rust/src/libcollections/enum_set.rs
Alex Crichton f94d671bfa core: Remove the cast module
This commit revisits the `cast` module in libcore and libstd, and scrutinizes
all functions inside of it. The result was to remove the `cast` module entirely,
folding all functionality into the `mem` module. Specifically, this is the fate
of each function in the `cast` module.

* transmute - This function was moved to `mem`, but it is now marked as
              #[unstable]. This is due to planned changes to the `transmute`
              function and how it can be invoked (see the #[unstable] comment).
              For more information, see RFC 5 and #12898

* transmute_copy - This function was moved to `mem`, with clarification that is
                   is not an error to invoke it with T/U that are different
                   sizes, but rather that it is strongly discouraged. This
                   function is now #[stable]

* forget - This function was moved to `mem` and marked #[stable]

* bump_box_refcount - This function was removed due to the deprecation of
                      managed boxes as well as its questionable utility.

* transmute_mut - This function was previously deprecated, and removed as part
                  of this commit.

* transmute_mut_unsafe - This function doesn't serve much of a purpose when it
                         can be achieved with an `as` in safe code, so it was
                         removed.

* transmute_lifetime - This function was removed because it is likely a strong
                       indication that code is incorrect in the first place.

* transmute_mut_lifetime - This function was removed for the same reasons as
                           `transmute_lifetime`

* copy_lifetime - This function was moved to `mem`, but it is marked
                  `#[unstable]` now due to the likelihood of being removed in
                  the future if it is found to not be very useful.

* copy_mut_lifetime - This function was also moved to `mem`, but had the same
                      treatment as `copy_lifetime`.

* copy_lifetime_vec - This function was removed because it is not used today,
                      and its existence is not necessary with DST
                      (copy_lifetime will suffice).

In summary, the cast module was stripped down to these functions, and then the
functions were moved to the `mem` module.

    transmute - #[unstable]
    transmute_copy - #[stable]
    forget - #[stable]
    copy_lifetime - #[unstable]
    copy_mut_lifetime - #[unstable]

