rust/src/librustc/middle/reachable.rs

394 lines
15 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Finds items that are externally reachable, to determine which items
// need to have their metadata (and possibly their AST) serialized.
// All items that can be referred to through an exported name are
// reachable, and when a reachable thing is inline or generic, it
// makes all other generics or inline functions that it references
// reachable as well.
use middle::def;
use middle::ty;
use middle::privacy;
use session::config;
use util::nodemap::NodeSet;
use std::collections::HashSet;
use syntax::abi;
use syntax::ast;
use syntax::ast_map;
use syntax::ast_util::{is_local, PostExpansionMethod};
use syntax::attr::{InlineAlways, InlineHint, InlineNever, InlineNone};
use syntax::attr;
use syntax::visit::Visitor;
use syntax::visit;
// Returns true if the given set of attributes contains the `#[inline]`
// attribute.
fn attributes_specify_inlining(attrs: &[ast::Attribute]) -> bool {
match attr::find_inline_attr(attrs) {
InlineNone | InlineNever => false,
InlineAlways | InlineHint => true,
}
}
// Returns true if the given set of generics implies that the item it's
// associated with must be inlined.
fn generics_require_inlining(generics: &ast::Generics) -> bool {
!generics.ty_params.is_empty()
}
// Returns true if the given item must be inlined because it may be
// monomorphized or it was marked with `#[inline]`. This will only return
// true for functions.
fn item_might_be_inlined(item: &ast::Item) -> bool {
if attributes_specify_inlining(item.attrs.as_slice()) {
return true
}
match item.node {
ast::ItemImpl(ref generics, _, _, _) |
ast::ItemFn(_, _, _, ref generics, _) => {
generics_require_inlining(generics)
}
_ => false,
}
}
fn method_might_be_inlined(tcx: &ty::ctxt, method: &ast::Method,
impl_src: ast::DefId) -> bool {
if attributes_specify_inlining(method.attrs.as_slice()) ||
generics_require_inlining(method.pe_generics()) {
return true
}
if is_local(impl_src) {
{
match tcx.map.find(impl_src.node) {
Some(ast_map::NodeItem(item)) => {
item_might_be_inlined(&*item)
}
Some(..) | None => {
tcx.sess.span_bug(method.span, "impl did is not an item")
}
}
}
} else {
tcx.sess.span_bug(method.span, "found a foreign impl as a parent of a \
local method")
}
}
// Information needed while computing reachability.
struct ReachableContext<'a, 'tcx: 'a> {
// The type context.
tcx: &'a ty::ctxt<'tcx>,
// The set of items which must be exported in the linkage sense.
reachable_symbols: NodeSet,
// A worklist of item IDs. Each item ID in this worklist will be inlined
// and will be scanned for further references.
worklist: Vec<ast::NodeId>,
// Whether any output of this compilation is a library
any_library: bool,
}
impl<'a, 'tcx, 'v> Visitor<'v> for ReachableContext<'a, 'tcx> {
fn visit_expr(&mut self, expr: &ast::Expr) {
match expr.node {
ast::ExprPath(_) => {
let def = match self.tcx.def_map.borrow().get(&expr.id) {
Some(&def) => def,
None => {
self.tcx.sess.span_bug(expr.span,
"def ID not in def map?!")
}
};
let def_id = def.def_id();
if is_local(def_id) {
if self.def_id_represents_local_inlined_item(def_id) {
self.worklist.push(def_id.node)
} else {
match def {
// If this path leads to a constant, then we need to
// recurse into the constant to continue finding
// items that are reachable.
def::DefConst(..) => {
self.worklist.push(def_id.node);
}
// If this wasn't a static, then the destination is
// surely reachable.
_ => {
self.reachable_symbols.insert(def_id.node);
}
}
}
}
}
ast::ExprMethodCall(..) => {
let method_call = ty::MethodCall::expr(expr.id);
match (*self.tcx.method_map.borrow())[method_call].origin {
ty::MethodStatic(def_id) => {
if is_local(def_id) {
if self.def_id_represents_local_inlined_item(def_id) {
self.worklist.push(def_id.node)
}
self.reachable_symbols.insert(def_id.node);
}
}
_ => {}
}
}
_ => {}
}
visit::walk_expr(self, expr)
}
fn visit_item(&mut self, _item: &ast::Item) {
// Do not recurse into items. These items will be added to the worklist
// and recursed into manually if necessary.
}
}
impl<'a, 'tcx> ReachableContext<'a, 'tcx> {
// Creates a new reachability computation context.
fn new(tcx: &'a ty::ctxt<'tcx>) -> ReachableContext<'a, 'tcx> {
let any_library = tcx.sess.crate_types.borrow().iter().any(|ty| {
*ty != config::CrateTypeExecutable
});
ReachableContext {
tcx: tcx,
reachable_symbols: NodeSet::new(),
worklist: Vec::new(),
any_library: any_library,
}
}
// Returns true if the given def ID represents a local item that is
// eligible for inlining and false otherwise.
fn def_id_represents_local_inlined_item(&self, def_id: ast::DefId) -> bool {
if def_id.krate != ast::LOCAL_CRATE {
return false
}
let node_id = def_id.node;
match self.tcx.map.find(node_id) {
Some(ast_map::NodeItem(item)) => {
match item.node {
ast::ItemFn(..) => item_might_be_inlined(&*item),
_ => false,
}
}
Some(ast_map::NodeTraitItem(trait_method)) => {
match *trait_method {
ast::RequiredMethod(_) => false,
ast::ProvidedMethod(_) => true,
ast::TypeTraitItem(_) => false,
}
}
Some(ast_map::NodeImplItem(impl_item)) => {
match *impl_item {
ast::MethodImplItem(ref method) => {
if generics_require_inlining(method.pe_generics()) ||
attributes_specify_inlining(
method.attrs.as_slice()) {
true
} else {
let impl_did = self.tcx
.map
.get_parent_did(node_id);
// Check the impl. If the generics on the self
// type of the impl require inlining, this method
// does too.
