_ => false
},
MetaNameValue(ref ns, ref vs) => match *other {
MetaNameValue(ref no, ref vo) => {
(*ns) == (*no) && vs.node == vo.node
}
_ => false
},
MetaList(ref ns, ref miss) => match *other {
MetaList(ref no, ref miso) => {
ns == no &&
miss.iter().all(|mi| miso.iter().any(|x| x.node == mi.node))
}
_ => false
}
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Block {
pub view_items: Vec<ViewItem>,
pub stmts: Vec<P<Stmt>>,
pub expr: Option<P<Expr>>,
pub id: NodeId,
pub rules: BlockCheckMode,
pub span: Span,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Pat {
pub id: NodeId,
pub node: Pat_,
pub span: Span,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct FieldPat {
pub ident: Ident,
pub pat: P<Pat>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum BindingMode {
BindByRef(Mutability),
BindByValue(Mutability),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum PatWildKind {
/// Represents the wildcard pattern `_`
PatWildSingle,
/// Represents the wildcard pattern `..`
PatWildMulti,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Pat_ {
/// Represents a wildcard pattern (either `_` or `..`)
PatWild(PatWildKind),
/// A PatIdent may either be a new bound variable,
/// or a nullary enum (in which case the third field
/// is None).
/// In the nullary enum case, the parser can't determine
/// which it is. The resolver determines this, and
/// records this pattern's NodeId in an auxiliary
/// set (of "PatIdents that refer to nullary enums")
PatIdent(BindingMode, SpannedIdent, Option<P<Pat>>),
/// "None" means a * pattern where we don't bind the fields to names.
PatEnum(Path, Option<Vec<P<Pat>>>),
PatStruct(Path, Vec<FieldPat>, bool),
PatTup(Vec<P<Pat>>),
PatBox(P<Pat>),
PatRegion(P<Pat>), // reference pattern
PatLit(P<Expr>),
PatRange(P<Expr>, P<Expr>),
/// [a, b, ..i, y, z] is represented as:
/// PatVec(~[a, b], Some(i), ~[y, z])
PatVec(Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>),
PatMac(Mac),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Mutability {
MutMutable,
MutImmutable,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum BinOp {
BiAdd,
BiSub,
BiMul,
BiDiv,
BiRem,
BiAnd,
BiOr,
BiBitXor,
BiBitAnd,
BiBitOr,
BiShl,
BiShr,
BiEq,
BiLt,
BiLe,
BiNe,
BiGe,
BiGt,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum UnOp {
UnUniq,
UnDeref,
UnNot,
UnNeg
}
pub type Stmt = Spanned<Stmt_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Stmt_ {
/// Could be an item or a local (let) binding:
StmtDecl(P<Decl>, NodeId),
/// Expr without trailing semi-colon (must have unit type):
StmtExpr(P<Expr>, NodeId),
/// Expr with trailing semi-colon (may have any type):
StmtSemi(P<Expr>, NodeId),
/// bool: is there a trailing sem-colon?
StmtMac(Mac, bool),
}
/// Where a local declaration came from: either a true `let ... =
/// ...;`, or one desugared from the pattern of a for loop.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum LocalSource {
LocalLet,
LocalFor,
}
// FIXME (pending discussion of #1697, #2178...): local should really be
// a refinement on pat.
/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Local {
pub ty: P<Ty>,
pub pat: P<Pat>,
pub init: Option<P<Expr>>,
pub id: NodeId,
pub span: Span,
pub source: LocalSource,
}
pub type Decl = Spanned<Decl_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Decl_ {
/// A local (let) binding:
DeclLocal(P<Local>),
/// An item binding:
DeclItem(P<Item>),
}
/// represents one arm of a 'match'
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Arm {
pub attrs: Vec<Attribute>,
pub pats: Vec<P<Pat>>,
pub guard: Option<P<Expr>>,
pub body: P<Expr>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Field {
pub ident: SpannedIdent,
pub expr: P<Expr>,
pub span: Span,
}
pub type SpannedIdent = Spanned<Ident>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum BlockCheckMode {
DefaultBlock,
UnsafeBlock(UnsafeSource),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum UnsafeSource {
CompilerGenerated,
UserProvided,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Expr {
pub id: NodeId,
pub node: Expr_,
pub span: Span,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Expr_ {
/// First expr is the place; second expr is the value.
