rust/src/librustc/middle/trans/consts.rs

662 lines
27 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::abi;
use lib::llvm::{llvm, ConstFCmp, ConstICmp, SetLinkage, PrivateLinkage, ValueRef, Bool, True};
use lib::llvm::{IntEQ, IntNE, IntUGT, IntUGE, IntULT, IntULE, IntSGT, IntSGE, IntSLT, IntSLE,
RealOEQ, RealOGT, RealOGE, RealOLT, RealOLE, RealONE};
use metadata::csearch;
use middle::const_eval;
use middle::trans::adt;
use middle::trans::base;
use middle::trans::base::push_ctxt;
use middle::trans::common::*;
use middle::trans::consts;
use middle::trans::expr;
use middle::trans::inline;
use middle::trans::machine;
use middle::trans::type_of;
use middle::ty;
use util::ppaux::{Repr, ty_to_str};
use middle::trans::type_::Type;
use std::c_str::ToCStr;
use std::libc::c_uint;
use std::vec;
use syntax::{ast, ast_util, ast_map};
pub fn const_lit(cx: &mut CrateContext, e: &ast::Expr, lit: ast::lit)
-> ValueRef {
let _icx = push_ctxt("trans_lit");
match lit.node {
ast::lit_char(i) => C_integral(Type::char(), i as u64, false),
ast::lit_int(i, t) => C_integral(Type::int_from_ty(cx, t), i as u64, true),
ast::lit_uint(u, t) => C_integral(Type::uint_from_ty(cx, t), u, false),
ast::lit_int_unsuffixed(i) => {
let lit_int_ty = ty::node_id_to_type(cx.tcx, e.id);
match ty::get(lit_int_ty).sty {
ty::ty_int(t) => {
C_integral(Type::int_from_ty(cx, t), i as u64, true)
}
ty::ty_uint(t) => {
C_integral(Type::uint_from_ty(cx, t), i as u64, false)
}
_ => cx.sess.span_bug(lit.span,
fmt!("integer literal has type %s (expected int or uint)",
ty_to_str(cx.tcx, lit_int_ty)))
}
}
ast::lit_float(fs, t) => C_floating(fs, Type::float_from_ty(cx, t)),
ast::lit_float_unsuffixed(fs) => {
let lit_float_ty = ty::node_id_to_type(cx.tcx, e.id);
match ty::get(lit_float_ty).sty {
ty::ty_float(t) => {
C_floating(fs, Type::float_from_ty(cx, t))
}
_ => {
cx.sess.span_bug(lit.span,
"floating point literal doesn't have the right type");
}
}
}
ast::lit_bool(b) => C_bool(b),
ast::lit_nil => C_nil(),
ast::lit_str(s) => C_estr_slice(cx, s)
}
}
pub fn const_ptrcast(cx: &mut CrateContext, a: ValueRef, t: Type) -> ValueRef {
unsafe {
let b = llvm::LLVMConstPointerCast(a, t.ptr_to().to_ref());
assert!(cx.const_globals.insert(b as int, a));
b
}
}
pub fn const_vec(cx: @mut CrateContext, e: &ast::Expr, es: &[@ast::Expr])
-> (ValueRef, ValueRef, Type, bool) {
unsafe {
let vec_ty = ty::expr_ty(cx.tcx, e);
let unit_ty = ty::sequence_element_type(cx.tcx, vec_ty);
let llunitty = type_of::type_of(cx, unit_ty);
let unit_sz = machine::llsize_of(cx, llunitty);
let sz = llvm::LLVMConstMul(C_uint(cx, es.len()), unit_sz);
let (vs, inlineable) = vec::unzip(es.iter().map(|e| const_expr(cx, *e)));
// If the vector contains enums, an LLVM array won't work.
