rust/crates/ra_hir/src/code_model.rs
2019-12-20 12:20:49 +01:00

1040 lines
30 KiB
Rust

//! FIXME: write short doc here
use std::sync::Arc;
use either::Either;
use hir_def::{
adt::VariantData,
builtin_type::BuiltinType,
docs::Documentation,
expr::{BindingAnnotation, Pat, PatId},
nameres::ModuleSource,
per_ns::PerNs,
resolver::HasResolver,
type_ref::{Mutability, TypeRef},
AdtId, ConstId, DefWithBodyId, EnumId, FunctionId, HasModule, ImplId, LocalEnumVariantId,
LocalImportId, LocalModuleId, LocalStructFieldId, Lookup, ModuleId, StaticId, StructId,
TraitId, TypeAliasId, TypeParamId, UnionId,
};
use hir_expand::{
diagnostics::DiagnosticSink,
name::{name, AsName},
MacroDefId,
};
use hir_ty::{
autoderef, display::HirFormatter, expr::ExprValidator, ApplicationTy, Canonical, InEnvironment,
TraitEnvironment, Ty, TyDefId, TypeCtor, TypeWalk,
};
use ra_db::{CrateId, Edition, FileId};
use ra_syntax::ast;
use crate::{
db::{DefDatabase, HirDatabase},
CallableDef, HirDisplay, InFile, Name,
};
/// hir::Crate describes a single crate. It's the main interface with which
/// a crate's dependencies interact. Mostly, it should be just a proxy for the
/// root module.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Crate {
pub(crate) id: CrateId,
}
#[derive(Debug)]
pub struct CrateDependency {
pub krate: Crate,
pub name: Name,
}
impl Crate {
pub fn dependencies(self, db: &impl DefDatabase) -> Vec<CrateDependency> {
db.crate_graph()
.dependencies(self.id)
.map(|dep| {
let krate = Crate { id: dep.crate_id() };
let name = dep.as_name();
CrateDependency { krate, name }
})
.collect()
}
// FIXME: add `transitive_reverse_dependencies`.
pub fn reverse_dependencies(self, db: &impl DefDatabase) -> Vec<Crate> {
let crate_graph = db.crate_graph();
crate_graph
.iter()
.filter(|&krate| crate_graph.dependencies(krate).any(|it| it.crate_id == self.id))
.map(|id| Crate { id })
.collect()
}
pub fn root_module(self, db: &impl DefDatabase) -> Option<Module> {
let module_id = db.crate_def_map(self.id).root;
Some(Module::new(self, module_id))
}
pub fn root_file(self, db: &impl DefDatabase) -> FileId {
db.crate_graph().crate_root(self.id)
}
pub fn edition(self, db: &impl DefDatabase) -> Edition {
let crate_graph = db.crate_graph();
crate_graph.edition(self.id)
}
pub fn all(db: &impl DefDatabase) -> Vec<Crate> {
db.crate_graph().iter().map(|id| Crate { id }).collect()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Module {
pub(crate) id: ModuleId,
}
/// The defs which can be visible in the module.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ModuleDef {
Module(Module),
Function(Function),
Adt(Adt),
// Can't be directly declared, but can be imported.
EnumVariant(EnumVariant),
Const(Const),
Static(Static),
Trait(Trait),
TypeAlias(TypeAlias),
BuiltinType(BuiltinType),
}
impl_froms!(
ModuleDef: Module,
Function,
Adt(Struct, Enum, Union),
EnumVariant,
Const,
Static,
Trait,
TypeAlias,
BuiltinType
);
pub use hir_def::attr::Attrs;
impl Module {
pub(crate) fn new(krate: Crate, crate_module_id: LocalModuleId) -> Module {
Module { id: ModuleId { krate: krate.id, local_id: crate_module_id } }
}
/// Name of this module.