ExprBox(P<Expr>, P<Expr>),
ExprVec(Vec<P<Expr>>),
ExprCall(P<Expr>, Vec<P<Expr>>),
ExprMethodCall(SpannedIdent, Vec<P<Ty>>, Vec<P<Expr>>),
ExprTup(Vec<P<Expr>>),
ExprBinary(BinOp, P<Expr>, P<Expr>),
ExprUnary(UnOp, P<Expr>),
ExprLit(P<Lit>),
ExprCast(P<Expr>, P<Ty>),
ExprIf(P<Expr>, P<Block>, Option<P<Expr>>),
ExprIfLet(P<Pat>, P<Expr>, P<Block>, Option<P<Expr>>),
// FIXME #6993: change to Option<Name> ... or not, if these are hygienic.
ExprWhile(P<Expr>, P<Block>, Option<Ident>),
// FIXME #6993: change to Option<Name> ... or not, if these are hygienic.
ExprWhileLet(P<Pat>, P<Expr>, P<Block>, Option<Ident>),
// FIXME #6993: change to Option<Name> ... or not, if these are hygienic.
ExprForLoop(P<Pat>, P<Expr>, P<Block>, Option<Ident>),
// Conditionless loop (can be exited with break, cont, or ret)
// FIXME #6993: change to Option<Name> ... or not, if these are hygienic.
ExprLoop(P<Block>, Option<Ident>),
ExprMatch(P<Expr>, Vec<Arm>, MatchSource),
ExprFnBlock(CaptureClause, P<FnDecl>, P<Block>),
ExprProc(P<FnDecl>, P<Block>),
ExprUnboxedFn(CaptureClause, UnboxedClosureKind, P<FnDecl>, P<Block>),
ExprBlock(P<Block>),
ExprAssign(P<Expr>, P<Expr>),
ExprAssignOp(BinOp, P<Expr>, P<Expr>),
ExprField(P<Expr>, SpannedIdent, Vec<P<Ty>>),
ExprTupField(P<Expr>, Spanned<uint>, Vec<P<Ty>>),
ExprIndex(P<Expr>, P<Expr>),
ExprSlice(P<Expr>, Option<P<Expr>>, Option<P<Expr>>, Mutability),
/// Variable reference, possibly containing `::` and/or
/// type parameters, e.g. foo::bar::<baz>
ExprPath(Path),
ExprAddrOf(Mutability, P<Expr>),
ExprBreak(Option<Ident>),
ExprAgain(Option<Ident>),
ExprRet(Option<P<Expr>>),
ExprInlineAsm(InlineAsm),
ExprMac(Mac),
/// A struct literal expression.
ExprStruct(Path, Vec<Field>, Option<P<Expr>> /* base */),
/// A vector literal constructed from one repeated element.
ExprRepeat(P<Expr> /* element */, P<Expr> /* count */),
/// No-op: used solely so we can pretty-print faithfully
ExprParen(P<Expr>)
}
/// A "qualified path":
///
/// <Vec<T> as SomeTrait>::SomeAssociatedItem
/// ^~~~~ ^~~~~~~~~ ^~~~~~~~~~~~~~~~~~
/// for_type trait_name item_name
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct QPath {
pub for_type: P<Ty>,
pub trait_name: Path,
pub item_name: Ident,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum MatchSource {
MatchNormal,
MatchIfLetDesugar,
MatchWhileLetDesugar,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum CaptureClause {
CaptureByValue,
CaptureByRef,
}
/// When the main rust parser encounters a syntax-extension invocation, it
/// parses the arguments to the invocation as a token-tree. This is a very
/// loose structure, such that all sorts of different AST-fragments can
/// be passed to syntax extensions using a uniform type.