let v = if vs.iter().any(|vi| val_ty(*vi) != llunitty) {
C_struct(vs)
} else {
C_array(llunitty, vs)
};
return (v, sz, llunitty, inlineable.iter().fold(true, |a, &b| a && b));
}
}
fn const_addr_of(cx: &mut CrateContext, cv: ValueRef) -> ValueRef {
unsafe {
let gv = do "const".with_c_str |name| {
llvm::LLVMAddGlobal(cx.llmod, val_ty(cv).to_ref(), name)
};
llvm::LLVMSetInitializer(gv, cv);
llvm::LLVMSetGlobalConstant(gv, True);
SetLinkage(gv, PrivateLinkage);
gv
}
}
fn const_deref_ptr(cx: &mut CrateContext, v: ValueRef) -> ValueRef {
let v = match cx.const_globals.find(&(v as int)) {
Some(&v) => v,
None => v
};
unsafe {
assert_eq!(llvm::LLVMIsGlobalConstant(v), True);
llvm::LLVMGetInitializer(v)
}
}
fn const_deref_newtype(cx: &mut CrateContext, v: ValueRef, t: ty::t)
-> ValueRef {
let repr = adt::represent_type(cx, t);
adt::const_get_field(cx, repr, v, 0, 0)
}
fn const_deref(cx: &mut CrateContext, v: ValueRef, t: ty::t, explicit: bool)
-> (ValueRef, ty::t) {
match ty::deref(cx.tcx, t, explicit) {
Some(ref mt) => {
assert!(mt.mutbl != ast::MutMutable);
let dv = match ty::get(t).sty {
ty::ty_ptr(*) | ty::ty_rptr(*) => {
const_deref_ptr(cx, v)
}
ty::ty_enum(*) | ty::ty_struct(*) => {
const_deref_newtype(cx, v, t)
}
_ => {
cx.sess.bug(fmt!("Unexpected dereferenceable type %s",
ty_to_str(cx.tcx, t)))
}
};
(dv, mt.ty)
}
None => {
cx.sess.bug(fmt!("Can't dereference const of type %s",
ty_to_str(cx.tcx, t)))
}
}
}
pub fn get_const_val(cx: @mut CrateContext,
mut def_id: ast::DefId) -> (ValueRef, bool) {
let contains_key = cx.const_values.contains_key(&def_id.node);
if !ast_util::is_local(def_id) || !contains_key {
if !ast_util::is_local(def_id) {
def_id = inline::maybe_instantiate_inline(cx, def_id);
}
match cx.tcx.items.get_copy(&def_id.node) {
ast_map::node_item(@ast::item {
node: ast::item_static(_, ast::MutImmutable, _), _
}, _) => {
trans_const(cx, ast::MutImmutable, def_id.node);
}
_ => cx.tcx.sess.bug("expected a const to be an item")
}
}
(cx.const_values.get_copy(&def_id.node),
!cx.non_inlineable_statics.contains(&def_id.node))
}
pub fn const_expr(cx: @mut CrateContext, e: &ast::Expr) -> (ValueRef, bool) {
let (llconst, inlineable) = const_expr_unadjusted(cx, e);
let mut llconst = llconst;
let mut inlineable = inlineable;
let ety = ty::expr_ty(cx.tcx, e);
let adjustment = cx.tcx.adjustments.find_copy(&e.id);
match adjustment {
None => { }
Some(@ty::AutoAddEnv(ty::re_static, ast::BorrowedSigil)) => {
llconst = C_struct([llconst, C_null(Type::opaque_box(cx).ptr_to())])
}
Some(@ty::AutoAddEnv(ref r, ref s)) => {
cx.sess.span_bug(e.span, fmt!("unexpected static function: \
region %? sigil %?", *r, *s))
}
Some(@ty::AutoDerefRef(ref adj)) => {
let mut ty = ety;
let mut maybe_ptr = None;
do adj.autoderefs.times {
let (dv, dt) = const_deref(cx, llconst, ty, false);
maybe_ptr = Some(llconst);
llconst = dv;
ty = dt;
}
match adj.autoref {
None => { }
Some(ref autoref) => {
// Don't copy data to do a deref+ref.