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
let def_map = db.crate_def_map(self.id.krate);
let parent = def_map[self.id.local_id].parent?;
def_map[parent].children.iter().find_map(|(name, module_id)| {
if *module_id == self.id.local_id {
Some(name.clone())
} else {
None
}
})
}
/// Returns the crate this module is part of.
pub fn krate(self) -> Crate {
Crate { id: self.id.krate }
}
/// Topmost parent of this module. Every module has a `crate_root`, but some
/// might be missing `krate`. This can happen if a module's file is not included
/// in the module tree of any target in `Cargo.toml`.
pub fn crate_root(self, db: &impl DefDatabase) -> Module {
let def_map = db.crate_def_map(self.id.krate);
self.with_module_id(def_map.root)
}
/// Iterates over all child modules.
pub fn children(self, db: &impl DefDatabase) -> impl Iterator<Item = Module> {
let def_map = db.crate_def_map(self.id.krate);
let children = def_map[self.id.local_id]
.children
.iter()
.map(|(_, module_id)| self.with_module_id(*module_id))
.collect::<Vec<_>>();
children.into_iter()
}
/// Finds a parent module.
pub fn parent(self, db: &impl DefDatabase) -> Option<Module> {
let def_map = db.crate_def_map(self.id.krate);
let parent_id = def_map[self.id.local_id].parent?;
Some(self.with_module_id(parent_id))
}
pub fn path_to_root(self, db: &impl HirDatabase) -> Vec<Module> {
let mut res = vec![self];
let mut curr = self;
while let Some(next) = curr.parent(db) {
res.push(next);
curr = next
}
res
}
/// Returns a `ModuleScope`: a set of items, visible in this module.
pub fn scope(self, db: &impl HirDatabase) -> Vec<(Name, ScopeDef, Option<Import>)> {
db.crate_def_map(self.id.krate)[self.id.local_id]
.scope
.entries()
.map(|(name, res)| {
(name.clone(), res.def.into(), res.import.map(|id| Import { parent: self, id }))
})
.collect()
}
pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) {
db.crate_def_map(self.id.krate).add_diagnostics(db, self.id.local_id, sink);
for decl in self.declarations(db) {
match decl {
crate::ModuleDef::Function(f) => f.diagnostics(db, sink),
crate::ModuleDef::Module(m) => {
// Only add diagnostics from inline modules
if let ModuleSource::Module(_) = m.definition_source(db).value {
m.diagnostics(db, sink)
}
}
_ => (),
}
}
for impl_block in self.impl_blocks(db) {
for item in impl_block.items(db) {
if let AssocItem::Function(f) = item {
f.diagnostics(db, sink);
}
}
}
}
pub fn declarations(self, db: &impl DefDatabase) -> Vec<ModuleDef> {
let def_map = db.crate_def_map(self.id.krate);
def_map[self.id.local_id].scope.declarations().map(ModuleDef::from).collect()
}
pub fn impl_blocks(self, db: &impl DefDatabase) -> Vec<ImplBlock> {
let def_map = db.crate_def_map(self.id.krate);
def_map[self.id.local_id].impls.iter().copied().map(ImplBlock::from).collect()
}
pub(crate) fn with_module_id(self, module_id: LocalModuleId) -> Module {
Module::new(self.krate(), module_id)
}
}
pub struct Import {
pub(crate) parent: Module,
pub(crate) id: LocalImportId,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct StructField {
pub(crate) parent: VariantDef,
pub(crate) id: LocalStructFieldId,
}
#[derive(Debug, PartialEq, Eq)]
pub enum FieldSource {
Named(ast::RecordFieldDef),
Pos(ast::TupleFieldDef),
}
impl StructField {
pub fn name(&self, db: &impl HirDatabase) -> Name {
self.parent.variant_data(db).fields()[self.id].name.clone()
}
pub fn ty(&self, db: &impl HirDatabase) -> Type {
let var_id = self.parent.into();
let ty = db.field_types(var_id)[self.id].clone();
Type::new(db, self.parent.module(db).id.krate.into(), var_id, ty)
}
pub fn parent_def(&self, _db: &impl HirDatabase) -> VariantDef {
self.parent
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Struct {
pub(crate) id: StructId,
}
impl Struct {
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.lookup(db).container.module(db) }