///
/// If the syntax extension is an MBE macro, it will attempt to match its
/// LHS "matchers" against the provided token tree, and if it finds a
/// match, will transcribe the RHS token tree, splicing in any captured
/// macro_parser::matched_nonterminals into the TTNonterminals it finds.
///
/// The RHS of an MBE macro is the only place a TTNonterminal or TTSeq
/// makes any real sense. You could write them elsewhere but nothing
/// else knows what to do with them, so you'll probably get a syntax
/// error.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
#[doc="For macro invocations; parsing is delegated to the macro"]
pub enum TokenTree {
/// A single token
TTTok(Span, ::parse::token::Token),
/// A delimited sequence (the delimiters appear as the first
/// and last elements of the vector)
// FIXME(eddyb) #6308 Use Rc<[TokenTree]> after DST.
TTDelim(Rc<Vec<TokenTree>>),
// These only make sense for right-hand-sides of MBE macros:
/// A kleene-style repetition sequence with a span, a TTForest,
/// an optional separator, and a boolean where true indicates
/// zero or more (..), and false indicates one or more (+).
// FIXME(eddyb) #6308 Use Rc<[TokenTree]> after DST.
TTSeq(Span, Rc<Vec<TokenTree>>, Option<::parse::token::Token>, bool),
/// A syntactic variable that will be filled in by macro expansion.
TTNonterminal(Span, Ident)
}
// Matchers are nodes defined-by and recognized-by the main rust parser and
// language, but they're only ever found inside syntax-extension invocations;
// indeed, the only thing that ever _activates_ the rules in the rust parser
// for parsing a matcher is a matcher looking for the 'matchers' nonterminal
// itself. Matchers represent a small sub-language for pattern-matching
// token-trees, and are thus primarily used by the macro-defining extension
// itself.
//
// MatchTok
// --------
//
// A matcher that matches a single token, denoted by the token itself. So
// long as there's no $ involved.
//
//
// MatchSeq
// --------
//
// A matcher that matches a sequence of sub-matchers, denoted various
// possible ways:
//
// $(M)* zero or more Ms
// $(M)+ one or more Ms
// $(M),+ one or more comma-separated Ms
// $(A B C);* zero or more semi-separated 'A B C' seqs
//
//
// MatchNonterminal
// -----------------
//
// A matcher that matches one of a few interesting named rust
// nonterminals, such as types, expressions, items, or raw token-trees. A
// black-box matcher on expr, for example, binds an expr to a given ident,
// and that ident can re-occur as an interpolation in the RHS of a
// macro-by-example rule. For example:
//
// $foo:expr => 1 + $foo // interpolate an expr
// $foo:tt => $foo // interpolate a token-tree
// $foo:tt => bar! $foo // only other valid interpolation
// // is in arg position for another
// // macro
//
// As a final, horrifying aside, note that macro-by-example's input is
// also matched by one of these matchers. Holy self-referential! It is matched
// by a MatchSeq, specifically this one:
//
// $( $lhs:matchers => $rhs:tt );+
//
// If you understand that, you have closed the loop and understand the whole
// macro system. Congratulations.
pub type Matcher = Spanned<Matcher_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Matcher_ {
/// Match one token
MatchTok(::parse::token::Token),
/// Match repetitions of a sequence: body, separator, zero ok?,
/// lo, hi position-in-match-array used:
MatchSeq(Vec<Matcher> , Option<::parse::token::Token>, bool, uint, uint),
/// Parse a Rust NT: name to bind, name of NT, position in match array:
MatchNonterminal(Ident, Ident, uint)
}
pub type Mac = Spanned<Mac_>;
/// Represents a macro invocation. The Path indicates which macro
/// is being invoked, and the vector of token-trees contains the source
/// of the macro invocation.
/// There's only one flavor, now, so this could presumably be simplified.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Mac_ {
// NB: the additional ident for a macro_rules-style macro is actually
// stored in the enclosing item. Oog.
