rust/mk/target.mk
Vadim Chugunov bd0cf1ba13 Don't use GCC's startup objects (crtbegin.o/crtend.o); build and use our own (for now on for -windows-gnu target only).
Since it isn't possible to disable linkage of just GCC startup objects, we now need logic for finding libc installation directory and copying the required startup files (e.g. crt2.o) to rustlib directory.
Bonus change: use the `-nodefaultlibs` flag on Windows, thus paving the way to direct linker invocation.
2015-10-19 00:42:04 -07:00

236 lines
8.6 KiB
Makefile

# Copyright 2012 The Rust Project Developers. See the COPYRIGHT
# file at the top-level directory of this distribution and at
# http://rust-lang.org/COPYRIGHT.
#
# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
# http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
# <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
# option. This file may not be copied, modified, or distributed
# except according to those terms.
# This is the compile-time target-triple for the compiler. For the compiler at
# runtime, this should be considered the host-triple. More explanation for why
# this exists can be found on issue #2400
export CFG_COMPILER_HOST_TRIPLE
# Used as defaults for the runtime ar and cc tools
export CFG_DEFAULT_LINKER
export CFG_DEFAULT_AR
# The standard libraries should be held up to a higher standard than any old
# code, make sure that these common warnings are denied by default. These can
# be overridden during development temporarily. For stage0, we allow warnings
# which may be bugs in stage0 (should be fixed in stage1+)
RUST_LIB_FLAGS_ST0 += -W warnings
RUST_LIB_FLAGS_ST1 += -D warnings
RUST_LIB_FLAGS_ST2 += -D warnings
# Macro that generates the full list of dependencies for a crate at a particular
# stage/target/host tuple.
#
# $(1) - stage
# $(2) - target
# $(3) - host
# $(4) crate
define RUST_CRATE_FULLDEPS
CRATE_FULLDEPS_$(1)_T_$(2)_H_$(3)_$(4) := \
$$(CRATEFILE_$(4)) \
$$(RSINPUTS_$(4)) \
$$(foreach dep,$$(RUST_DEPS_$(4)), \
$$(TLIB$(1)_T_$(2)_H_$(3))/stamp.$$(dep)) \
$$(foreach dep,$$(NATIVE_DEPS_$(4)), \
$$(RT_OUTPUT_DIR_$(2))/$$(call CFG_STATIC_LIB_NAME_$(2),$$(dep))) \
$$(foreach dep,$$(NATIVE_DEPS_$(4)_T_$(2)), \
$$(RT_OUTPUT_DIR_$(2))/$$(dep))
endef
$(foreach host,$(CFG_HOST), \
$(foreach target,$(CFG_TARGET), \
$(foreach stage,$(STAGES), \
$(foreach crate,$(CRATES), \
$(eval $(call RUST_CRATE_FULLDEPS,$(stage),$(target),$(host),$(crate)))))))
