218 lines
5.9 KiB
Rust
218 lines
5.9 KiB
Rust
//! Operations and constants for `f64`
|
|
|
|
// PORT
|
|
|
|
import cmath::c_double::*;
|
|
import cmath::c_double_targ_consts::*;
|
|
|
|
// Even though this module exports everything defined in it,
|
|
// because it contains re-exports, we also have to explicitly
|
|
// export locally defined things. That's a bit annoying.
|
|
export add, sub, mul, div, rem, lt, le, gt, eq, ne;
|
|
export is_positive, is_negative, is_nonpositive, is_nonnegative;
|
|
export is_zero, is_infinite, is_finite;
|
|
export NaN, is_NaN, infinity, neg_infinity;
|
|
export consts;
|
|
export logarithm;
|
|
export acos, asin, atan, atan2, cbrt, ceil, copysign, cos, cosh, floor;
|
|
export erf, erfc, exp, expm1, exp2, abs, abs_sub;
|
|
export mul_add, fmax, fmin, nextafter, frexp, hypot, ldexp;
|
|
export lgamma, ln, log_radix, ln1p, log10, log2, ilog_radix;
|
|
export modf, pow, round, sin, sinh, sqrt, tan, tanh, tgamma, trunc;
|
|
export signbit;
|
|
export epsilon;
|
|
|
|
export j0, j1, jn, y0, y1, yn;
|
|
|
|
export num;
|
|
|
|
// These are not defined inside consts:: for consistency with
|
|
// the integer types
|
|
|
|
// PORT check per architecture
|
|
|
|
// FIXME (#1433): obtain these in a different way
|
|
|
|
const radix: uint = 2u;
|
|
|
|
const mantissa_digits: uint = 53u;
|
|
const digits: uint = 15u;
|
|
|
|
const epsilon: f64 = 2.2204460492503131e-16_f64;
|
|
|
|
const min_value: f64 = 2.2250738585072014e-308_f64;
|
|
const max_value: f64 = 1.7976931348623157e+308_f64;
|
|
|
|
const min_exp: int = -1021;
|
|
const max_exp: int = 1024;
|
|
|
|
const min_10_exp: int = -307;
|
|
const max_10_exp: int = 308;
|
|
|
|
const NaN: f64 = 0.0_f64/0.0_f64;
|
|
|
|
const infinity: f64 = 1.0_f64/0.0_f64;
|
|
|
|
const neg_infinity: f64 = -1.0_f64/0.0_f64;
|
|
|
|
pure fn is_NaN(f: f64) -> bool { f != f }
|
|
|
|
pure fn add(x: f64, y: f64) -> f64 { return x + y; }
|
|
|
|
pure fn sub(x: f64, y: f64) -> f64 { return x - y; }
|
|
|
|
pure fn mul(x: f64, y: f64) -> f64 { return x * y; }
|
|
|
|
pure fn div(x: f64, y: f64) -> f64 { return x / y; }
|
|
|
|
pure fn rem(x: f64, y: f64) -> f64 { return x % y; }
|
|
|
|
pure fn lt(x: f64, y: f64) -> bool { return x < y; }
|
|
|
|
pure fn le(x: f64, y: f64) -> bool { return x <= y; }
|
|
|
|
pure fn eq(x: f64, y: f64) -> bool { return x == y; }
|
|
|
|
pure fn ne(x: f64, y: f64) -> bool { return x != y; }
|
|
|
|
pure fn ge(x: f64, y: f64) -> bool { return x >= y; }
|
|
|
|
pure fn gt(x: f64, y: f64) -> bool { return x > y; }
|
|
|
|
pure fn sqrt(x: f64) -> f64 {
|
|
cmath::c_double::sqrt(x as libc::c_double) as f64
|
|
}
|
|
|
|
/// Returns true if `x` is a positive number, including +0.0f640 and +Infinity
|
|
pure fn is_positive(x: f64) -> bool
|
|
{ return x > 0.0f64 || (1.0f64/x) == infinity; }
|
|
|
|
/// Returns true if `x` is a negative number, including -0.0f640 and -Infinity
|
|
pure fn is_negative(x: f64) -> bool
|
|
{ return x < 0.0f64 || (1.0f64/x) == neg_infinity; }
|
|
|
|
/**
|
|
* Returns true if `x` is a negative number, including -0.0f640 and -Infinity
|
|
*
|
|
* This is the same as `f64::is_negative`.
|
|
*/
|
|
pure fn is_nonpositive(x: f64) -> bool {
|
|
return x < 0.0f64 || (1.0f64/x) == neg_infinity;
|
|
}
|
|
|
|
/**
|
|
* Returns true if `x` is a positive number, including +0.0f640 and +Infinity
|
|
*
|
|
* This is the same as `f64::positive`.