MacInvocTT(Path, Vec<TokenTree> , SyntaxContext), // new macro-invocation
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum StrStyle {
CookedStr,
RawStr(uint)
}
pub type Lit = Spanned<Lit_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Sign {
Minus,
Plus
}
impl<T: PartialOrd+Zero> Sign {
pub fn new(n: T) -> Sign {
if n < Zero::zero() {
Minus
} else {
Plus
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum LitIntType {
SignedIntLit(IntTy, Sign),
UnsignedIntLit(UintTy),
UnsuffixedIntLit(Sign)
}
impl LitIntType {
pub fn suffix_len(&self) -> uint {
match *self {
UnsuffixedIntLit(_) => 0,
SignedIntLit(s, _) => s.suffix_len(),
UnsignedIntLit(u) => u.suffix_len()
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Lit_ {
LitStr(InternedString, StrStyle),
LitBinary(Rc<Vec<u8> >),
LitByte(u8),
LitChar(char),
LitInt(u64, LitIntType),
LitFloat(InternedString, FloatTy),
LitFloatUnsuffixed(InternedString),
LitNil,
LitBool(bool),
}
// NB: If you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct MutTy {
pub ty: P<Ty>,
pub mutbl: Mutability,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct TypeField {
pub ident: Ident,
pub mt: MutTy,
pub span: Span,
}
/// Represents a required method in a trait declaration,
/// one without a default implementation
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct TypeMethod {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub fn_style: FnStyle,
pub abi: Abi,
pub decl: P<FnDecl>,
pub generics: Generics,
pub explicit_self: ExplicitSelf,
pub id: NodeId,
pub span: Span,
pub vis: Visibility,
}
/// Represents a method declaration in a trait declaration, possibly including
/// a default implementation A trait method is either required (meaning it
/// doesn't have an implementation, just a signature) or provided (meaning it
/// has a default implementation).
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum TraitItem {
RequiredMethod(TypeMethod),
ProvidedMethod(P<Method>),
TypeTraitItem(P<AssociatedType>),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum ImplItem {
MethodImplItem(P<Method>),
TypeImplItem(P<Typedef>),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct AssociatedType {
pub id: NodeId,
pub span: Span,
pub ident: Ident,
pub attrs: Vec<Attribute>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Typedef {
pub id: NodeId,
pub span: Span,
pub ident: Ident,
pub vis: Visibility,
pub attrs: Vec<Attribute>,
pub typ: P<Ty>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum IntTy {
TyI,
TyI8,
TyI16,
TyI32,
TyI64,
}
impl fmt::Show for IntTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", ast_util::int_ty_to_string(*self, None))
}
}
impl IntTy {
pub fn suffix_len(&self) -> uint {
match *self {
TyI => 1,
TyI8 => 2,
TyI16 | TyI32 | TyI64 => 3,
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum UintTy {
TyU,
TyU8,
TyU16,
TyU32,
TyU64,
}
impl UintTy {
pub fn suffix_len(&self) -> uint {
match *self {
TyU => 1,
TyU8 => 2,
TyU16 | TyU32 | TyU64 => 3,
}
}
}
impl fmt::Show for UintTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", ast_util::uint_ty_to_string(*self, None))
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum FloatTy {
TyF32,
TyF64,
}
impl fmt::Show for FloatTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", ast_util::float_ty_to_string(*self))
}
}
impl FloatTy {
pub fn suffix_len(&self) -> uint {
match *self {
TyF32 | TyF64 => 3, // add F128 handling here
}
}
}
// NB PartialEq method appears below.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Ty {
pub id: NodeId,
pub node: Ty_,
pub span: Span,
}
/// Not represented directly in the AST, referred to by name through a ty_path.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum PrimTy {
TyInt(IntTy),
TyUint(UintTy),
TyFloat(FloatTy),
TyStr,
TyBool,
TyChar
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Onceness {
Once,
Many
}