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
pub fn name(self, db: &impl DefDatabase) -> Name {
db.struct_data(self.id.into()).name.clone()
}
pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
db.struct_data(self.id.into())
.variant_data
.fields()
.iter()
.map(|(id, _)| StructField { parent: self.into(), id })
.collect()
}
pub fn ty(self, db: &impl HirDatabase) -> Type {
Type::from_def(db, self.id.lookup(db).container.module(db).krate, self.id)
}
fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> {
db.struct_data(self.id.into()).variant_data.clone()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Union {
pub(crate) id: UnionId,
}
impl Union {
pub fn name(self, db: &impl DefDatabase) -> Name {
db.union_data(self.id).name.clone()
}
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.lookup(db).container.module(db) }
}
pub fn ty(self, db: &impl HirDatabase) -> Type {
Type::from_def(db, self.id.lookup(db).container.module(db).krate, self.id)
}
pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
db.union_data(self.id)
.variant_data
.fields()
.iter()
.map(|(id, _)| StructField { parent: self.into(), id })
.collect()
}
fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> {
db.union_data(self.id).variant_data.clone()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Enum {
pub(crate) id: EnumId,
}
impl Enum {
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.lookup(db).container.module(db) }
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
pub fn name(self, db: &impl DefDatabase) -> Name {
db.enum_data(self.id).name.clone()
}
pub fn variants(self, db: &impl DefDatabase) -> Vec<EnumVariant> {
db.enum_data(self.id)
.variants
.iter()
.map(|(id, _)| EnumVariant { parent: self, id })
.collect()
}
pub fn ty(self, db: &impl HirDatabase) -> Type {
Type::from_def(db, self.id.lookup(db).container.module(db).krate, self.id)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct EnumVariant {
pub(crate) parent: Enum,
pub(crate) id: LocalEnumVariantId,
}
impl EnumVariant {
pub fn module(self, db: &impl HirDatabase) -> Module {
self.parent.module(db)
}
pub fn parent_enum(self, _db: &impl DefDatabase) -> Enum {
self.parent
}
pub fn name(self, db: &impl DefDatabase) -> Name {
db.enum_data(self.parent.id).variants[self.id].name.clone()
}
pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
self.variant_data(db)
.fields()
.iter()
.map(|(id, _)| StructField { parent: self.into(), id })
.collect()
}
pub(crate) fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> {
db.enum_data(self.parent.id).variants[self.id].variant_data.clone()
}
}
/// A Data Type
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Adt {
Struct(Struct),
Union(Union),
Enum(Enum),
}
impl_froms!(Adt: Struct, Union, Enum);
impl Adt {
pub fn has_non_default_type_params(self, db: &impl HirDatabase) -> bool {
let subst = db.generic_defaults(self.into());
subst.iter().any(|ty| ty == &Ty::Unknown)
}
pub fn ty(self, db: &impl HirDatabase) -> Type {
let id = AdtId::from(self);
Type::from_def(db, id.module(db).krate, id)
}
pub fn module(self, db: &impl DefDatabase) -> Module {
match self {
Adt::Struct(s) => s.module(db),
Adt::Union(s) => s.module(db),
Adt::Enum(e) => e.module(db),
}
}
pub fn krate(self, db: &impl HirDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum VariantDef {
Struct(Struct),
Union(Union),
EnumVariant(EnumVariant),
}
impl_froms!(VariantDef: Struct, Union, EnumVariant);
impl VariantDef {
pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
match self {
VariantDef::Struct(it) => it.fields(db),
VariantDef::Union(it) => it.fields(db),
VariantDef::EnumVariant(it) => it.fields(db),
}
}
pub fn module(self, db: &impl HirDatabase) -> Module {
match self {
VariantDef::Struct(it) => it.module(db),
