Aaron Hill ddd544856e
Compute a better lint_node_id during expansion
When we need to emit a lint at a macro invocation, we currently use the
`NodeId` of its parent definition (e.g. the enclosing function). This
means that any `#[allow]` / `#[deny]` attributes placed 'closer' to the
macro (e.g. on an enclosing block or statement) will have no effect.

This commit computes a better `lint_node_id` in `InvocationCollector`.
When we visit/flat_map an AST node, we assign it a `NodeId` (earlier
than we normally would), and store than `NodeId` in current
`ExpansionData`. When we collect a macro invocation, the current
`lint_node_id` gets cloned along with our `ExpansionData`, allowing it
to be used if we need to emit a lint later on.

This improves the handling of `#[allow]` / `#[deny]` for
`SEMICOLON_IN_EXPRESSIONS_FROM_MACROS` and some `asm!`-related lints.
The 'legacy derive helpers' lint retains its current behavior
(I've inlined the now-removed `lint_node_id` function), since
there isn't an `ExpansionData` readily available.
2021-07-17 23:03:56 -05:00

1247 lines
55 KiB
Rust

//! A bunch of methods and structures more or less related to resolving macros and
//! interface provided by `Resolver` to macro expander.
use crate::imports::ImportResolver;
use crate::Namespace::*;
use crate::{AmbiguityError, AmbiguityErrorMisc, AmbiguityKind, BuiltinMacroState, Determinacy};
use crate::{CrateLint, DeriveData, ParentScope, ResolutionError, Resolver, Scope, ScopeSet, Weak};
use crate::{ModuleKind, ModuleOrUniformRoot, NameBinding, PathResult, Segment, ToNameBinding};
use rustc_ast::{self as ast, Inline, ItemKind, ModKind, NodeId};
use rustc_ast_lowering::ResolverAstLowering;
use rustc_ast_pretty::pprust;
use rustc_attr::StabilityLevel;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::ptr_key::PtrKey;
use rustc_data_structures::sync::Lrc;
use rustc_errors::struct_span_err;
use rustc_expand::base::{Annotatable, DeriveResolutions, Indeterminate, ResolverExpand};
use rustc_expand::base::{SyntaxExtension, SyntaxExtensionKind};
use rustc_expand::compile_declarative_macro;
use rustc_expand::expand::{AstFragment, Invocation, InvocationKind, SupportsMacroExpansion};
use rustc_feature::is_builtin_attr_name;
use rustc_hir::def::{self, DefKind, NonMacroAttrKind};
use rustc_hir::def_id::{CrateNum, LocalDefId};
use rustc_hir::PrimTy;
use rustc_middle::middle::stability;
use rustc_middle::ty;
use rustc_session::lint::builtin::{LEGACY_DERIVE_HELPERS, PROC_MACRO_DERIVE_RESOLUTION_FALLBACK};
use rustc_session::lint::builtin::{SOFT_UNSTABLE, UNUSED_MACROS};
use rustc_session::lint::BuiltinLintDiagnostics;
use rustc_session::parse::feature_err;
use rustc_session::Session;
use rustc_span::edition::Edition;
use rustc_span::hygiene::{self, ExpnData, ExpnKind, LocalExpnId};
use rustc_span::hygiene::{AstPass, MacroKind};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};
use std::cell::Cell;
use std::{mem, ptr};
type Res = def::Res<NodeId>;
/// Binding produced by a `macro_rules` item.
/// Not modularized, can shadow previous `macro_rules` bindings, etc.
#[derive(Debug)]
pub struct MacroRulesBinding<'a> {
crate binding: &'a NameBinding<'a>,
/// `macro_rules` scope into which the `macro_rules` item was planted.
crate parent_macro_rules_scope: MacroRulesScopeRef<'a>,
crate ident: Ident,
}
/// The scope introduced by a `macro_rules!` macro.
/// This starts at the macro's definition and ends at the end of the macro's parent
/// module (named or unnamed), or even further if it escapes with `#[macro_use]`.
/// Some macro invocations need to introduce `macro_rules` scopes too because they
/// can potentially expand into macro definitions.
#[derive(Copy, Clone, Debug)]
pub enum MacroRulesScope<'a> {
/// Empty "root" scope at the crate start containing no names.
Empty,
/// The scope introduced by a `macro_rules!` macro definition.
Binding(&'a MacroRulesBinding<'a>),
/// The scope introduced by a macro invocation that can potentially
/// create a `macro_rules!` macro definition.
Invocation(LocalExpnId),
}
/// `macro_rules!` scopes are always kept by reference and inside a cell.
/// The reason is that we update scopes with value `MacroRulesScope::Invocation(invoc_id)`
/// in-place after `invoc_id` gets expanded.
/// This helps to avoid uncontrollable growth of `macro_rules!` scope chains,
/// which usually grow lineraly with the number of macro invocations
/// in a module (including derives) and hurt performance.
pub(crate) type MacroRulesScopeRef<'a> = PtrKey<'a, Cell<MacroRulesScope<'a>>>;
// Macro namespace is separated into two sub-namespaces, one for bang macros and
// one for attribute-like macros (attributes, derives).
