rust/clippy_lints/src/default_numeric_fallback.rs
Philipp Krones 3ab1da8bab
Formatting
2024-09-22 20:52:15 +02:00

259 lines
9.8 KiB
Rust

use clippy_utils::diagnostics::span_lint_hir_and_then;
use clippy_utils::numeric_literal;
use clippy_utils::source::snippet_opt;
use rustc_ast::ast::{LitFloatType, LitIntType, LitKind};
use rustc_errors::Applicability;
use rustc_hir::intravisit::{Visitor, walk_expr, walk_stmt};
use rustc_hir::{Block, Body, ConstContext, Expr, ExprKind, FnRetTy, HirId, Lit, Stmt, StmtKind};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_middle::lint::in_external_macro;
use rustc_middle::ty::{self, FloatTy, IntTy, PolyFnSig, Ty};
use rustc_session::declare_lint_pass;
use std::iter;
declare_clippy_lint! {
/// ### What it does
/// Checks for usage of unconstrained numeric literals which may cause default numeric fallback in type
/// inference.
///
/// Default numeric fallback means that if numeric types have not yet been bound to concrete
/// types at the end of type inference, then integer type is bound to `i32`, and similarly
/// floating type is bound to `f64`.
///
/// See [RFC0212](https://github.com/rust-lang/rfcs/blob/master/text/0212-restore-int-fallback.md) for more information about the fallback.
///
/// ### Why restrict this?
/// To ensure that every numeric type is chosen explicitly rather than implicitly.
///
/// ### Known problems
/// This lint can only be allowed at the function level or above.
///
/// ### Example
/// ```no_run
/// let i = 10;
/// let f = 1.23;
/// ```
///
/// Use instead:
/// ```no_run
/// let i = 10i32;
/// let f = 1.23f64;
/// ```
#[clippy::version = "1.52.0"]
pub DEFAULT_NUMERIC_FALLBACK,
restriction,
"usage of unconstrained numeric literals which may cause default numeric fallback."
}
declare_lint_pass!(DefaultNumericFallback => [DEFAULT_NUMERIC_FALLBACK]);
impl<'tcx> LateLintPass<'tcx> for DefaultNumericFallback {
fn check_body(&mut self, cx: &LateContext<'tcx>, body: &Body<'tcx>) {
let hir = cx.tcx.hir();
// NOTE: this is different from `clippy_utils::is_inside_always_const_context`.
// Inline const supports type inference.
let is_parent_const = matches!(
hir.body_const_context(hir.body_owner_def_id(body.id())),
Some(ConstContext::Const { inline: false } | ConstContext::Static(_))
);
let mut visitor = NumericFallbackVisitor::new(cx, is_parent_const);
visitor.visit_body(body);
}
}
struct NumericFallbackVisitor<'a, 'tcx> {
/// Stack manages type bound of exprs. The top element holds current expr type.
ty_bounds: Vec<ExplicitTyBound>,
cx: &'a LateContext<'tcx>,
}
impl<'a, 'tcx> NumericFallbackVisitor<'a, 'tcx> {
fn new(cx: &'a LateContext<'tcx>, is_parent_const: bool) -> Self {
Self {
ty_bounds: vec![if is_parent_const {
ExplicitTyBound(true)
} else {
ExplicitTyBound(false)
}],
cx,
}
}
/// Check whether a passed literal has potential to cause fallback or not.
fn check_lit(&self, lit: &Lit, lit_ty: Ty<'tcx>, emit_hir_id: HirId) {
if !in_external_macro(self.cx.sess(), lit.span)
&& matches!(self.ty_bounds.last(), Some(ExplicitTyBound(false)))
&& matches!(
lit.node,
LitKind::Int(_, LitIntType::Unsuffixed) | LitKind::Float(_, LitFloatType::Unsuffixed)
)
{
let (suffix, is_float) = match lit_ty.kind() {
ty::Int(IntTy::I32) => ("i32", false),
ty::Float(FloatTy::F64) => ("f64", true),
_ => return,
};
span_lint_hir_and_then(
self.cx,
DEFAULT_NUMERIC_FALLBACK,
emit_hir_id,
lit.span,
"default numeric fallback might occur",
|diag| {
let src = if let Some(src) = snippet_opt(self.cx, lit.span) {
src
} else {
match lit.node {
LitKind::Int(src, _) => format!("{src}"),
LitKind::Float(src, _) => format!("{src}"),
_ => unreachable!("Default numeric fallback never results in other types"),
}
};
let sugg = numeric_literal::format(&src, Some(suffix), is_float);
diag.span_suggestion(lit.span, "consider adding suffix", sugg, Applicability::MaybeIncorrect);
},
);
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for NumericFallbackVisitor<'a, 'tcx> {
fn visit_expr(&mut self, expr: &'tcx Expr<'_>) {
match &expr.kind {
ExprKind::Block(
Block {
stmts, expr: Some(_), ..