[breaking-change]
2014-05-11 01:13:02 -07:00

295 lines
7.1 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A structure for holding a set of enum variants
//!
//! This module defines a container which uses an efficient bit mask
//! representation to hold C-like enum variants.
use std::num::Bitwise;
#[deriving(Clone, Eq, TotalEq, Hash, Show)]
/// A specialized Set implementation to use enum types.
pub struct EnumSet<E> {
// We must maintain the invariant that no bits are set
// for which no variant exists
bits: uint
}
/// An interface for casting C-like enum to uint and back.
pub trait CLike {
/// Converts C-like enum to uint.
fn to_uint(&self) -> uint;
/// Converts uint to C-like enum.
fn from_uint(uint) -> Self;
}
fn bit<E:CLike>(e: E) -> uint {
1 << e.to_uint()
}
impl<E:CLike> EnumSet<E> {
/// Returns an empty EnumSet.
pub fn empty() -> EnumSet<E> {
EnumSet {bits: 0}
}
/// Returns true if an EnumSet is empty.
pub fn is_empty(&self) -> bool {
self.bits == 0
}
/// Returns true if an EnumSet contains any enum of a given EnumSet
pub fn intersects(&self, e: EnumSet<E>) -> bool {
(self.bits & e.bits) != 0
}
/// Returns an intersection of both EnumSets.
pub fn intersection(&self, e: EnumSet<E>) -> EnumSet<E> {
EnumSet {bits: self.bits & e.bits}
}
/// Returns true if a given EnumSet is included in an EnumSet.
pub fn contains(&self, e: EnumSet<E>) -> bool {
(self.bits & e.bits) == e.bits
}
/// Returns a union of both EnumSets.
pub fn union(&self, e: EnumSet<E>) -> EnumSet<E> {
EnumSet {bits: self.bits | e.bits}
}
/// Add an enum to an EnumSet
pub fn add(&mut self, e: E) {
self.bits |= bit(e);
}
/// Returns true if an EnumSet contains a given enum
pub fn contains_elem(&self, e: E) -> bool {
(self.bits & bit(e)) != 0
}
/// Returns an iterator over an EnumSet
pub fn iter(&self) -> Items<E> {
Items::new(self.bits)
}
}
impl<E:CLike> Sub<EnumSet<E>, EnumSet<E>> for EnumSet<E> {
fn sub(&self, e: &EnumSet<E>) -> EnumSet<E> {
EnumSet {bits: self.bits & !e.bits}
}
}
impl<E:CLike> BitOr<EnumSet<E>, EnumSet<E>> for EnumSet<E> {
fn bitor(&self, e: &EnumSet<E>) -> EnumSet<E> {
EnumSet {bits: self.bits | e.bits}
}
}
impl<E:CLike> BitAnd<EnumSet<E>, EnumSet<E>> for EnumSet<E> {
fn bitand(&self, e: &EnumSet<E>) -> EnumSet<E> {
EnumSet {bits: self.bits & e.bits}
}
}
/// An iterator over an EnumSet
pub struct Items<E> {
index: uint,
bits: uint,
}
impl<E:CLike> Items<E> {
fn new(bits: uint) -> Items<E> {
Items { index: 0, bits: bits }
}
}
impl<E:CLike> Iterator<E> for Items<E> {
fn next(&mut self) -> Option<E> {
if self.bits == 0 {
return None;
}
while (self.bits & 1) == 0 {
self.index += 1;
self.bits >>= 1;
}
let elem = CLike::from_uint(self.index);
self.index += 1;
self.bits >>= 1;
Some(elem)
}
fn size_hint(&self) -> (uint, Option<uint>) {
let exact = self.bits.count_ones();
(exact, Some(exact))
}
}
#[cfg(test)]
mod test {
use std::mem;
use enum_set::{EnumSet, CLike};
#[deriving(Eq, Show)]
#[repr(uint)]
enum Foo {
A, B, C
}
impl CLike for Foo {
fn to_uint(&self) -> uint {
*self as uint
}
fn from_uint(v: uint) -> Foo {
unsafe { mem::transmute(v) }
}
}
#[test]
fn test_empty() {
let e: EnumSet<Foo> = EnumSet::empty();
assert!(e.is_empty());
}
///////////////////////////////////////////////////////////////////////////
// intersect
#[test]
fn test_two_empties_do_not_intersect() {
let e1: EnumSet<Foo> = EnumSet::empty();
let e2: EnumSet<Foo> = EnumSet::empty();
assert!(!e1.intersects(e2));
}
#[test]
fn test_empty_does_not_intersect_with_full() {
let e1: EnumSet<Foo> = EnumSet::empty();
let mut e2: EnumSet<Foo> = EnumSet::empty();
e2.add(A);
e2.add(B);
e2.add(C);
assert!(!e1.intersects(e2));
}
#[test]
fn test_disjoint_intersects() {
let mut e1: EnumSet<Foo> = EnumSet::empty();
e1.add(A);
let mut e2: EnumSet<Foo> = EnumSet::empty();
e2.add(B);
assert!(!e1.intersects(e2));
}
#[test]
fn test_overlapping_intersects() {
let mut e1: EnumSet<Foo> = EnumSet::empty();
e1.add(A);
let mut e2: EnumSet<Foo> = EnumSet::empty();
e2.add(A);
e2.add(B);
assert!(e1.intersects(e2));
}
///////////////////////////////////////////////////////////////////////////
// contains and contains_elem
#[test]
fn test_contains() {
let mut e1: EnumSet<Foo> = EnumSet::empty();
e1.add(A);
let mut e2: EnumSet<Foo> = EnumSet::empty();
e2.add(A);
e2.add(B);
assert!(!e1.contains(e2));
assert!(e2.contains(e1));
}
#[test]
fn test_contains_elem() {
let mut e1: EnumSet<Foo> = EnumSet::empty();
e1.add(A);
assert!(e1.contains_elem(A));
assert!(!e1.contains_elem(B));
assert!(!e1.contains_elem(C));
e1.add(A);
e1.add(B);
assert!(e1.contains_elem(A));
assert!(e1.contains_elem(B));
assert!(!e1.contains_elem(C));
}
///////////////////////////////////////////////////////////////////////////
// iter
#[test]
fn test_iterator() {
let mut e1: EnumSet<Foo> = EnumSet::empty();
let elems: Vec<Foo> = e1.iter().collect();
assert!(elems.is_empty())
e1.add(A);
let elems = e1.iter().collect();
assert_eq!(vec![A], elems)
e1.add(C);
let elems = e1.iter().collect();
assert_eq!(vec![A,C], elems)
e1.add(C);
let elems = e1.iter().collect();
assert_eq!(vec![A,C], elems)
e1.add(B);
let elems = e1.iter().collect();
assert_eq!(vec![A,B,C], elems)
}
///////////////////////////////////////////////////////////////////////////
// operators
#[test]
fn test_operators() {
let mut e1: EnumSet<Foo> = EnumSet::empty();
e1.add(A);
e1.add(C);
let mut e2: EnumSet<Foo> = EnumSet::empty();
e2.add(B);
e2.add(C);
let e_union = e1 | e2;
let elems = e_union.iter().collect();
assert_eq!(vec![A,B,C], elems)
let e_intersection = e1 & e2;
let elems = e_intersection.iter().collect();
assert_eq!(vec![C], elems)
let e_subtract = e1 - e2;
let elems = e_subtract.iter().collect();
assert_eq!(vec![A], elems)
}
}