// We ignore resolutions from one sub-namespace when searching names in scope for another.
fn sub_namespace_match(candidate: Option<MacroKind>, requirement: Option<MacroKind>) -> bool {
#[derive(PartialEq)]
enum SubNS {
Bang,
AttrLike,
}
let sub_ns = |kind| match kind {
MacroKind::Bang => SubNS::Bang,
MacroKind::Attr | MacroKind::Derive => SubNS::AttrLike,
};
let candidate = candidate.map(sub_ns);
let requirement = requirement.map(sub_ns);
// "No specific sub-namespace" means "matches anything" for both requirements and candidates.
candidate.is_none() || requirement.is_none() || candidate == requirement
}
// We don't want to format a path using pretty-printing,
// `format!("{}", path)`, because that tries to insert
// line-breaks and is slow.
fn fast_print_path(path: &ast::Path) -> Symbol {
if path.segments.len() == 1 {
path.segments[0].ident.name
} else {
let mut path_str = String::with_capacity(64);
for (i, segment) in path.segments.iter().enumerate() {
if i != 0 {
path_str.push_str("::");
}
if segment.ident.name != kw::PathRoot {
path_str.push_str(&segment.ident.as_str())
}
}
Symbol::intern(&path_str)
}
}
/// The code common between processing `#![register_tool]` and `#![register_attr]`.
fn registered_idents(
sess: &Session,
attrs: &[ast::Attribute],
attr_name: Symbol,
descr: &str,
) -> FxHashSet<Ident> {
let mut registered = FxHashSet::default();
for attr in sess.filter_by_name(attrs, attr_name) {
for nested_meta in attr.meta_item_list().unwrap_or_default() {
match nested_meta.ident() {
Some(ident) => {
if let Some(old_ident) = registered.replace(ident) {
let msg = format!("{} `{}` was already registered", descr, ident);
sess.struct_span_err(ident.span, &msg)
.span_label(old_ident.span, "already registered here")
.emit();
}
}
None => {
let msg = format!("`{}` only accepts identifiers", attr_name);
let span = nested_meta.span();
sess.struct_span_err(span, &msg).span_label(span, "not an identifier").emit();
}
}
}
}
registered
}
crate fn registered_attrs_and_tools(
sess: &Session,
attrs: &[ast::Attribute],
) -> (FxHashSet<Ident>, FxHashSet<Ident>) {
let registered_attrs = registered_idents(sess, attrs, sym::register_attr, "attribute");
let mut registered_tools = registered_idents(sess, attrs, sym::register_tool, "tool");
// We implicitly add `rustfmt` and `clippy` to known tools,
// but it's not an error to register them explicitly.
let predefined_tools = [sym::clippy, sym::rustfmt];
registered_tools.extend(predefined_tools.iter().cloned().map(Ident::with_dummy_span));
(registered_attrs, registered_tools)
}
// Some feature gates for inner attributes are reported as lints for backward compatibility.
fn soft_custom_inner_attributes_gate(path: &ast::Path, invoc: &Invocation) -> bool {
match &path.segments[..] {
// `#![test]`
[seg] if seg.ident.name == sym::test => return true,
// `#![rustfmt::skip]` on out-of-line modules
[seg1, seg2] if seg1.ident.name == sym::rustfmt && seg2.ident.name == sym::skip => {
if let InvocationKind::Attr { item, .. } = &invoc.kind {
if let Annotatable::Item(item) = item {
if let ItemKind::Mod(_, ModKind::Loaded(_, Inline::No, _)) = item.kind {
return true;
}
}
}
}
_ => {}
}
false
}
impl<'a> ResolverExpand for Resolver<'a> {
fn next_node_id(&mut self) -> NodeId {
self.next_node_id()
}
fn resolve_dollar_crates(&mut self) {
hygiene::update_dollar_crate_names(|ctxt| {
let ident = Ident::new(kw::DollarCrate, DUMMY_SP.with_ctxt(ctxt));
match self.resolve_crate_root(ident).kind {
ModuleKind::Def(.., name) if name != kw::Empty => name,
_ => kw::Crate,
}
});
}
fn visit_ast_fragment_with_placeholders(
&mut self,
expansion: LocalExpnId,
fragment: &AstFragment,
) {
// Integrate the new AST fragment into all the definition and module structures.
// We are inside the `expansion` now, but other parent scope components are still the same.
let parent_scope = ParentScope { expansion, ..self.invocation_parent_scopes[&expansion] };
let output_macro_rules_scope = self.build_reduced_graph(fragment, parent_scope);
self.output_macro_rules_scopes.insert(expansion, output_macro_rules_scope);
parent_scope.module.unexpanded_invocations.borrow_mut().remove(&expansion);
}
fn register_builtin_macro(&mut self, name: Symbol, ext: SyntaxExtensionKind) {
if self.builtin_macros.insert(name, BuiltinMacroState::NotYetSeen(ext)).is_some() {
self.session
.diagnostic()
.bug(&format!("built-in macro `{}` was already registered", name));
}
}
// Create a new Expansion with a definition site of the provided module, or
// a fake empty `#[no_implicit_prelude]` module if no module is provided.