|
|
*/
|
|
pure fn is_nonnegative(x: f64) -> bool {
|
|
return x > 0.0f64 || (1.0f64/x) == infinity;
|
|
}
|
|
|
|
/// Returns true if `x` is a zero number (positive or negative zero)
|
|
pure fn is_zero(x: f64) -> bool {
|
|
return x == 0.0f64 || x == -0.0f64;
|
|
}
|
|
|
|
/// Returns true if `x`is an infinite number
|
|
pure fn is_infinite(x: f64) -> bool {
|
|
return x == infinity || x == neg_infinity;
|
|
}
|
|
|
|
/// Returns true if `x`is a finite number
|
|
pure fn is_finite(x: f64) -> bool {
|
|
return !(is_NaN(x) || is_infinite(x));
|
|
}
|
|
|
|
// FIXME (#1999): add is_normal, is_subnormal, and fpclassify
|
|
|
|
/* Module: consts */
|
|
mod consts {
|
|
|
|
// FIXME (requires Issue #1433 to fix): replace with mathematical
|
|
// constants from cmath.
|
|
/// Archimedes' constant
|
|
const pi: f64 = 3.14159265358979323846264338327950288_f64;
|
|
|
|
/// pi/2.0
|
|
const frac_pi_2: f64 = 1.57079632679489661923132169163975144_f64;
|
|
|
|
/// pi/4.0
|
|
const frac_pi_4: f64 = 0.785398163397448309615660845819875721_f64;
|
|
|
|
/// 1.0/pi
|
|
const frac_1_pi: f64 = 0.318309886183790671537767526745028724_f64;
|
|
|
|
/// 2.0/pi
|
|
const frac_2_pi: f64 = 0.636619772367581343075535053490057448_f64;
|
|
|
|
/// 2.0/sqrt(pi)
|
|
const frac_2_sqrtpi: f64 = 1.12837916709551257389615890312154517_f64;
|
|
|
|
/// sqrt(2.0)
|
|
const sqrt2: f64 = 1.41421356237309504880168872420969808_f64;
|
|
|
|
/// 1.0/sqrt(2.0)
|
|
const frac_1_sqrt2: f64 = 0.707106781186547524400844362104849039_f64;
|
|
|
|
/// Euler's number
|
|
const e: f64 = 2.71828182845904523536028747135266250_f64;
|
|
|
|
/// log2(e)
|
|
const log2_e: f64 = 1.44269504088896340735992468100189214_f64;
|
|
|
|
/// log10(e)
|
|
const log10_e: f64 = 0.434294481903251827651128918916605082_f64;
|
|
|
|
/// ln(2.0)
|
|
const ln_2: f64 = 0.693147180559945309417232121458176568_f64;
|
|
|
|
/// ln(10.0)
|
|
const ln_10: f64 = 2.30258509299404568401799145468436421_f64;
|
|
}
|
|
|
|
pure fn signbit(x: f64) -> int {
|
|
if is_negative(x) { return 1; } else { return 0; }
|
|
}
|
|
|
|
#[cfg(target_os="linux")]
|
|
#[cfg(target_os="macos")]
|
|
#[cfg(target_os="win32")]
|
|
pure fn logarithm(n: f64, b: f64) -> f64 {
|
|
return log2(n) / log2(b);
|
|
}
|
|
|
|
#[cfg(target_os="freebsd")]
|
|
pure fn logarithm(n: f64, b: f64) -> f64 {
|
|
// FIXME (#2000): check if it is good to use log2 instead of ln here; in
|
|
// theory should be faster since the radix is 2
|
|
return ln(n) / ln(b);
|
|
}
|
|
|
|
#[cfg(target_os="freebsd")]
|
|
pure fn log2(n: f64) -> f64 {
|
|
return ln(n) / consts::ln_2;
|
|
}
|
|
|
|
impl f64: num::num {
|
|
pure fn add(&&other: f64) -> f64 { return self + other; }
|
|
pure fn sub(&&other: f64) -> f64 { return self - other; }
|
|
pure fn mul(&&other: f64) -> f64 { return self * other; }
|
|
pure fn div(&&other: f64) -> f64 { return self / other; }
|
|
pure fn modulo(&&other: f64) -> f64 { return self % other; }
|
|
pure fn neg() -> f64 { return -self; }
|
|
|
|
pure fn to_int() -> int { return self as int; }
|
|
pure fn from_int(n: int) -> f64 { return n as f64; }
|
|
}
|
|
|
|
//
|
|
// Local Variables:
|
|
// mode: rust
|
|
// fill-column: 78;
|
|
// indent-tabs-mode: nil
|
|
// c-basic-offset: 4
|
|
// buffer-file-coding-system: utf-8-unix
|
|
// End:
|
|
//
|