impl fmt::Show for Onceness {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Once => "once".fmt(f),
Many => "many".fmt(f),
}
}
}
/// Represents the type of a closure
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct ClosureTy {
pub lifetimes: Vec<LifetimeDef>,
pub fn_style: FnStyle,
pub onceness: Onceness,
pub decl: P<FnDecl>,
pub bounds: TyParamBounds,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct BareFnTy {
pub fn_style: FnStyle,
pub abi: Abi,
pub lifetimes: Vec<LifetimeDef>,
pub decl: P<FnDecl>
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct UnboxedFnTy {
pub kind: UnboxedClosureKind,
pub decl: P<FnDecl>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Ty_ {
TyNil,
TyBot, /* bottom type */
TyUniq(P<Ty>),
TyVec(P<Ty>),
TyFixedLengthVec(P<Ty>, P<Expr>),
TyPtr(MutTy),
TyRptr(Option<Lifetime>, MutTy),
TyClosure(P<ClosureTy>),
TyProc(P<ClosureTy>),
TyBareFn(P<BareFnTy>),
TyUnboxedFn(P<UnboxedFnTy>),
TyTup(Vec<P<Ty>> ),
TyPath(Path, Option<TyParamBounds>, NodeId), // for #7264; see above
/// A "qualified path", e.g. `<Vec<T> as SomeTrait>::SomeType`
TyQPath(P<QPath>),
/// No-op; kept solely so that we can pretty-print faithfully
TyParen(P<Ty>),
TyTypeof(P<Expr>),
/// TyInfer means the type should be inferred instead of it having been
/// specified. This can appear anywhere in a type.
TyInfer,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum AsmDialect {
AsmAtt,
AsmIntel
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct InlineAsm {
pub asm: InternedString,
pub asm_str_style: StrStyle,
pub outputs: Vec<(InternedString, P<Expr>, bool)>,
pub inputs: Vec<(InternedString, P<Expr>)>,
pub clobbers: InternedString,
pub volatile: bool,
pub alignstack: bool,
pub dialect: AsmDialect,
pub expn_id: ExpnId,
}
/// represents an argument in a function header
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Arg {
pub ty: P<Ty>,
pub pat: P<Pat>,
pub id: NodeId,
}
impl Arg {
pub fn new_self(span: Span, mutability: Mutability, self_ident: Ident) -> Arg {
let path = Spanned{span:span,node:self_ident};
Arg {
// HACK(eddyb) fake type for the self argument.
ty: P(Ty {
id: DUMMY_NODE_ID,
node: TyInfer,
span: DUMMY_SP,
}),
pat: P(Pat {
id: DUMMY_NODE_ID,
node: PatIdent(BindByValue(mutability), path, None),
span: span
}),
id: DUMMY_NODE_ID
}
}
}
/// represents the header (not the body) of a function declaration
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct FnDecl {
pub inputs: Vec<Arg>,
pub output: P<Ty>,
pub cf: RetStyle,
pub variadic: bool
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum FnStyle {
/// Declared with "unsafe fn"
UnsafeFn,
/// Declared with "fn"
NormalFn,
}
impl fmt::Show for FnStyle {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
NormalFn => "normal".fmt(f),
UnsafeFn => "unsafe".fmt(f),
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum RetStyle {
/// Functions with return type ! that always
/// raise an error or exit (i.e. never return to the caller)
NoReturn,
/// Everything else
Return,
}
/// Represents the kind of 'self' associated with a method
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum ExplicitSelf_ {
/// No self
SelfStatic,
/// `self`
SelfValue(Ident),
/// `&'lt self`, `&'lt mut self`
SelfRegion(Option<Lifetime>, Mutability, Ident),
/// `self: TYPE`
SelfExplicit(P<Ty>, Ident),
}
pub type ExplicitSelf = Spanned<ExplicitSelf_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Method {
pub attrs: Vec<Attribute>,
pub id: NodeId,
pub span: Span,
pub node: Method_,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Method_ {
/// Represents a method declaration
MethDecl(Ident,
Generics,
Abi,
ExplicitSelf,
FnStyle,
P<FnDecl>,
P<Block>,
Visibility),
/// Represents a macro in method position
MethMac(Mac),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Mod {
/// A span from the first token past `{` to the last token until `}`.