fn expansion_for_ast_pass(
&mut self,
call_site: Span,
pass: AstPass,
features: &[Symbol],
parent_module_id: Option<NodeId>,
) -> LocalExpnId {
let parent_module = parent_module_id.map(|module_id| self.local_def_id(module_id));
let expn_id = LocalExpnId::fresh(
ExpnData::allow_unstable(
ExpnKind::AstPass(pass),
call_site,
self.session.edition(),
features.into(),
None,
parent_module.map(LocalDefId::to_def_id),
),
self.create_stable_hashing_context(),
);
let parent_scope = parent_module
.map_or(self.empty_module, |parent_def_id| self.module_map[&parent_def_id]);
self.ast_transform_scopes.insert(expn_id, parent_scope);
expn_id
}
fn resolve_imports(&mut self) {
ImportResolver { r: self }.resolve_imports()
}
fn resolve_macro_invocation(
&mut self,
invoc: &Invocation,
eager_expansion_root: LocalExpnId,
force: bool,
) -> Result<Lrc<SyntaxExtension>, Indeterminate> {
let invoc_id = invoc.expansion_data.id;
let parent_scope = match self.invocation_parent_scopes.get(&invoc_id) {
Some(parent_scope) => *parent_scope,
None => {
// If there's no entry in the table, then we are resolving an eagerly expanded
// macro, which should inherit its parent scope from its eager expansion root -
// the macro that requested this eager expansion.
let parent_scope = *self
.invocation_parent_scopes
.get(&eager_expansion_root)
.expect("non-eager expansion without a parent scope");
self.invocation_parent_scopes.insert(invoc_id, parent_scope);
parent_scope
}
};
let (path, kind, inner_attr, derives) = match invoc.kind {
InvocationKind::Attr { ref attr, ref derives, .. } => (
&attr.get_normal_item().path,
MacroKind::Attr,
attr.style == ast::AttrStyle::Inner,
self.arenas.alloc_ast_paths(derives),
),
InvocationKind::Bang { ref mac, .. } => (&mac.path, MacroKind::Bang, false, &[][..]),
InvocationKind::Derive { ref path, .. } => (path, MacroKind::Derive, false, &[][..]),
};
// Derives are not included when `invocations` are collected, so we have to add them here.
let parent_scope = &ParentScope { derives, ..parent_scope };
let supports_macro_expansion = invoc.fragment_kind.supports_macro_expansion();
let node_id = invoc.expansion_data.lint_node_id;
let (ext, res) = self.smart_resolve_macro_path(
path,
kind,
supports_macro_expansion,
inner_attr,
parent_scope,
node_id,
force,
soft_custom_inner_attributes_gate(path, invoc),
)?;
let span = invoc.span();
invoc_id.set_expn_data(
ext.expn_data(
parent_scope.expansion,
span,
fast_print_path(path),
res.opt_def_id(),
res.opt_def_id().map(|macro_def_id| {
self.macro_def_scope_from_def_id(macro_def_id).nearest_parent_mod
}),
),
self.create_stable_hashing_context(),
);
if let Res::Def(_, _) = res {
// Gate macro attributes in `#[derive]` output.
if !self.session.features_untracked().macro_attributes_in_derive_output
&& kind == MacroKind::Attr
&& ext.builtin_name != Some(sym::derive)
{
let mut expn_id = parent_scope.expansion;
loop {
// Helper attr table is a quick way to determine whether the attr is `derive`.
if self.helper_attrs.contains_key(&expn_id) {
feature_err(
&self.session.parse_sess,
sym::macro_attributes_in_derive_output,
path.span,
"macro attributes in `#[derive]` output are unstable",
)
.emit();
break;
} else {
let expn_data = expn_id.expn_data();
match expn_data.kind {
ExpnKind::Root
| ExpnKind::Macro(MacroKind::Bang | MacroKind::Derive, _) => {
break;
}
_ => expn_id = expn_data.parent.expect_local(),
}
}
}
}
}
Ok(ext)
}
fn check_unused_macros(&mut self) {
for (_, &(node_id, span)) in self.unused_macros.iter() {
self.lint_buffer.buffer_lint(UNUSED_MACROS, node_id, span, "unused macro definition");
}
}
fn has_derive_copy(&self, expn_id: LocalExpnId) -> bool {
self.containers_deriving_copy.contains(&expn_id)
}
fn resolve_derives(
&mut self,
expn_id: LocalExpnId,
force: bool,
derive_paths: &dyn Fn() -> DeriveResolutions,
) -> Result<(), Indeterminate> {
// Block expansion of the container until we resolve all derives in it.
// This is required for two reasons:
// - Derive helper attributes are in scope for the item to which the `#[derive]`
// is applied, so they have to be produced by the container's expansion rather
// than by individual derives.
// - Derives in the container need to know whether one of them is a built-in `Copy`.
// Temporarily take the data to avoid borrow checker conflicts.
let mut derive_data = mem::take(&mut self.derive_data);
let entry = derive_data.entry(expn_id).or_insert_with(|| DeriveData {
resolutions: derive_paths(),
helper_attrs: Vec::new(),
has_derive_copy: false,
});
let parent_scope = self.invocation_parent_scopes[&expn_id];
for (i, (path, _, opt_ext)) in entry.resolutions.iter_mut().enumerate() {
if opt_ext.is_none() {
*opt_ext = Some(
match self.resolve_macro_path(
&path,
Some(MacroKind::Derive),
&parent_scope,
true,
force,
) {
Ok((Some(ext), _)) => {
if !ext.helper_attrs.is_empty() {
let last_seg = path.segments.last().unwrap();
let span = last_seg.ident.span.normalize_to_macros_2_0();
entry.helper_attrs.extend(
ext.helper_attrs
.iter()
.map(|name| (i, Ident::new(*name, span))),
);
}
entry.has_derive_copy |= ext.builtin_name == Some(sym::Copy);
ext
}
Ok(_) | Err(Determinacy::Determined) => self.dummy_ext(MacroKind::Derive),
Err(Determinacy::Undetermined) => {
assert!(self.derive_data.is_empty());
self.derive_data = derive_data;
return Err(Indeterminate);
}
},
);
}
}
// Sort helpers in a stable way independent from the derive resolution order.