# RUST_TARGET_STAGE_N template: This defines how target artifacts are built
# for all stage/target architecture combinations. This is one giant rule which
# works as follows:
#
# 1. The immediate dependencies are the rust source files
# 2. Each rust crate dependency is listed (based on their stamp files),
# as well as all native dependencies (listed in RT_OUTPUT_DIR)
# 3. The stage (n-1) compiler is required through the TSREQ dependency
# 4. When actually executing the rule, the first thing we do is to clean out
# old libs and rlibs via the REMOVE_ALL_OLD_GLOB_MATCHES macro
# 5. Finally, we get around to building the actual crate. It's just one
# "small" invocation of the previous stage rustc. We use -L to
# RT_OUTPUT_DIR so all the native dependencies are picked up.
# Additionally, we pass in the llvm dir so rustc can link against it.
# 6. Some cleanup is done (listing what was just built) if verbose is turned
# on.
#
# $(1) is the stage
# $(2) is the target triple
# $(3) is the host triple
# $(4) is the crate name
define RUST_TARGET_STAGE_N
$$(TLIB$(1)_T_$(2)_H_$(3))/stamp.$(4): CFG_COMPILER_HOST_TRIPLE = $(2)
$$(TLIB$(1)_T_$(2)_H_$(3))/stamp.$(4): \
$$(CRATEFILE_$(4)) \
$$(CRATE_FULLDEPS_$(1)_T_$(2)_H_$(3)_$(4)) \
$$(LLVM_CONFIG_$(2)) \
$$(TSREQ$(1)_T_$(2)_H_$(3)) \
| $$(TLIB$(1)_T_$(2)_H_$(3))/
@$$(call E, rustc: $$(@D)/lib$(4))
@touch $$@.start_time
$$(call REMOVE_ALL_OLD_GLOB_MATCHES, \
$$(dir $$@)$$(call CFG_LIB_GLOB_$(2),$(4)))
$$(call REMOVE_ALL_OLD_GLOB_MATCHES, \
$$(dir $$@)$$(call CFG_RLIB_GLOB,$(4)))
$(Q)CFG_LLVM_LINKAGE_FILE=$$(LLVM_LINKAGE_PATH_$(2)) \
$$(subst @,,$$(STAGE$(1)_T_$(2)_H_$(3))) \
$$(RUST_LIB_FLAGS_ST$(1)) \
-L "$$(RT_OUTPUT_DIR_$(2))" \
$$(LLVM_LIBDIR_RUSTFLAGS_$(2)) \
$$(LLVM_STDCPP_RUSTFLAGS_$(2)) \
$$(RUSTFLAGS_$(4)) \
$$(RUSTFLAGS$(1)_$(4)) \
$$(RUSTFLAGS$(1)_$(4)_T_$(2)) \
--out-dir $$(@D) \
-C extra-filename=-$$(CFG_FILENAME_EXTRA) \
$$<
@touch -r $$@.start_time $$@ && rm $$@.start_time
$$(call LIST_ALL_OLD_GLOB_MATCHES, \
$$(dir $$@)$$(call CFG_LIB_GLOB_$(2),$(4)))
$$(call LIST_ALL_OLD_GLOB_MATCHES, \
$$(dir $$@)$$(call CFG_RLIB_GLOB,$(4)))
endef
# Macro for building any tool as part of the rust compilation process. Each
# tool is defined in crates.mk with a list of library dependencies as well as
# the source file for the tool. Building each tool will also be passed '--cfg
# <tool>' for usage in driver.rs
#
# This build rule is similar to the one found above, just tweaked for
# locations and things.
#
# $(1) - stage
# $(2) - target triple
# $(3) - host triple
# $(4) - name of the tool being built
define TARGET_TOOL
$$(TBIN$(1)_T_$(2)_H_$(3))/$(4)$$(X_$(2)): \
$$(TOOL_SOURCE_$(4)) \
$$(TOOL_INPUTS_$(4)) \
$$(foreach dep,$$(TOOL_DEPS_$(4)), \
$$(TLIB$(1)_T_$(2)_H_$(3))/stamp.$$(dep)) \
$$(TSREQ$(1)_T_$(2)_H_$(3)) \
| $$(TBIN$(1)_T_$(2)_H_$(3))/
@$$(call E, rustc: $$@)
$$(STAGE$(1)_T_$(2)_H_$(3)) -o $$@ $$< --cfg $(4)