assert!(impl_did.krate == ast::LOCAL_CRATE);
match self.tcx
.map
.expect_item(impl_did.node)
.node {
ast::ItemImpl(ref generics, _, _, _) => {
generics_require_inlining(generics)
}
_ => false
}
}
}
ast::TypeImplItem(_) => false,
}
}
Some(_) => false,
None => false // This will happen for default methods.
}
}
// Step 2: Mark all symbols that the symbols on the worklist touch.
fn propagate(&mut self) {
let mut scanned = HashSet::new();
loop {
let search_item = match self.worklist.pop() {
Some(item) => item,
None => break,
};
if !scanned.insert(search_item) {
continue
}
match self.tcx.map.find(search_item) {
Some(ref item) => self.propagate_node(item, search_item),
None if search_item == ast::CRATE_NODE_ID => {}
None => {
self.tcx.sess.bug(format!("found unmapped ID in worklist: \
{}",
search_item).as_slice())
}
}
}
}
fn propagate_node(&mut self, node: &ast_map::Node,
search_item: ast::NodeId) {
if !self.any_library {
// If we are building an executable, then there's no need to flag
// anything as external except for `extern fn` types. These
// functions may still participate in some form of native interface,
// but all other rust-only interfaces can be private (they will not
// participate in linkage after this product is produced)
if let ast_map::NodeItem(item) = *node {
if let ast::ItemFn(_, _, abi, _, _) = item.node {
if abi != abi::Rust {
self.reachable_symbols.insert(search_item);
}
}
}
} else {
// If we are building a library, then reachable symbols will
// continue to participate in linkage after this product is
// produced. In this case, we traverse the ast node, recursing on
// all reachable nodes from this one.
self.reachable_symbols.insert(search_item);
}
match *node {
ast_map::NodeItem(item) => {
match item.node {
ast::ItemFn(_, _, _, _, ref search_block) => {
if item_might_be_inlined(&*item) {
visit::walk_block(self, &**search_block)
}
}
// Reachable constants will be inlined into other crates
// unconditionally, so we need to make sure that their
// contents are also reachable.
ast::ItemConst(_, ref init) => {
self.visit_expr(&**init);
}
// These are normal, nothing reachable about these
// inherently and their children are already in the
// worklist, as determined by the privacy pass
ast::ItemTy(..) | ast::ItemStatic(_, _, _) |
ast::ItemMod(..) | ast::ItemForeignMod(..) |
ast::ItemImpl(..) | ast::ItemTrait(..) |
ast::ItemStruct(..) | ast::ItemEnum(..) => {}
_ => {
self.tcx.sess.span_bug(item.span,
"found non-function item \
in worklist?!")
}
}
}
ast_map::NodeTraitItem(trait_method) => {
match *trait_method {
ast::RequiredMethod(..) => {
// Keep going, nothing to get exported
}
ast::ProvidedMethod(ref method) => {
visit::walk_block(self, &*method.pe_body());
}
ast::TypeTraitItem(_) => {}
}
}
ast_map::NodeImplItem(impl_item) => {
match *impl_item {
ast::MethodImplItem(ref method) => {
let did = self.tcx.map.get_parent_did(search_item);
if method_might_be_inlined(self.tcx, &**method, did) {
visit::walk_block(self, method.pe_body())
}
}
ast::TypeImplItem(_) => {}
}
}
// Nothing to recurse on for these
ast_map::NodeForeignItem(_) |
ast_map::NodeVariant(_) |
ast_map::NodeStructCtor(_) => {}
_ => {
self.tcx
.sess
.bug(format!("found unexpected thingy in worklist: {}",
self.tcx
.map
.node_to_string(search_item)).as_slice())
}
}
}
// Step 3: Mark all destructors as reachable.
//
// FIXME(pcwalton): This is a conservative overapproximation, but fixing
// this properly would result in the necessity of computing *type*
// reachability, which might result in a compile time loss.
fn mark_destructors_reachable(&mut self) {
for (_, destructor_def_id) in self.tcx.destructor_for_type.borrow().iter() {
if destructor_def_id.krate == ast::LOCAL_CRATE {
self.reachable_symbols.insert(destructor_def_id.node);
}
}
}
}
pub fn find_reachable(tcx: &ty::ctxt,
exported_items: &privacy::ExportedItems)
-> NodeSet {
let mut reachable_context = ReachableContext::new(tcx);
// Step 1: Seed the worklist with all nodes which were found to be public as
// a result of the privacy pass along with all local lang items. If
// other crates link to us, they're going to expect to be able to
// use the lang items, so we need to be sure to mark them as
// exported.
for id in exported_items.iter() {
reachable_context.worklist.push(*id);
}
for (_, item) in tcx.lang_items.items() {
match *item {
Some(did) if is_local(did) => {
reachable_context.worklist.push(did.node);
}
_ => {}
}
}
// Step 2: Mark all symbols that the symbols on the worklist touch.
reachable_context.propagate();
// Step 3: Mark all destructors as reachable.
reachable_context.mark_destructors_reachable();
// Return the set of reachable symbols.
reachable_context.reachable_symbols
}