entry.helper_attrs.sort_by_key(|(i, _)| *i);
self.helper_attrs
.insert(expn_id, entry.helper_attrs.iter().map(|(_, ident)| *ident).collect());
// Mark this derive as having `Copy` either if it has `Copy` itself or if its parent derive
// has `Copy`, to support cases like `#[derive(Clone, Copy)] #[derive(Debug)]`.
if entry.has_derive_copy || self.has_derive_copy(parent_scope.expansion) {
self.containers_deriving_copy.insert(expn_id);
}
assert!(self.derive_data.is_empty());
self.derive_data = derive_data;
Ok(())
}
fn take_derive_resolutions(&mut self, expn_id: LocalExpnId) -> Option<DeriveResolutions> {
self.derive_data.remove(&expn_id).map(|data| data.resolutions)
}
// The function that implements the resolution logic of `#[cfg_accessible(path)]`.
// Returns true if the path can certainly be resolved in one of three namespaces,
// returns false if the path certainly cannot be resolved in any of the three namespaces.
// Returns `Indeterminate` if we cannot give a certain answer yet.
fn cfg_accessible(
&mut self,
expn_id: LocalExpnId,
path: &ast::Path,
) -> Result<bool, Indeterminate> {
let span = path.span;
let path = &Segment::from_path(path);
let parent_scope = self.invocation_parent_scopes[&expn_id];
let mut indeterminate = false;
for ns in [TypeNS, ValueNS, MacroNS].iter().copied() {
match self.resolve_path(path, Some(ns), &parent_scope, false, span, CrateLint::No) {
PathResult::Module(ModuleOrUniformRoot::Module(_)) => return Ok(true),
PathResult::NonModule(partial_res) if partial_res.unresolved_segments() == 0 => {
return Ok(true);
}
PathResult::Indeterminate => indeterminate = true,
// FIXME: `resolve_path` is not ready to report partially resolved paths
// correctly, so we just report an error if the path was reported as unresolved.
// This needs to be fixed for `cfg_accessible` to be useful.
PathResult::NonModule(..) | PathResult::Failed { .. } => {}
PathResult::Module(_) => panic!("unexpected path resolution"),
}
}
if indeterminate {
return Err(Indeterminate);
}
self.session
.struct_span_err(span, "not sure whether the path is accessible or not")
.span_note(span, "`cfg_accessible` is not fully implemented")
.emit();
Ok(false)
}
fn get_proc_macro_quoted_span(&self, krate: CrateNum, id: usize) -> Span {
self.crate_loader.cstore().get_proc_macro_quoted_span_untracked(krate, id, self.session)
}
}
impl<'a> Resolver<'a> {
/// Resolve macro path with error reporting and recovery.
/// Uses dummy syntax extensions for unresolved macros or macros with unexpected resolutions
/// for better error recovery.
fn smart_resolve_macro_path(
&mut self,
path: &ast::Path,
kind: MacroKind,
supports_macro_expansion: SupportsMacroExpansion,
inner_attr: bool,
parent_scope: &ParentScope<'a>,
node_id: NodeId,
force: bool,
soft_custom_inner_attributes_gate: bool,
) -> Result<(Lrc<SyntaxExtension>, Res), Indeterminate> {
let (ext, res) = match self.resolve_macro_path(path, Some(kind), parent_scope, true, force)
{
Ok((Some(ext), res)) => (ext, res),
Ok((None, res)) => (self.dummy_ext(kind), res),
Err(Determinacy::Determined) => (self.dummy_ext(kind), Res::Err),
Err(Determinacy::Undetermined) => return Err(Indeterminate),
};
// Report errors for the resolved macro.
for segment in &path.segments {
if let Some(args) = &segment.args {
self.session.span_err(args.span(), "generic arguments in macro path");
}
if kind == MacroKind::Attr && segment.ident.as_str().starts_with("rustc") {
self.session.span_err(
segment.ident.span,
"attributes starting with `rustc` are reserved for use by the `rustc` compiler",
);
}
}
match res {
Res::Def(DefKind::Macro(_), def_id) => {
if let Some(def_id) = def_id.as_local() {
self.unused_macros.remove(&def_id);
if self.proc_macro_stubs.contains(&def_id) {
self.session.span_err(
path.span,
"can't use a procedural macro from the same crate that defines it",
);
}
}
}
Res::NonMacroAttr(..) | Res::Err => {}
_ => panic!("expected `DefKind::Macro` or `Res::NonMacroAttr`"),
};
self.check_stability_and_deprecation(&ext, path, node_id);
let unexpected_res = if ext.macro_kind() != kind {
Some((kind.article(), kind.descr_expected()))
} else if matches!(res, Res::Def(..)) {
match supports_macro_expansion {
SupportsMacroExpansion::No => Some(("a", "non-macro attribute")),
SupportsMacroExpansion::Yes { supports_inner_attrs } => {
if inner_attr && !supports_inner_attrs {
Some(("a", "non-macro inner attribute"))
} else {
None
}
}
}
} else {
None
};
if let Some((article, expected)) = unexpected_res {
let path_str = pprust::path_to_string(path);
let msg = format!("expected {}, found {} `{}`", expected, res.descr(), path_str);
self.session
.struct_span_err(path.span, &msg)
.span_label(path.span, format!("not {} {}", article, expected))
.emit();
return Ok((self.dummy_ext(kind), Res::Err));
}
// We are trying to avoid reporting this error if other related errors were reported.