VariantDef::Union(it) => it.module(db),
VariantDef::EnumVariant(it) => it.module(db),
}
}
pub(crate) fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> {
match self {
VariantDef::Struct(it) => it.variant_data(db),
VariantDef::Union(it) => it.variant_data(db),
VariantDef::EnumVariant(it) => it.variant_data(db),
}
}
}
/// The defs which have a body.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum DefWithBody {
Function(Function),
Static(Static),
Const(Const),
}
impl_froms!(DefWithBody: Function, Const, Static);
impl DefWithBody {
pub fn module(self, db: &impl HirDatabase) -> Module {
match self {
DefWithBody::Const(c) => c.module(db),
DefWithBody::Function(f) => f.module(db),
DefWithBody::Static(s) => s.module(db),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Function {
pub(crate) id: FunctionId,
}
impl Function {
pub fn module(self, db: &impl DefDatabase) -> Module {
self.id.lookup(db).module(db).into()
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
pub fn name(self, db: &impl HirDatabase) -> Name {
db.function_data(self.id).name.clone()
}
pub fn has_self_param(self, db: &impl HirDatabase) -> bool {
db.function_data(self.id).has_self_param
}
pub fn params(self, db: &impl HirDatabase) -> Vec<TypeRef> {
db.function_data(self.id).params.clone()
}
pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) {
let infer = db.infer(self.id.into());
infer.add_diagnostics(db, self.id, sink);
let mut validator = ExprValidator::new(self.id, infer, sink);
validator.validate_body(db);
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Const {
pub(crate) id: ConstId,
}
impl Const {
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.lookup(db).module(db) }
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
pub fn name(self, db: &impl HirDatabase) -> Option<Name> {
db.const_data(self.id).name.clone()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Static {
pub(crate) id: StaticId,
}
impl Static {
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.lookup(db).module(db) }
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Trait {
pub(crate) id: TraitId,
}
impl Trait {
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.lookup(db).container }
}
pub fn name(self, db: &impl DefDatabase) -> Name {
db.trait_data(self.id).name.clone()
}
pub fn items(self, db: &impl DefDatabase) -> Vec<AssocItem> {
db.trait_data(self.id).items.iter().map(|(_name, it)| (*it).into()).collect()
}
pub fn is_auto(self, db: &impl DefDatabase) -> bool {
db.trait_data(self.id).auto
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct TypeAlias {
pub(crate) id: TypeAliasId,
}
impl TypeAlias {
pub fn has_non_default_type_params(self, db: &impl HirDatabase) -> bool {
let subst = db.generic_defaults(self.id.into());
subst.iter().any(|ty| ty == &Ty::Unknown)
}
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.lookup(db).module(db) }
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
pub fn type_ref(self, db: &impl DefDatabase) -> Option<TypeRef> {
db.type_alias_data(self.id).type_ref.clone()
}
pub fn ty(self, db: &impl HirDatabase) -> Type {
Type::from_def(db, self.id.lookup(db).module(db).krate, self.id)
}
pub fn name(self, db: &impl DefDatabase) -> Name {
db.type_alias_data(self.id).name.clone()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct MacroDef {
pub(crate) id: MacroDefId,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum AssocItem {
Function(Function),
Const(Const),
TypeAlias(TypeAlias),
}
// FIXME: not every function, ... is actually an assoc item. maybe we should make
// sure that you can only turn actual assoc items into AssocItems. This would
// require not implementing From, and instead having some checked way of
// casting them, and somehow making the constructors private, which would be annoying.