/// For `mod foo;`, the inner span ranges from the first token
/// to the last token in the external file.
pub inner: Span,
pub view_items: Vec<ViewItem>,
pub items: Vec<P<Item>>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct ForeignMod {
pub abi: Abi,
pub view_items: Vec<ViewItem>,
pub items: Vec<P<ForeignItem>>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct VariantArg {
pub ty: P<Ty>,
pub id: NodeId,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum VariantKind {
TupleVariantKind(Vec<VariantArg>),
StructVariantKind(P<StructDef>),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct EnumDef {
pub variants: Vec<P<Variant>>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Variant_ {
pub name: Ident,
pub attrs: Vec<Attribute>,
pub kind: VariantKind,
pub id: NodeId,
pub disr_expr: Option<P<Expr>>,
pub vis: Visibility,
}
pub type Variant = Spanned<Variant_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum PathListItem_ {
PathListIdent { pub name: Ident, pub id: NodeId },
PathListMod { pub id: NodeId }
}
impl PathListItem_ {
pub fn id(&self) -> NodeId {
match *self {
PathListIdent { id, .. } | PathListMod { id } => id
}
}
}
pub type PathListItem = Spanned<PathListItem_>;
pub type ViewPath = Spanned<ViewPath_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum ViewPath_ {
/// `foo::bar::baz as quux`
///
/// or just
///
/// `foo::bar::baz` (with `as baz` implicitly on the right)
ViewPathSimple(Ident, Path, NodeId),
/// `foo::bar::*`
ViewPathGlob(Path, NodeId),
/// `foo::bar::{a,b,c}`
ViewPathList(Path, Vec<PathListItem> , NodeId)
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct ViewItem {
pub node: ViewItem_,
pub attrs: Vec<Attribute>,
pub vis: Visibility,
pub span: Span,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum ViewItem_ {
/// Ident: name used to refer to this crate in the code
/// optional (InternedString,StrStyle): if present, this is a location
/// (containing arbitrary characters) from which to fetch the crate sources
/// For example, extern crate whatever = "github.com/rust-lang/rust"
ViewItemExternCrate(Ident, Option<(InternedString,StrStyle)>, NodeId),
ViewItemUse(P<ViewPath>),
}
/// Meta-data associated with an item
pub type Attribute = Spanned<Attribute_>;
/// Distinguishes between Attributes that decorate items and Attributes that
/// are contained as statements within items. These two cases need to be
/// distinguished for pretty-printing.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum AttrStyle {
AttrOuter,
AttrInner,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct AttrId(pub uint);
/// Doc-comments are promoted to attributes that have is_sugared_doc = true
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Attribute_ {
pub id: AttrId,
pub style: AttrStyle,
pub value: P<MetaItem>,
pub is_sugared_doc: bool,
}
/// TraitRef's appear in impls.
/// resolve maps each TraitRef's ref_id to its defining trait; that's all
/// that the ref_id is for. The impl_id maps to the "self type" of this impl.
/// If this impl is an ItemImpl, the impl_id is redundant (it could be the
/// same as the impl's node id).
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct TraitRef {
pub path: Path,
pub ref_id: NodeId,
pub lifetimes: Vec<LifetimeDef>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Visibility {
Public,
Inherited,
}
impl Visibility {
pub fn inherit_from(&self, parent_visibility: Visibility) -> Visibility {
match self {
&Inherited => parent_visibility,
&Public => *self
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct StructField_ {
pub kind: StructFieldKind,
pub id: NodeId,
pub ty: P<Ty>,
pub attrs: Vec<Attribute>,
}
impl StructField_ {
pub fn ident(&self) -> Option<Ident> {
match self.kind {
NamedField(ref ident, _) => Some(ident.clone()),
UnnamedField(_) => None
}
}
}
pub type StructField = Spanned<StructField_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum StructFieldKind {
NamedField(Ident, Visibility),
/// Element of a tuple-like struct
UnnamedField(Visibility),
}
impl StructFieldKind {
pub fn is_unnamed(&self) -> bool {
match *self {
UnnamedField(..) => true,
NamedField(..) => false,
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct StructDef {
/// Fields, not including ctor
pub fields: Vec<StructField>,
/// ID of the constructor. This is only used for tuple- or enum-like
/// structs.