let llptr = match maybe_ptr {
Some(ptr) => ptr,
None => {
inlineable = false;
const_addr_of(cx, llconst)
}
};
match *autoref {
ty::AutoUnsafe(m) |
ty::AutoPtr(ty::re_static, m) => {
assert!(m != ast::MutMutable);
llconst = llptr;
}
ty::AutoBorrowVec(ty::re_static, m) => {
assert!(m != ast::MutMutable);
assert_eq!(abi::slice_elt_base, 0);
assert_eq!(abi::slice_elt_len, 1);
match ty::get(ty).sty {
ty::ty_evec(_, ty::vstore_fixed(*)) => {
let size = machine::llsize_of(cx, val_ty(llconst));
llconst = C_struct([llptr, size]);
}
_ => {}
}
}
_ => {
cx.sess.span_bug(e.span,
fmt!("unimplemented const \
autoref %?", autoref))
}
}
}
}
}
}
let ety_adjusted = ty::expr_ty_adjusted(cx.tcx, e);
let llty = type_of::sizing_type_of(cx, ety_adjusted);
let csize = machine::llsize_of_alloc(cx, val_ty(llconst));
let tsize = machine::llsize_of_alloc(cx, llty);
if csize != tsize {
unsafe {
// XXX these values could use some context
llvm::LLVMDumpValue(llconst);
llvm::LLVMDumpValue(C_undef(llty));
}
cx.sess.bug(fmt!("const %s of type %s has size %u instead of %u",
e.repr(cx.tcx), ty_to_str(cx.tcx, ety),
csize, tsize));
}
(llconst, inlineable)
}
// the bool returned is whether this expression can be inlined into other crates
// if it's assigned to a static.
fn const_expr_unadjusted(cx: @mut CrateContext,
e: &ast::Expr) -> (ValueRef, bool) {
fn map_list(cx: @mut CrateContext,
exprs: &[@ast::Expr]) -> (~[ValueRef], bool) {
exprs.iter().map(|&e| const_expr(cx, e))
.fold((~[], true), |(L, all_inlineable), (val, inlineable)| {
(vec::append_one(L, val), all_inlineable && inlineable)
})
}
unsafe {
let _icx = push_ctxt("const_expr");
return match e.node {
ast::ExprLit(lit) => (consts::const_lit(cx, e, *lit), true),
ast::ExprBinary(_, b, e1, e2) => {
let (te1, _) = const_expr(cx, e1);
let (te2, _) = const_expr(cx, e2);
let te2 = base::cast_shift_const_rhs(b, te1, te2);
/* Neither type is bottom, and we expect them to be unified
* already, so the following is safe. */
let ty = ty::expr_ty(cx.tcx, e1);
let is_float = ty::type_is_fp(ty);
let signed = ty::type_is_signed(ty);
return (match b {
ast::BiAdd => {
if is_float { llvm::LLVMConstFAdd(te1, te2) }
else { llvm::LLVMConstAdd(te1, te2) }
}
ast::BiSub => {
if is_float { llvm::LLVMConstFSub(te1, te2) }
else { llvm::LLVMConstSub(te1, te2) }
}
ast::BiMul => {
if is_float { llvm::LLVMConstFMul(te1, te2) }
else { llvm::LLVMConstMul(te1, te2) }
}
ast::BiDiv => {
if is_float { llvm::LLVMConstFDiv(te1, te2) }
else if signed { llvm::LLVMConstSDiv(te1, te2) }
else { llvm::LLVMConstUDiv(te1, te2) }
}
ast::BiRem => {
if is_float { llvm::LLVMConstFRem(te1, te2) }
else if signed { llvm::LLVMConstSRem(te1, te2) }
else { llvm::LLVMConstURem(te1, te2) }
}
ast::BiAnd => llvm::LLVMConstAnd(te1, te2),
ast::BiOr => llvm::LLVMConstOr(te1, te2),
ast::BiBitXor => llvm::LLVMConstXor(te1, te2),
ast::BiBitAnd => llvm::LLVMConstAnd(te1, te2),
ast::BiBitOr => llvm::LLVMConstOr(te1, te2),
ast::BiShl => llvm::LLVMConstShl(te1, te2),
ast::BiShr => {
if signed { llvm::LLVMConstAShr(te1, te2) }