if res != Res::Err
&& inner_attr
&& !self.session.features_untracked().custom_inner_attributes
{
let msg = match res {
Res::Def(..) => "inner macro attributes are unstable",
Res::NonMacroAttr(..) => "custom inner attributes are unstable",
_ => unreachable!(),
};
if soft_custom_inner_attributes_gate {
self.session.parse_sess.buffer_lint(SOFT_UNSTABLE, path.span, node_id, msg);
} else {
feature_err(&self.session.parse_sess, sym::custom_inner_attributes, path.span, msg)
.emit();
}
}
Ok((ext, res))
}
pub fn resolve_macro_path(
&mut self,
path: &ast::Path,
kind: Option<MacroKind>,
parent_scope: &ParentScope<'a>,
trace: bool,
force: bool,
) -> Result<(Option<Lrc<SyntaxExtension>>, Res), Determinacy> {
let path_span = path.span;
let mut path = Segment::from_path(path);
// Possibly apply the macro helper hack
if kind == Some(MacroKind::Bang)
&& path.len() == 1
&& path[0].ident.span.ctxt().outer_expn_data().local_inner_macros
{
let root = Ident::new(kw::DollarCrate, path[0].ident.span);
path.insert(0, Segment::from_ident(root));
}
let res = if path.len() > 1 {
let res = match self.resolve_path(
&path,
Some(MacroNS),
parent_scope,
false,
path_span,
CrateLint::No,
) {
PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => {
Ok(path_res.base_res())
}
PathResult::Indeterminate if !force => return Err(Determinacy::Undetermined),
PathResult::NonModule(..)
| PathResult::Indeterminate
| PathResult::Failed { .. } => Err(Determinacy::Determined),
PathResult::Module(..) => unreachable!(),
};
if trace {
let kind = kind.expect("macro kind must be specified if tracing is enabled");
self.multi_segment_macro_resolutions.push((
path,
path_span,
kind,
*parent_scope,
res.ok(),
));
}
self.prohibit_imported_non_macro_attrs(None, res.ok(), path_span);
res
} else {
let scope_set = kind.map_or(ScopeSet::All(MacroNS, false), ScopeSet::Macro);
let binding = self.early_resolve_ident_in_lexical_scope(
path[0].ident,
scope_set,
parent_scope,
false,
force,
path_span,
);
if let Err(Determinacy::Undetermined) = binding {
return Err(Determinacy::Undetermined);
}
if trace {
let kind = kind.expect("macro kind must be specified if tracing is enabled");
self.single_segment_macro_resolutions.push((
path[0].ident,
kind,
*parent_scope,
binding.ok(),
));
}
let res = binding.map(|binding| binding.res());
self.prohibit_imported_non_macro_attrs(binding.ok(), res.ok(), path_span);
res
};
res.map(|res| (self.get_macro(res), res))
}
// Resolve an identifier in lexical scope.
// This is a variation of `fn resolve_ident_in_lexical_scope` that can be run during
// expansion and import resolution (perhaps they can be merged in the future).
// The function is used for resolving initial segments of macro paths (e.g., `foo` in
// `foo::bar!(); or `foo!();`) and also for import paths on 2018 edition.
crate fn early_resolve_ident_in_lexical_scope(
&mut self,
orig_ident: Ident,
scope_set: ScopeSet<'a>,
parent_scope: &ParentScope<'a>,
record_used: bool,
force: bool,
path_span: Span,
) -> Result<&'a NameBinding<'a>, Determinacy> {
bitflags::bitflags! {
struct Flags: u8 {
const MACRO_RULES = 1 << 0;
const MODULE = 1 << 1;
const MISC_SUGGEST_CRATE = 1 << 2;
const MISC_SUGGEST_SELF = 1 << 3;
const MISC_FROM_PRELUDE = 1 << 4;
}
}
assert!(force || !record_used); // `record_used` implies `force`
// Make sure `self`, `super` etc produce an error when passed to here.
if orig_ident.is_path_segment_keyword() {
return Err(Determinacy::Determined);
}
let (ns, macro_kind, is_import) = match scope_set {
ScopeSet::All(ns, is_import) => (ns, None, is_import),
ScopeSet::AbsolutePath(ns) => (ns, None, false),
ScopeSet::Macro(macro_kind) => (MacroNS, Some(macro_kind), false),
ScopeSet::Late(ns, ..) => (ns, None, false),
};
// This is *the* result, resolution from the scope closest to the resolved identifier.
// However, sometimes this result is "weak" because it comes from a glob import or
// a macro expansion, and in this case it cannot shadow names from outer scopes, e.g.
// mod m { ... } // solution in outer scope
// {
// use prefix::*; // imports another `m` - innermost solution
// // weak, cannot shadow the outer `m`, need to report ambiguity error
// m::mac!();
// }
// So we have to save the innermost solution and continue searching in outer scopes
// to detect potential ambiguities.
let mut innermost_result: Option<(&NameBinding<'_>, Flags)> = None;
let mut determinacy = Determinacy::Determined;
// Go through all the scopes and try to resolve the name.