impl_froms!(AssocItem: Function, Const, TypeAlias);
impl AssocItem {
pub fn module(self, db: &impl DefDatabase) -> Module {
match self {
AssocItem::Function(f) => f.module(db),
AssocItem::Const(c) => c.module(db),
AssocItem::TypeAlias(t) => t.module(db),
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum GenericDef {
Function(Function),
Adt(Adt),
Trait(Trait),
TypeAlias(TypeAlias),
ImplBlock(ImplBlock),
// enum variants cannot have generics themselves, but their parent enums
// can, and this makes some code easier to write
EnumVariant(EnumVariant),
// consts can have type parameters from their parents (i.e. associated consts of traits)
Const(Const),
}
impl_froms!(
GenericDef: Function,
Adt(Struct, Enum, Union),
Trait,
TypeAlias,
ImplBlock,
EnumVariant,
Const
);
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct Local {
pub(crate) parent: DefWithBody,
pub(crate) pat_id: PatId,
}
impl Local {
pub fn name(self, db: &impl HirDatabase) -> Option<Name> {
let body = db.body(self.parent.into());
match &body[self.pat_id] {
Pat::Bind { name, .. } => Some(name.clone()),
_ => None,
}
}
pub fn is_self(self, db: &impl HirDatabase) -> bool {
self.name(db) == Some(name![self])
}
pub fn is_mut(self, db: &impl HirDatabase) -> bool {
let body = db.body(self.parent.into());
match &body[self.pat_id] {
Pat::Bind { mode, .. } => match mode {
BindingAnnotation::Mutable | BindingAnnotation::RefMut => true,
_ => false,
},
_ => false,
}
}
pub fn parent(self, _db: &impl HirDatabase) -> DefWithBody {
self.parent
}
pub fn module(self, db: &impl HirDatabase) -> Module {
self.parent.module(db)
}
pub fn ty(self, db: &impl HirDatabase) -> Type {
let def = DefWithBodyId::from(self.parent);
let infer = db.infer(def);
let ty = infer[self.pat_id].clone();
let resolver = def.resolver(db);
let krate = def.module(db).krate;
let environment = TraitEnvironment::lower(db, &resolver);
Type { krate, ty: InEnvironment { value: ty, environment } }
}
pub fn source(self, db: &impl HirDatabase) -> InFile<Either<ast::BindPat, ast::SelfParam>> {
let (_body, source_map) = db.body_with_source_map(self.parent.into());
let src = source_map.pat_syntax(self.pat_id).unwrap(); // Hmm...
let root = src.file_syntax(db);
src.map(|ast| {
ast.map_left(|it| it.cast().unwrap().to_node(&root)).map_right(|it| it.to_node(&root))
})
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct TypeParam {
pub(crate) id: TypeParamId,
}
impl TypeParam {
pub fn name(self, db: &impl HirDatabase) -> Name {
let params = db.generic_params(self.id.parent);
params.types[self.id.local_id].name.clone()
}
pub fn module(self, db: &impl HirDatabase) -> Module {
self.id.parent.module(db).into()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct ImplBlock {
pub(crate) id: ImplId,
}
impl ImplBlock {
pub fn all_in_crate(db: &impl HirDatabase, krate: Crate) -> Vec<ImplBlock> {
let impls = db.impls_in_crate(krate.id);
impls.all_impls().map(Self::from).collect()
}
pub fn for_trait(db: &impl HirDatabase, krate: Crate, trait_: Trait) -> Vec<ImplBlock> {
let impls = db.impls_in_crate(krate.id);
impls.lookup_impl_blocks_for_trait(trait_.id).map(Self::from).collect()
}
pub fn target_trait(&self, db: &impl DefDatabase) -> Option<TypeRef> {
db.impl_data(self.id).target_trait.clone()
}
pub fn target_type(&self, db: &impl DefDatabase) -> TypeRef {
db.impl_data(self.id).target_type.clone()
}
pub fn target_ty(&self, db: &impl HirDatabase) -> Type {