else { llvm::LLVMConstLShr(te1, te2) }
}
ast::BiEq => {
if is_float { ConstFCmp(RealOEQ, te1, te2) }
else { ConstICmp(IntEQ, te1, te2) }
},
ast::BiLt => {
if is_float { ConstFCmp(RealOLT, te1, te2) }
else {
if signed { ConstICmp(IntSLT, te1, te2) }
else { ConstICmp(IntULT, te1, te2) }
}
},
ast::BiLe => {
if is_float { ConstFCmp(RealOLE, te1, te2) }
else {
if signed { ConstICmp(IntSLE, te1, te2) }
else { ConstICmp(IntULE, te1, te2) }
}
},
ast::BiNe => {
if is_float { ConstFCmp(RealONE, te1, te2) }
else { ConstICmp(IntNE, te1, te2) }
},
ast::BiGe => {
if is_float { ConstFCmp(RealOGE, te1, te2) }
else {
if signed { ConstICmp(IntSGE, te1, te2) }
else { ConstICmp(IntUGE, te1, te2) }
}
},
ast::BiGt => {
if is_float { ConstFCmp(RealOGT, te1, te2) }
else {
if signed { ConstICmp(IntSGT, te1, te2) }
else { ConstICmp(IntUGT, te1, te2) }
}
},
}, true)
},
ast::ExprUnary(_, u, e) => {
let (te, _) = const_expr(cx, e);
let ty = ty::expr_ty(cx.tcx, e);
let is_float = ty::type_is_fp(ty);
return (match u {
ast::UnBox(_) |
ast::UnUniq |
ast::UnDeref => {
let (dv, _dt) = const_deref(cx, te, ty, true);
dv
}
ast::UnNot => {
match ty::get(ty).sty {
ty::ty_bool => {
// Somewhat questionable, but I believe this is
// correct.
let te = llvm::LLVMConstTrunc(te, Type::i1().to_ref());
let te = llvm::LLVMConstNot(te);
llvm::LLVMConstZExt(te, Type::bool().to_ref())
}
_ => llvm::LLVMConstNot(te),
}
}
ast::UnNeg => {
if is_float { llvm::LLVMConstFNeg(te) }
else { llvm::LLVMConstNeg(te) }
}
}, true)
}
ast::ExprField(base, field, _) => {
let bt = ty::expr_ty_adjusted(cx.tcx, base);
let brepr = adt::represent_type(cx, bt);
let (bv, inlineable) = const_expr(cx, base);
do expr::with_field_tys(cx.tcx, bt, None) |discr, field_tys| {
let ix = ty::field_idx_strict(cx.tcx, field.name, field_tys);
(adt::const_get_field(cx, brepr, bv, discr, ix), inlineable)
}
}
ast::ExprIndex(_, base, index) => {
let bt = ty::expr_ty_adjusted(cx.tcx, base);
let (bv, inlineable) = const_expr(cx, base);
let iv = match const_eval::eval_const_expr(cx.tcx, index) {
const_eval::const_int(i) => i as u64,
const_eval::const_uint(u) => u,
_ => cx.sess.span_bug(index.span,
"index is not an integer-constant expression")
};
let (arr, len) = match ty::get(bt).sty {
ty::ty_evec(_, vstore) | ty::ty_estr(vstore) =>
match vstore {
ty::vstore_fixed(u) =>
(bv, C_uint(cx, u)),
ty::vstore_slice(_) => {
let unit_ty = ty::sequence_element_type(cx.tcx, bt);
let llunitty = type_of::type_of(cx, unit_ty);
let unit_sz = machine::llsize_of(cx, llunitty);
let e1 = const_get_elt(cx, bv, [0]);
(const_deref_ptr(cx, e1),
llvm::LLVMConstUDiv(const_get_elt(cx, bv, [1]),
unit_sz))
},
_ => cx.sess.span_bug(base.span,
"index-expr base must be fixed-size or slice")
},
_ => cx.sess.span_bug(base.span,
"index-expr base must be a vector or string type")
};
let len = llvm::LLVMConstIntGetZExtValue(len) as u64;
let len = match ty::get(bt).sty {
ty::ty_estr(*) => {assert!(len > 0); len - 1},
_ => len
};
if iv >= len {
// FIXME #3170: report this earlier on in the const-eval
// pass. Reporting here is a bit late.