let break_result = self.visit_scopes(
scope_set,
parent_scope,
orig_ident.span.ctxt(),
|this, scope, use_prelude, ctxt| {
let ident = Ident::new(orig_ident.name, orig_ident.span.with_ctxt(ctxt));
let ok = |res, span, arenas| {
Ok((
(res, ty::Visibility::Public, span, LocalExpnId::ROOT)
.to_name_binding(arenas),
Flags::empty(),
))
};
let result = match scope {
Scope::DeriveHelpers(expn_id) => {
if let Some(attr) = this
.helper_attrs
.get(&expn_id)
.and_then(|attrs| attrs.iter().rfind(|i| ident == **i))
{
let binding = (
Res::NonMacroAttr(NonMacroAttrKind::DeriveHelper),
ty::Visibility::Public,
attr.span,
expn_id,
)
.to_name_binding(this.arenas);
Ok((binding, Flags::empty()))
} else {
Err(Determinacy::Determined)
}
}
Scope::DeriveHelpersCompat => {
let mut result = Err(Determinacy::Determined);
for derive in parent_scope.derives {
let parent_scope = &ParentScope { derives: &[], ..*parent_scope };
match this.resolve_macro_path(
derive,
Some(MacroKind::Derive),
parent_scope,
true,
force,
) {
Ok((Some(ext), _)) => {
if ext.helper_attrs.contains(&ident.name) {
result = ok(
Res::NonMacroAttr(NonMacroAttrKind::DeriveHelperCompat),
derive.span,
this.arenas,
);
break;
}
}
Ok(_) | Err(Determinacy::Determined) => {}
Err(Determinacy::Undetermined) => {
result = Err(Determinacy::Undetermined)
}
}
}
result
}
Scope::MacroRules(macro_rules_scope) => match macro_rules_scope.get() {
MacroRulesScope::Binding(macro_rules_binding)
if ident == macro_rules_binding.ident =>
{
Ok((macro_rules_binding.binding, Flags::MACRO_RULES))
}
MacroRulesScope::Invocation(_) => Err(Determinacy::Undetermined),
_ => Err(Determinacy::Determined),
},
Scope::CrateRoot => {
let root_ident = Ident::new(kw::PathRoot, ident.span);
let root_module = this.resolve_crate_root(root_ident);
let binding = this.resolve_ident_in_module_ext(
ModuleOrUniformRoot::Module(root_module),
ident,
ns,
parent_scope,
record_used,
path_span,
);
match binding {
Ok(binding) => Ok((binding, Flags::MODULE | Flags::MISC_SUGGEST_CRATE)),
Err((Determinacy::Undetermined, Weak::No)) => {
return Some(Err(Determinacy::determined(force)));
}
Err((Determinacy::Undetermined, Weak::Yes)) => {
Err(Determinacy::Undetermined)
}
Err((Determinacy::Determined, _)) => Err(Determinacy::Determined),
}
}
Scope::Module(module, derive_fallback_lint_id) => {
let adjusted_parent_scope = &ParentScope { module, ..*parent_scope };
let binding = this.resolve_ident_in_module_unadjusted_ext(
ModuleOrUniformRoot::Module(module),
ident,
ns,
adjusted_parent_scope,
!matches!(scope_set, ScopeSet::Late(..)),
record_used,
path_span,
);
match binding {
Ok(binding) => {
if let Some(lint_id) = derive_fallback_lint_id {
this.lint_buffer.buffer_lint_with_diagnostic(
PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
lint_id,
orig_ident.span,
&format!(
"cannot find {} `{}` in this scope",
ns.descr(),
ident
),
BuiltinLintDiagnostics::ProcMacroDeriveResolutionFallback(
orig_ident.span,
),
);
}
let misc_flags = if ptr::eq(module, this.graph_root) {
Flags::MISC_SUGGEST_CRATE
} else if module.is_normal() {
Flags::MISC_SUGGEST_SELF
} else {
Flags::empty()
};
Ok((binding, Flags::MODULE | misc_flags))
}
Err((Determinacy::Undetermined, Weak::No)) => {
return Some(Err(Determinacy::determined(force)));
}
Err((Determinacy::Undetermined, Weak::Yes)) => {
Err(Determinacy::Undetermined)
}
Err((Determinacy::Determined, _)) => Err(Determinacy::Determined),
}
}
Scope::RegisteredAttrs => match this.registered_attrs.get(&ident).cloned() {
Some(ident) => ok(
Res::NonMacroAttr(NonMacroAttrKind::Registered),
ident.span,
this.arenas,
),
None => Err(Determinacy::Determined),
},
Scope::MacroUsePrelude => {
match this.macro_use_prelude.get(&ident.name).cloned() {
Some(binding) => Ok((binding, Flags::MISC_FROM_PRELUDE)),
None => Err(Determinacy::determined(
this.graph_root.unexpanded_invocations.borrow().is_empty(),
)),
}
}
Scope::BuiltinAttrs => {
if is_builtin_attr_name(ident.name) {
ok(
Res::NonMacroAttr(NonMacroAttrKind::Builtin(ident.name)),
DUMMY_SP,
this.arenas,
)
} else {
Err(Determinacy::Determined)
}
}
Scope::ExternPrelude => match this.extern_prelude_get(ident, !record_used) {
Some(binding) => Ok((binding, Flags::empty())),
None => Err(Determinacy::determined(
this.graph_root.unexpanded_invocations.borrow().is_empty(),
)),
},
Scope::ToolPrelude => match this.registered_tools.get(&ident).cloned() {
Some(ident) => ok(Res::ToolMod, ident.span, this.arenas),
None => Err(Determinacy::Determined),
},
Scope::StdLibPrelude => {
let mut result = Err(Determinacy::Determined);
if let Some(prelude) = this.prelude {
if let Ok(binding) = this.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(prelude),
ident,
ns,
parent_scope,
false,
path_span,
) {
if use_prelude || this.is_builtin_macro(binding.res()) {
result = Ok((binding, Flags::MISC_FROM_PRELUDE));
}
}
}
result
}
Scope::BuiltinTypes => match PrimTy::from_name(ident.name) {
Some(prim_ty) => ok(Res::PrimTy(prim_ty), DUMMY_SP, this.arenas),
None => Err(Determinacy::Determined),
},
};
match result {
Ok((binding, flags))
if sub_namespace_match(binding.macro_kind(), macro_kind) =>
{
if !record_used || matches!(scope_set, ScopeSet::Late(..)) {
return Some(Ok(binding));
}
if let Some((innermost_binding, innermost_flags)) = innermost_result {
// Found another solution, if the first one was "weak", report an error.