endef
# Macro for building runtime startup objects
# Of those we have two kinds:
# - Rust runtime-specific: these are Rust's equivalents of GCC's crti.o/crtn.o,
# - LibC-specific: these we don't build ourselves, but copy them from the system lib directory.
#
# $(1) - stage
# $(2) - target triple
# $(3) - host triple
define TARGET_RT_STARTUP
# Expand build rules for rsbegin.o and rsend.o
$$(foreach obj,rsbegin rsend, \
$$(eval $$(call TARGET_RUSTRT_STARTUP_OBJ,$(1),$(2),$(3),$$(obj))) )
$$(foreach obj,$$(CFG_LIBC_STARTUP_OBJECTS_$(2)), \
$$(eval $$(TLIB$(1)_T_$(2)_H_$(3))/stamp.core : $$(TLIB$(1)_T_$(2)_H_$(3))/$$(obj)) \
$$(eval $$(call COPY_LIBC_STARTUP,$$(TLIB$(1)_T_$(2)_H_$(3)),$$(obj))) )
endef
# TARGET_RT_STARTUP's helper for copying LibC startup objects
# $(1) - target lib directory
# $(2) - object name
define COPY_LIBC_STARTUP
$(1)/$(2) : $$(CFG_LIBC_DIR)/$(2)
@$$(call E, cp: $$@)
@cp $$^ $$@
endef
# Macro for building runtime startup/shutdown object files;
# these are Rust's equivalent of crti.o, crtn.o
#
# $(1) - stage
# $(2) - target triple
# $(3) - host triple
# $(4) - object name
define TARGET_RUSTRT_STARTUP_OBJ
$$(TLIB$(1)_T_$(2)_H_$(3))/$(4).o:\
$(S)src/rtstartup/$(4).rs \
$$(TLIB$(1)_T_$(2)_H_$(3))/stamp.core \
$$(HSREQ$(1)_T_$(2)_H_$(3)) \
| $$(TBIN$(1)_T_$(2)_H_$(3))/
@$$(call E, rustc: $$@)
$$(STAGE$(1)_T_$(2)_H_$(3)) --emit=obj -o $$@ $$<
# Add dependencies on Rust startup objects to all crates that depend on core.
# This ensures that they are built after core (since they depend on it),
# but before everything else (since they are needed for linking dylib crates).
$$(foreach crate, $$(TARGET_CRATES), \
$$(if $$(findstring core,$$(DEPS_$$(crate))), \
$$(eval $$(TLIB$(1)_T_$(2)_H_$(3))/stamp.$$(crate) : $$(TLIB$(1)_T_$(2)_H_$(3))/$(4).o) ))
endef
# Every recipe in RUST_TARGET_STAGE_N outputs to $$(TLIB$(1)_T_$(2)_H_$(3),
# a directory that can be cleaned out during the middle of a run of
# the get-snapshot.py script. Therefore, every recipe needs to have
# an order-only dependency either on $(SNAPSHOT_RUSTC_POST_CLEANUP) or
# on $$(TSREQ$(1)_T_$(2)_H_$(3)), to ensure that no products will be
# put into the target area until after the get-snapshot.py script has
# had its chance to clean it out; otherwise the other products will be
# inadvertently included in the clean out.
SNAPSHOT_RUSTC_POST_CLEANUP=$(HBIN0_H_$(CFG_BUILD))/rustc$(X_$(CFG_BUILD))
define TARGET_HOST_RULES
$$(TLIB$(1)_T_$(2)_H_$(3))/:
mkdir -p $$@
$$(TLIB$(1)_T_$(2)_H_$(3))/%: $$(RT_OUTPUT_DIR_$(2))/% \
| $$(TLIB$(1)_T_$(2)_H_$(3))/ $$(SNAPSHOT_RUSTC_POST_CLEANUP)
@$$(call E, cp: $$@)
$$(Q)cp $$< $$@
endef
$(foreach source,$(CFG_HOST), \
$(foreach target,$(CFG_TARGET), \
$(eval $(call TARGET_HOST_RULES,0,$(target),$(source))) \
$(eval $(call TARGET_HOST_RULES,1,$(target),$(source))) \
$(eval $(call TARGET_HOST_RULES,2,$(target),$(source))) \
$(eval $(call TARGET_HOST_RULES,3,$(target),$(source)))))
# In principle, each host can build each target for both libs and tools
$(foreach crate,$(CRATES), \
$(foreach source,$(CFG_HOST), \
$(foreach target,$(CFG_TARGET), \
$(eval $(call RUST_TARGET_STAGE_N,0,$(target),$(source),$(crate))) \
$(eval $(call RUST_TARGET_STAGE_N,1,$(target),$(source),$(crate))) \
$(eval $(call RUST_TARGET_STAGE_N,2,$(target),$(source),$(crate))) \
$(eval $(call RUST_TARGET_STAGE_N,3,$(target),$(source),$(crate))))))
$(foreach host,$(CFG_HOST), \
$(foreach target,$(CFG_TARGET), \
$(foreach stage,$(STAGES), \
$(foreach tool,$(TOOLS), \
$(eval $(call TARGET_TOOL,$(stage),$(target),$(host),$(tool)))))))
$(foreach host,$(CFG_HOST), \
$(foreach target,$(CFG_TARGET), \
$(foreach stage,$(STAGES), \
$(eval $(call TARGET_RT_STARTUP,$(stage),$(target),$(host))))))