cx.sess.span_err(e.span,
"const index-expr is out of bounds");
}
(const_get_elt(cx, arr, [iv as c_uint]), inlineable)
}
ast::ExprCast(base, _) => {
let ety = ty::expr_ty(cx.tcx, e);
let llty = type_of::type_of(cx, ety);
let basety = ty::expr_ty(cx.tcx, base);
let (v, inlineable) = const_expr(cx, base);
return (match (expr::cast_type_kind(basety),
expr::cast_type_kind(ety)) {
(expr::cast_integral, expr::cast_integral) => {
let s = ty::type_is_signed(basety) as Bool;
llvm::LLVMConstIntCast(v, llty.to_ref(), s)
}
(expr::cast_integral, expr::cast_float) => {
if ty::type_is_signed(basety) {
llvm::LLVMConstSIToFP(v, llty.to_ref())
} else {
llvm::LLVMConstUIToFP(v, llty.to_ref())
}
}
(expr::cast_float, expr::cast_float) => {
llvm::LLVMConstFPCast(v, llty.to_ref())
}
(expr::cast_float, expr::cast_integral) => {
if ty::type_is_signed(ety) { llvm::LLVMConstFPToSI(v, llty.to_ref()) }
else { llvm::LLVMConstFPToUI(v, llty.to_ref()) }
}
(expr::cast_enum, expr::cast_integral) |
(expr::cast_enum, expr::cast_float) => {
let repr = adt::represent_type(cx, basety);
let discr = adt::const_get_discrim(cx, repr, v);
let iv = C_integral(cx.int_type, discr, false);
let ety_cast = expr::cast_type_kind(ety);
match ety_cast {
expr::cast_integral => {
let s = ty::type_is_signed(ety) as Bool;
llvm::LLVMConstIntCast(iv, llty.to_ref(), s)
}
expr::cast_float => llvm::LLVMConstUIToFP(iv, llty.to_ref()),
_ => cx.sess.bug("enum cast destination is not \
integral or float")
}
}
(expr::cast_pointer, expr::cast_pointer) => {
llvm::LLVMConstPointerCast(v, llty.to_ref())
}
(expr::cast_integral, expr::cast_pointer) => {
llvm::LLVMConstIntToPtr(v, llty.to_ref())
}
_ => {
cx.sess.impossible_case(e.span,
"bad combination of types for cast")
}
}, inlineable)
}
ast::ExprAddrOf(ast::MutImmutable, sub) => {
let (e, _) = const_expr(cx, sub);
(const_addr_of(cx, e), false)
}
ast::ExprTup(ref es) => {
let ety = ty::expr_ty(cx.tcx, e);
let repr = adt::represent_type(cx, ety);
let (vals, inlineable) = map_list(cx, *es);
(adt::trans_const(cx, repr, 0, vals), inlineable)
}
ast::ExprStruct(_, ref fs, ref base_opt) => {
let ety = ty::expr_ty(cx.tcx, e);
let repr = adt::represent_type(cx, ety);
let tcx = cx.tcx;
let base_val = match *base_opt {
Some(base) => Some(const_expr(cx, base)),
None => None
};
do expr::with_field_tys(tcx, ety, Some(e.id))
|discr, field_tys| {
let cs = field_tys.iter().enumerate()
.map(|(ix, &field_ty)| {
match fs.iter().find(|f| field_ty.ident.name == f.ident.name) {
Some(f) => const_expr(cx, (*f).expr),
None => {
match base_val {
Some((bv, inlineable)) => {
(adt::const_get_field(cx, repr, bv, discr, ix),
inlineable)
}
None => cx.tcx.sess.span_bug(e.span, "missing struct field")
}
}
}
}).to_owned_vec();
let (cs, inlineable) = vec::unzip(cs.move_iter());
(adt::trans_const(cx, repr, discr, cs),
inlineable.iter().fold(true, |a, &b| a && b))
}
}
ast::ExprVec(ref es, ast::MutImmutable) => {
let (v, _, _, inlineable) = const_vec(cx, e, *es);
(v, inlineable)
}
ast::ExprVstore(sub, ast::ExprVstoreSlice) => {
match sub.node {
ast::ExprLit(ref lit) => {
match lit.node {
ast::lit_str(*) => { const_expr(cx, sub) }
_ => { cx.sess.span_bug(e.span, "bad const-slice lit") }
}
}
ast::ExprVec(ref es, ast::MutImmutable) => {
let (cv, sz, llunitty, _) = const_vec(cx, e, *es);
let llty = val_ty(cv);
let gv = do "const".with_c_str |name| {
llvm::LLVMAddGlobal(cx.llmod, llty.to_ref(), name)
};
llvm::LLVMSetInitializer(gv, cv);
llvm::LLVMSetGlobalConstant(gv, True);
SetLinkage(gv, PrivateLinkage);
let p = const_ptrcast(cx, gv, llunitty);
(C_struct([p, sz]), false)
}
_ => cx.sess.span_bug(e.span, "bad const-slice expr")
}
}
ast::ExprRepeat(elem, count, _) => {
let vec_ty = ty::expr_ty(cx.tcx, e);
let unit_ty = ty::sequence_element_type(cx.tcx, vec_ty);
let llunitty = type_of::type_of(cx, unit_ty);
let n = match const_eval::eval_const_expr(cx.tcx, count) {
const_eval::const_int(i) => i as uint,
const_eval::const_uint(i) => i as uint,
_ => cx.sess.span_bug(count.span, "count must be integral const expression.")