pub ctor_id: Option<NodeId>,
/// Super struct, if specified.
pub super_struct: Option<P<Ty>>,
/// True iff the struct may be inherited from.
pub is_virtual: bool,
}
/*
FIXME (#3300): Should allow items to be anonymous. Right now
we just use dummy names for anon items.
*/
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct Item {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub id: NodeId,
pub node: Item_,
pub vis: Visibility,
pub span: Span,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Item_ {
ItemStatic(P<Ty>, Mutability, P<Expr>),
ItemConst(P<Ty>, P<Expr>),
ItemFn(P<FnDecl>, FnStyle, Abi, Generics, P<Block>),
ItemMod(Mod),
ItemForeignMod(ForeignMod),
ItemTy(P<Ty>, Generics),
ItemEnum(EnumDef, Generics),
ItemStruct(P<StructDef>, Generics),
/// Represents a Trait Declaration
ItemTrait(Generics,
Option<TyParamBound>, // (optional) default bound not required for Self.
// Currently, only Sized makes sense here.
TyParamBounds,
Vec<TraitItem>),
ItemImpl(Generics,
Option<TraitRef>, // (optional) trait this impl implements
P<Ty>, // self
Vec<ImplItem>),
/// A macro invocation (which includes macro definition)
ItemMac(Mac),
}
impl Item_ {
pub fn descriptive_variant(&self) -> &str {
match *self {
ItemStatic(..) => "static item",
ItemFn(..) => "function",
ItemMod(..) => "module",
ItemForeignMod(..) => "foreign module",
ItemTy(..) => "type alias",
ItemEnum(..) => "enum",
ItemStruct(..) => "struct",
ItemTrait(..) => "trait",
_ => "item"
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub struct ForeignItem {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub node: ForeignItem_,
pub id: NodeId,
pub span: Span,
pub vis: Visibility,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum ForeignItem_ {
ForeignItemFn(P<FnDecl>, Generics),
ForeignItemStatic(P<Ty>, /* is_mutbl */ bool),
}
impl ForeignItem_ {
pub fn descriptive_variant(&self) -> &str {
match *self {
ForeignItemFn(..) => "foreign function",
ForeignItemStatic(..) => "foreign static item"
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum UnboxedClosureKind {
FnUnboxedClosureKind,
FnMutUnboxedClosureKind,
FnOnceUnboxedClosureKind,
}
/// The data we save and restore about an inlined item or method. This is not
/// part of the AST that we parse from a file, but it becomes part of the tree
/// that we trans.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum InlinedItem {
IIItem(P<Item>),
IITraitItem(DefId /* impl id */, TraitItem),
IIImplItem(DefId /* impl id */, ImplItem),
IIForeign(P<ForeignItem>),
}
#[cfg(test)]
mod test {
use serialize::json;
use serialize;
use codemap::*;
use super::*;
// are ASTs encodable?
#[test]
fn check_asts_encodable() {
use std::io;
let e = Crate {
module: Mod {
inner: Span {
lo: BytePos(11),
hi: BytePos(19),
expn_id: NO_EXPANSION,
},
view_items: Vec::new(),
items: Vec::new(),
},
attrs: Vec::new(),
config: Vec::new(),
span: Span {
lo: BytePos(10),
hi: BytePos(20),
expn_id: NO_EXPANSION,
},
exported_macros: Vec::new(),
};
// doesn't matter which encoder we use....
let _f = &e as &serialize::Encodable<json::Encoder, io::IoError>;
}
}