},
_,
) => {
if let Some(fn_sig) = self.cx.tcx.parent_hir_node(expr.hir_id).fn_sig()
&& let FnRetTy::Return(_ty) = fn_sig.decl.output
{
// We cannot check the exact type since it's a `hir::Ty`` which does not implement `is_numeric`
self.ty_bounds.push(ExplicitTyBound(true));
for stmt in *stmts {
self.visit_stmt(stmt);
}
self.ty_bounds.pop();
// Ignore return expr since we know its type was inferred from return ty
return;
}
},
// Ignore return expr since we know its type was inferred from return ty
ExprKind::Ret(_) => return,
ExprKind::Call(func, args) => {
if let Some(fn_sig) = fn_sig_opt(self.cx, func.hir_id) {
for (expr, bound) in iter::zip(*args, fn_sig.skip_binder().inputs()) {
// If is from macro, try to use last bound type (typically pushed when visiting stmt),
// otherwise push found arg type, then visit arg,
if expr.span.from_expansion() {
self.visit_expr(expr);
} else {
self.ty_bounds.push((*bound).into());
self.visit_expr(expr);
self.ty_bounds.pop();
}
}
return;
}
},
ExprKind::MethodCall(_, receiver, args, _) => {
if let Some(def_id) = self.cx.typeck_results().type_dependent_def_id(expr.hir_id) {
let fn_sig = self.cx.tcx.fn_sig(def_id).instantiate_identity().skip_binder();
for (expr, bound) in iter::zip(iter::once(*receiver).chain(args.iter()), fn_sig.inputs()) {
self.ty_bounds.push((*bound).into());
self.visit_expr(expr);
self.ty_bounds.pop();
}
return;
}
},
ExprKind::Struct(_, fields, base) => {
let ty = self.cx.typeck_results().expr_ty(expr);
if let Some(adt_def) = ty.ty_adt_def()
&& adt_def.is_struct()
&& let Some(variant) = adt_def.variants().iter().next()
{
let fields_def = &variant.fields;
// Push field type then visit each field expr.
for field in *fields {
let bound = fields_def.iter().find_map(|f_def| {
if f_def.ident(self.cx.tcx) == field.ident {
Some(self.cx.tcx.type_of(f_def.did).instantiate_identity())
} else {
None
}
});
self.ty_bounds.push(bound.into());
self.visit_expr(field.expr);
self.ty_bounds.pop();
}
// Visit base with no bound.
if let Some(base) = base {
self.ty_bounds.push(ExplicitTyBound(false));
self.visit_expr(base);
self.ty_bounds.pop();
}
return;
}
},
ExprKind::Lit(lit) => {
let ty = self.cx.typeck_results().expr_ty(expr);
self.check_lit(lit, ty, expr.hir_id);
return;
},
_ => {},
}
walk_expr(self, expr);
}
fn visit_stmt(&mut self, stmt: &'tcx Stmt<'_>) {
match stmt.kind {
// we cannot check the exact type since it's a hir::Ty which does not implement `is_numeric`
StmtKind::Let(local) => self.ty_bounds.push(ExplicitTyBound(local.ty.is_some())),
_ => self.ty_bounds.push(ExplicitTyBound(false)),
}
walk_stmt(self, stmt);
self.ty_bounds.pop();
}
}
fn fn_sig_opt<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<PolyFnSig<'tcx>> {
let node_ty = cx.typeck_results().node_type_opt(hir_id)?;
// We can't use `Ty::fn_sig` because it automatically performs args, this may result in FNs.
match node_ty.kind() {
ty::FnDef(def_id, _) => Some(cx.tcx.fn_sig(*def_id).instantiate_identity()),
ty::FnPtr(sig_tys, hdr) => Some(sig_tys.with(*hdr)),
_ => None,
}
}
/// Wrapper around a `bool` to make the meaning of the value clearer
#[derive(Debug, Clone, Copy)]
struct ExplicitTyBound(pub bool);
impl<'tcx> From<Ty<'tcx>> for ExplicitTyBound {
fn from(v: Ty<'tcx>) -> Self {
Self(v.is_numeric())
}
}
impl<'tcx> From<Option<Ty<'tcx>>> for ExplicitTyBound {
fn from(v: Option<Ty<'tcx>>) -> Self {
Self(v.map_or(false, Ty::is_numeric))
}
}