};
let vs = vec::from_elem(n, const_expr(cx, elem).first());
let v = if vs.iter().any(|vi| val_ty(*vi) != llunitty) {
C_struct(vs)
} else {
C_array(llunitty, vs)
};
(v, true)
}
ast::ExprPath(ref pth) => {
// Assert that there are no type parameters in this path.
assert!(pth.segments.iter().all(|seg| seg.types.is_empty()));
let tcx = cx.tcx;
match tcx.def_map.find(&e.id) {
Some(&ast::DefFn(def_id, _purity)) => {
if !ast_util::is_local(def_id) {
let ty = csearch::get_type(cx.tcx, def_id).ty;
(base::trans_external_path(cx, def_id, ty), true)
} else {
assert!(ast_util::is_local(def_id));
(base::get_item_val(cx, def_id.node), true)
}
}
Some(&ast::DefStatic(def_id, false)) => {
get_const_val(cx, def_id)
}
Some(&ast::DefVariant(enum_did, variant_did, _)) => {
let ety = ty::expr_ty(cx.tcx, e);
let repr = adt::represent_type(cx, ety);
let vinfo = ty::enum_variant_with_id(cx.tcx,
enum_did,
variant_did);
(adt::trans_const(cx, repr, vinfo.disr_val, []), true)
}
Some(&ast::DefStruct(_)) => {
let ety = ty::expr_ty(cx.tcx, e);
let llty = type_of::type_of(cx, ety);
(C_null(llty), true)
}
_ => {
cx.sess.span_bug(e.span, "expected a const, fn, struct, or variant def")
}
}
}
ast::ExprCall(callee, ref args, _) => {
let tcx = cx.tcx;
match tcx.def_map.find(&callee.id) {
Some(&ast::DefStruct(_)) => {
let ety = ty::expr_ty(cx.tcx, e);
let repr = adt::represent_type(cx, ety);
let (arg_vals, inlineable) = map_list(cx, *args);
(adt::trans_const(cx, repr, 0, arg_vals), inlineable)
}
Some(&ast::DefVariant(enum_did, variant_did, _)) => {
let ety = ty::expr_ty(cx.tcx, e);
let repr = adt::represent_type(cx, ety);
let vinfo = ty::enum_variant_with_id(cx.tcx,
enum_did,
variant_did);
let (arg_vals, inlineable) = map_list(cx, *args);
(adt::trans_const(cx, repr, vinfo.disr_val, arg_vals),
inlineable)
}
_ => cx.sess.span_bug(e.span, "expected a struct or variant def")
}
}
ast::ExprParen(e) => { const_expr(cx, e) }
_ => cx.sess.span_bug(e.span,
"bad constant expression type in consts::const_expr")
};
}
}
pub fn trans_const(ccx: @mut CrateContext, m: ast::Mutability, id: ast::NodeId) {
unsafe {
let _icx = push_ctxt("trans_const");
let g = base::get_item_val(ccx, id);
// At this point, get_item_val has already translated the
// constant's initializer to determine its LLVM type.
let v = ccx.const_values.get_copy(&id);
llvm::LLVMSetInitializer(g, v);
if m != ast::MutMutable {
llvm::LLVMSetGlobalConstant(g, True);
}
}
}