let (res, innermost_res) = (binding.res(), innermost_binding.res());
if res != innermost_res {
let is_builtin = |res| {
matches!(res, Res::NonMacroAttr(NonMacroAttrKind::Builtin(..)))
};
let derive_helper =
Res::NonMacroAttr(NonMacroAttrKind::DeriveHelper);
let derive_helper_compat =
Res::NonMacroAttr(NonMacroAttrKind::DeriveHelperCompat);
let ambiguity_error_kind = if is_import {
Some(AmbiguityKind::Import)
} else if is_builtin(innermost_res) || is_builtin(res) {
Some(AmbiguityKind::BuiltinAttr)
} else if innermost_res == derive_helper_compat
|| res == derive_helper_compat && innermost_res != derive_helper
{
Some(AmbiguityKind::DeriveHelper)
} else if innermost_flags.contains(Flags::MACRO_RULES)
&& flags.contains(Flags::MODULE)
&& !this.disambiguate_macro_rules_vs_modularized(
innermost_binding,
binding,
)
|| flags.contains(Flags::MACRO_RULES)
&& innermost_flags.contains(Flags::MODULE)
&& !this.disambiguate_macro_rules_vs_modularized(
binding,
innermost_binding,
)
{
Some(AmbiguityKind::MacroRulesVsModularized)
} else if innermost_binding.is_glob_import() {
Some(AmbiguityKind::GlobVsOuter)
} else if innermost_binding
.may_appear_after(parent_scope.expansion, binding)
{
Some(AmbiguityKind::MoreExpandedVsOuter)
} else {
None
};
if let Some(kind) = ambiguity_error_kind {
let misc = |f: Flags| {
if f.contains(Flags::MISC_SUGGEST_CRATE) {
AmbiguityErrorMisc::SuggestCrate
} else if f.contains(Flags::MISC_SUGGEST_SELF) {
AmbiguityErrorMisc::SuggestSelf
} else if f.contains(Flags::MISC_FROM_PRELUDE) {
AmbiguityErrorMisc::FromPrelude
} else {
AmbiguityErrorMisc::None
}
};
this.ambiguity_errors.push(AmbiguityError {
kind,
ident: orig_ident,
b1: innermost_binding,
b2: binding,
misc1: misc(innermost_flags),
misc2: misc(flags),
});
return Some(Ok(innermost_binding));
}
}
} else {
// Found the first solution.
innermost_result = Some((binding, flags));
}
}
Ok(..) | Err(Determinacy::Determined) => {}
Err(Determinacy::Undetermined) => determinacy = Determinacy::Undetermined,
}
None
},
);
if let Some(break_result) = break_result {
return break_result;
}
// The first found solution was the only one, return it.
if let Some((binding, _)) = innermost_result {
return Ok(binding);
}
Err(Determinacy::determined(determinacy == Determinacy::Determined || force))
}
crate fn finalize_macro_resolutions(&mut self) {
let check_consistency = |this: &mut Self,
path: &[Segment],
span,
kind: MacroKind,
initial_res: Option<Res>,
res: Res| {
if let Some(initial_res) = initial_res {
if res != initial_res {
// Make sure compilation does not succeed if preferred macro resolution
// has changed after the macro had been expanded. In theory all such
// situations should be reported as errors, so this is a bug.
this.session.delay_span_bug(span, "inconsistent resolution for a macro");
}
} else {
// It's possible that the macro was unresolved (indeterminate) and silently
// expanded into a dummy fragment for recovery during expansion.
// Now, post-expansion, the resolution may succeed, but we can't change the
// past and need to report an error.
// However, non-speculative `resolve_path` can successfully return private items
// even if speculative `resolve_path` returned nothing previously, so we skip this
// less informative error if the privacy error is reported elsewhere.
if this.privacy_errors.is_empty() {
let msg = format!(
"cannot determine resolution for the {} `{}`",
kind.descr(),
Segment::names_to_string(path)
);
let msg_note = "import resolution is stuck, try simplifying macro imports";
this.session.struct_span_err(span, &msg).note(msg_note).emit();
}
}
};
let macro_resolutions = mem::take(&mut self.multi_segment_macro_resolutions);
for (mut path, path_span, kind, parent_scope, initial_res) in macro_resolutions {
// FIXME: Path resolution will ICE if segment IDs present.