let impl_data = db.impl_data(self.id);
let resolver = self.id.resolver(db);
let environment = TraitEnvironment::lower(db, &resolver);
let ty = Ty::from_hir(db, &resolver, &impl_data.target_type);
Type {
krate: self.id.lookup(db).container.krate,
ty: InEnvironment { value: ty, environment },
}
}
pub fn items(&self, db: &impl DefDatabase) -> Vec<AssocItem> {
db.impl_data(self.id).items.iter().map(|it| (*it).into()).collect()
}
pub fn is_negative(&self, db: &impl DefDatabase) -> bool {
db.impl_data(self.id).is_negative
}
pub fn module(&self, db: &impl DefDatabase) -> Module {
self.id.lookup(db).container.into()
}
pub fn krate(&self, db: &impl DefDatabase) -> Crate {
Crate { id: self.module(db).id.krate }
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Type {
pub(crate) krate: CrateId,
pub(crate) ty: InEnvironment<Ty>,
}
impl Type {
fn new(db: &impl HirDatabase, krate: CrateId, lexical_env: impl HasResolver, ty: Ty) -> Type {
let resolver = lexical_env.resolver(db);
let environment = TraitEnvironment::lower(db, &resolver);
Type { krate, ty: InEnvironment { value: ty, environment } }
}
fn from_def(
db: &impl HirDatabase,
krate: CrateId,
def: impl HasResolver + Into<TyDefId>,
) -> Type {
let ty = db.ty(def.into());
Type::new(db, krate, def, ty)
}
pub fn is_bool(&self) -> bool {
match &self.ty.value {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Bool => true,
_ => false,
},
_ => false,
}
}
pub fn is_mutable_reference(&self) -> bool {
match &self.ty.value {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Ref(Mutability::Mut) => true,
_ => false,
},
_ => false,
}
}
pub fn is_unknown(&self) -> bool {
match &self.ty.value {
Ty::Unknown => true,
_ => false,
}
}
// FIXME: this method is broken, as it doesn't take closures into account.
pub fn as_callable(&self) -> Option<CallableDef> {
Some(self.ty.value.as_callable()?.0)
}
pub fn contains_unknown(&self) -> bool {
return go(&self.ty.value);
fn go(ty: &Ty) -> bool {
match ty {
Ty::Unknown => true,
Ty::Apply(a_ty) => a_ty.parameters.iter().any(go),
_ => false,
}
}
}
pub fn fields(&self, db: &impl HirDatabase) -> Vec<(StructField, Type)> {
if let Ty::Apply(a_ty) = &self.ty.value {
match a_ty.ctor {
TypeCtor::Adt(AdtId::StructId(s)) => {
let var_def = s.into();
return db
.field_types(var_def)
.iter()
.map(|(local_id, ty)| {
let def = StructField { parent: var_def.into(), id: local_id };
let ty = ty.clone().subst(&a_ty.parameters);
(def, self.derived(ty))
})
.collect();
}
_ => {}
}
};
Vec::new()
}
pub fn tuple_fields(&self, _db: &impl HirDatabase) -> Vec<Type> {
let mut res = Vec::new();
if let Ty::Apply(a_ty) = &self.ty.value {
match a_ty.ctor {
TypeCtor::Tuple { .. } => {
for ty in a_ty.parameters.iter() {
let ty = ty.clone().subst(&a_ty.parameters);
res.push(self.derived(ty));
}
}
_ => {}
}
};
res
}
pub fn variant_fields(
&self,
db: &impl HirDatabase,
def: VariantDef,
) -> Vec<(StructField, Type)> {
// FIXME: check that ty and def match
match &self.ty.value {
Ty::Apply(a_ty) => {
let field_types = db.field_types(def.into());
def.fields(db)
.into_iter()
.map(|it| {
let ty = field_types[it.id].clone().subst(&a_ty.parameters);
(it, self.derived(ty))
})
.collect()
}
_ => Vec::new(),
}
}
pub fn autoderef<'a>(&'a self, db: &'a impl HirDatabase) -> impl Iterator<Item = Type> + 'a {
// There should be no inference vars in types passed here
// FIXME check that?