for seg in &mut path {
seg.id = None;
}
match self.resolve_path(
&path,
Some(MacroNS),
&parent_scope,
true,
path_span,
CrateLint::No,
) {
PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => {
let res = path_res.base_res();
check_consistency(self, &path, path_span, kind, initial_res, res);
}
path_res @ PathResult::NonModule(..) | path_res @ PathResult::Failed { .. } => {
let (span, label) = if let PathResult::Failed { span, label, .. } = path_res {
(span, label)
} else {
(
path_span,
format!(
"partially resolved path in {} {}",
kind.article(),
kind.descr()
),
)
};
self.report_error(
span,
ResolutionError::FailedToResolve { label, suggestion: None },
);
}
PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
}
}
let macro_resolutions = mem::take(&mut self.single_segment_macro_resolutions);
for (ident, kind, parent_scope, initial_binding) in macro_resolutions {
match self.early_resolve_ident_in_lexical_scope(
ident,
ScopeSet::Macro(kind),
&parent_scope,
true,
true,
ident.span,
) {
Ok(binding) => {
let initial_res = initial_binding.map(|initial_binding| {
self.record_use(ident, MacroNS, initial_binding, false);
initial_binding.res()
});
let res = binding.res();
let seg = Segment::from_ident(ident);
check_consistency(self, &[seg], ident.span, kind, initial_res, res);
if res == Res::NonMacroAttr(NonMacroAttrKind::DeriveHelperCompat) {
let node_id = self
.invocation_parents
.get(&parent_scope.expansion)
.map_or(ast::CRATE_NODE_ID, |id| self.def_id_to_node_id[id.0]);
self.lint_buffer.buffer_lint_with_diagnostic(
LEGACY_DERIVE_HELPERS,
node_id,
ident.span,
"derive helper attribute is used before it is introduced",
BuiltinLintDiagnostics::LegacyDeriveHelpers(binding.span),
);
}
}
Err(..) => {
let expected = kind.descr_expected();
let msg = format!("cannot find {} `{}` in this scope", expected, ident);
let mut err = self.session.struct_span_err(ident.span, &msg);
self.unresolved_macro_suggestions(&mut err, kind, &parent_scope, ident);
err.emit();
}
}
}
let builtin_attrs = mem::take(&mut self.builtin_attrs);
for (ident, parent_scope) in builtin_attrs {
let _ = self.early_resolve_ident_in_lexical_scope(
ident,
ScopeSet::Macro(MacroKind::Attr),
&parent_scope,
true,
true,
ident.span,
);
}
}
fn check_stability_and_deprecation(
&mut self,
ext: &SyntaxExtension,
path: &ast::Path,
node_id: NodeId,
) {
let span = path.span;
if let Some(stability) = &ext.stability {
if let StabilityLevel::Unstable { reason, issue, is_soft } = stability.level {
let feature = stability.feature;
if !self.active_features.contains(&feature) && !span.allows_unstable(feature) {
let lint_buffer = &mut self.lint_buffer;
let soft_handler =
|lint, span, msg: &_| lint_buffer.buffer_lint(lint, node_id, span, msg);
stability::report_unstable(
self.session,
feature,
reason,
issue,
is_soft,
span,
soft_handler,
);
}
}
}
if let Some(depr) = &ext.deprecation {
let path = pprust::path_to_string(&path);
let (message, lint) = stability::deprecation_message(depr, "macro", &path);
stability::early_report_deprecation(
&mut self.lint_buffer,
&message,
depr.suggestion,
lint,
span,
node_id,
);
}
}
fn prohibit_imported_non_macro_attrs(
&self,
binding: Option<&'a NameBinding<'a>>,
res: Option<Res>,
span: Span,
) {
if let Some(Res::NonMacroAttr(kind)) = res {
if kind != NonMacroAttrKind::Tool && binding.map_or(true, |b| b.is_import()) {
let msg =
format!("cannot use {} {} through an import", kind.article(), kind.descr());
let mut err = self.session.struct_span_err(span, &msg);
if let Some(binding) = binding {
err.span_note(binding.span, &format!("the {} imported here", kind.descr()));
}
err.emit();
}
}
}
crate fn check_reserved_macro_name(&mut self, ident: Ident, res: Res) {
// Reserve some names that are not quite covered by the general check
// performed on `Resolver::builtin_attrs`.
if ident.name == sym::cfg || ident.name == sym::cfg_attr {
let macro_kind = self.get_macro(res).map(|ext| ext.macro_kind());
if macro_kind.is_some() && sub_namespace_match(macro_kind, Some(MacroKind::Attr)) {
self.session.span_err(
ident.span,
&format!("name `{}` is reserved in attribute namespace", ident),
);
}
}
}
/// Compile the macro into a `SyntaxExtension` and possibly replace
/// its expander to a pre-defined one for built-in macros.
crate fn compile_macro(&mut self, item: &ast::Item, edition: Edition) -> SyntaxExtension {
let mut result = compile_declarative_macro(
&self.session,
self.session.features_untracked(),
item,
edition,
);
if let Some(builtin_name) = result.builtin_name {
// The macro was marked with `#[rustc_builtin_macro]`.
if let Some(builtin_macro) = self.builtin_macros.get_mut(&builtin_name) {
// The macro is a built-in, replace its expander function
// while still taking everything else from the source code.
// If we already loaded this builtin macro, give a better error message than 'no such builtin macro'.
match mem::replace(builtin_macro, BuiltinMacroState::AlreadySeen(item.span)) {
BuiltinMacroState::NotYetSeen(ext) => result.kind = ext,
BuiltinMacroState::AlreadySeen(span) => {
struct_span_err!(
self.session,
item.span,
E0773,
"attempted to define built-in macro more than once"
)
.span_note(span, "previously defined here")
.emit();
}
}
} else {
let msg = format!("cannot find a built-in macro with name `{}`", item.ident);
self.session.span_err(item.span, &msg);
}
}
result
}
}