let canonical = Canonical { value: self.ty.value.clone(), num_vars: 0 };
let environment = self.ty.environment.clone();
let ty = InEnvironment { value: canonical, environment: environment.clone() };
autoderef(db, Some(self.krate), ty)
.map(|canonical| canonical.value)
.map(move |ty| self.derived(ty))
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub fn iterate_impl_items<T>(
self,
db: &impl HirDatabase,
krate: Crate,
mut callback: impl FnMut(AssocItem) -> Option<T>,
) -> Option<T> {
for krate in self.ty.value.def_crates(db, krate.id)? {
let impls = db.impls_in_crate(krate);
for impl_block in impls.lookup_impl_blocks(&self.ty.value) {
for &item in db.impl_data(impl_block).items.iter() {
if let Some(result) = callback(item.into()) {
return Some(result);
}
}
}
}
None
}
pub fn as_adt(&self) -> Option<Adt> {
let (adt, _subst) = self.ty.value.as_adt()?;
Some(adt.into())
}
// FIXME: provide required accessors such that it becomes implementable from outside.
pub fn is_equal_for_find_impls(&self, other: &Type) -> bool {
match (&self.ty.value, &other.ty.value) {
(Ty::Apply(a_original_ty), Ty::Apply(ApplicationTy { ctor, parameters })) => match ctor
{
TypeCtor::Ref(..) => match parameters.as_single() {
Ty::Apply(a_ty) => a_original_ty.ctor == a_ty.ctor,
_ => false,
},
_ => a_original_ty.ctor == *ctor,
},
_ => false,
}
}
fn derived(&self, ty: Ty) -> Type {
Type {
krate: self.krate,
ty: InEnvironment { value: ty, environment: self.ty.environment.clone() },
}
}
}
impl HirDisplay for Type {
fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> std::fmt::Result {
self.ty.value.hir_fmt(f)
}
}
/// For IDE only
pub enum ScopeDef {
ModuleDef(ModuleDef),
MacroDef(MacroDef),
GenericParam(TypeParam),
ImplSelfType(ImplBlock),
AdtSelfType(Adt),
Local(Local),
Unknown,
}
impl From<PerNs> for ScopeDef {
fn from(def: PerNs) -> Self {
def.take_types()
.or_else(|| def.take_values())
.map(|module_def_id| ScopeDef::ModuleDef(module_def_id.into()))
.or_else(|| {
def.take_macros().map(|macro_def_id| ScopeDef::MacroDef(macro_def_id.into()))
})
.unwrap_or(ScopeDef::Unknown)
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum AttrDef {
Module(Module),
StructField(StructField),
Adt(Adt),
Function(Function),
EnumVariant(EnumVariant),
Static(Static),
Const(Const),
Trait(Trait),
TypeAlias(TypeAlias),
MacroDef(MacroDef),
}
impl_froms!(
AttrDef: Module,
StructField,
Adt(Struct, Enum, Union),
EnumVariant,
Static,
Const,
Function,
Trait,
TypeAlias,
MacroDef
);
pub trait HasAttrs {
fn attrs(self, db: &impl DefDatabase) -> Attrs;
}
impl<T: Into<AttrDef>> HasAttrs for T {
fn attrs(self, db: &impl DefDatabase) -> Attrs {
let def: AttrDef = self.into();
db.attrs(def.into())
}
}
pub trait Docs {
fn docs(&self, db: &impl HirDatabase) -> Option<Documentation>;
}
impl<T: Into<AttrDef> + Copy> Docs for T {
fn docs(&self, db: &impl HirDatabase) -> Option<Documentation> {
let def: AttrDef = (*self).into();
db.documentation(def.into())
}
}