rust/src/libcollections/binary_heap.rs
Chase Southwood abf492d44f Misc Stabilization for collections
This commit:

*Renames `BinaryHeap::top` to `BinaryHeap::peek`
*Stabilizes `front/back/front_mut/back_mut` in `DList` and `RingBuf`
*Stabilizes `swap` in `RingBuf`

Because of the method renaming, this is a [breaking-change].
2014-12-21 22:32:16 -06:00

867 lines
26 KiB
Rust

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A priority queue implemented with a binary heap.
//!
//! Insertion and popping the largest element have `O(log n)` time complexity. Checking the largest
//! element is `O(1)`. Converting a vector to a priority queue can be done in-place, and has `O(n)`
//! complexity. A priority queue can also be converted to a sorted vector in-place, allowing it to
//! be used for an `O(n log n)` in-place heapsort.
//!
//! # Examples
//!
//! This is a larger example which implements [Dijkstra's algorithm][dijkstra]
//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
//! It showcases how to use the `BinaryHeap` with custom types.
//!
//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph
//!
//! ```
//! use std::collections::BinaryHeap;
//! use std::uint;
//!
//! #[deriving(Copy, Eq, PartialEq)]
//! struct State {
//! cost: uint,
//! position: uint
//! }
//!
//! // The priority queue depends on `Ord`.
//! // Explicitly implement the trait so the queue becomes a min-heap
//! // instead of a max-heap.
//! impl Ord for State {
//! fn cmp(&self, other: &State) -> Ordering {
//! // Notice that the we flip the ordering here
//! other.cost.cmp(&self.cost)
//! }
//! }
//!
//! // `PartialOrd` needs to be implemented as well.
//! impl PartialOrd for State {
//! fn partial_cmp(&self, other: &State) -> Option<Ordering> {
//! Some(self.cmp(other))
//! }
//! }
//!
//! // Each node is represented as an `uint`, for a shorter implementation.
//! struct Edge {
//! node: uint,
//! cost: uint
//! }
//!
//! // Dijkstra's shortest path algorithm.
//!
//! // Start at `start` and use `dist` to track the current shortest distance
//! // to each node. This implementation isn't memory efficient as it may leave duplicate
//! // nodes in the queue. It also uses `uint::MAX` as a sentinel value,
//! // for a simpler implementation.
//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: uint, goal: uint) -> uint {
//! // dist[node] = current shortest distance from `start` to `node`
//! let mut dist = Vec::from_elem(adj_list.len(), uint::MAX);
//!
//! let mut heap = BinaryHeap::new();
//!
//! // We're at `start`, with a zero cost
//! dist[start] = 0u;
//! heap.push(State { cost: 0u, position: start });
//!
//! // Examine the frontier with lower cost nodes first (min-heap)
//! loop {
//! let State { cost, position } = match heap.pop() {
//! None => break, // empty
//! Some(s) => s
//! };
//!
//! // Alternatively we could have continued to find all shortest paths
//! if position == goal { return cost }
//!
//! // Important as we may have already found a better way
//! if cost > dist[position] { continue }
//!
//! // For each node we can reach, see if we can find a way with
//! // a lower cost going through this node
//! for edge in adj_list[position].iter() {
//! let next = State { cost: cost + edge.cost, position: edge.node };
//!
//! // If so, add it to the frontier and continue
//! if next.cost < dist[next.position] {
//! heap.push(next);
//! // Relaxation, we have now found a better way
//! dist[next.position] = next.cost;
//! }
//! }
//! }
//!
//! // Goal not reachable
//! uint::MAX
//! }
//!
//! fn main() {
//! // This is the directed graph we're going to use.
//! // The node numbers correspond to the different states,
//! // and the edge weights symbolises the cost of moving
//! // from one node to another.
//! // Note that the edges are one-way.
//! //
//! // 7
//! // +-----------------+
//! // | |
//! // v 1 2 |
//! // 0 -----> 1 -----> 3 ---> 4
//! // | ^ ^ ^
//! // | | 1 | |
//! // | | | 3 | 1
//! // +------> 2 -------+ |
//! // 10 | |
//! // +---------------+
//! //
//! // The graph is represented as an adjacency list where each index,
//! // corresponding to a node value, has a list of outgoing edges.
//! // Chosen for it's efficiency.
//! let graph = vec![
//! // Node 0
//! vec![Edge { node: 2, cost: 10 },
//! Edge { node: 1, cost: 1 }],
//! // Node 1
//! vec![Edge { node: 3, cost: 2 }],
//! // Node 2
//! vec![Edge { node: 1, cost: 1 },
//! Edge { node: 3, cost: 3 },
//! Edge { node: 4, cost: 1 }],
//! // Node 3
//! vec![Edge { node: 0, cost: 7 },
//! Edge { node: 4, cost: 2 }],
//! // Node 4
//! vec![]];
//!
//! assert_eq!(shortest_path(&graph, 0, 1), 1);
//! assert_eq!(shortest_path(&graph, 0, 3), 3);
//! assert_eq!(shortest_path(&graph, 3, 0), 7);
//! assert_eq!(shortest_path(&graph, 0, 4), 5);
//! assert_eq!(shortest_path(&graph, 4, 0), uint::MAX);
//! }
//! ```
#![allow(missing_docs)]
use core::prelude::*;
use core::default::Default;
use core::mem::{zeroed, replace, swap};
use core::ptr;
use slice;
use vec::{mod, Vec};
/// A priority queue implemented with a binary heap.
///
/// This will be a max-heap.
#[deriving(Clone)]
pub struct BinaryHeap<T> {
data: Vec<T>,
}
#[stable]
impl<T: Ord> Default for BinaryHeap<T> {
#[inline]
#[stable]
fn default() -> BinaryHeap<T> { BinaryHeap::new() }
}
impl<T: Ord> BinaryHeap<T> {
/// Creates an empty `BinaryHeap` as a max-heap.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let heap: BinaryHeap<uint> = BinaryHeap::new();
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn new() -> BinaryHeap<T> { BinaryHeap{data: vec!(),} }
/// Creates an empty `BinaryHeap` with a specific capacity.
/// This preallocates enough memory for `capacity` elements,
/// so that the `BinaryHeap` does not have to be reallocated
/// until it contains at least that many values.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let heap: BinaryHeap<uint> = BinaryHeap::with_capacity(10u);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn with_capacity(capacity: uint) -> BinaryHeap<T> {
BinaryHeap { data: Vec::with_capacity(capacity) }
}
/// Creates a `BinaryHeap` from a vector. This is sometimes called
/// `heapifying` the vector.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let heap = BinaryHeap::from_vec(vec![9i, 1, 2, 7, 3, 2]);
/// ```
pub fn from_vec(xs: Vec<T>) -> BinaryHeap<T> {
let mut q = BinaryHeap{data: xs,};
let mut n = q.len() / 2;
while n > 0 {
n -= 1;
q.siftdown(n)
}
q
}
/// An iterator visiting all values in underlying vector, in
/// arbitrary order.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let heap = BinaryHeap::from_vec(vec![1i, 2, 3, 4]);
///
/// // Print 1, 2, 3, 4 in arbitrary order
/// for x in heap.iter() {
/// println!("{}", x);
/// }
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn iter(&self) -> Items<T> {
Items { iter: self.data.iter() }
}
/// Creates a consuming iterator, that is, one that moves each value out of
/// the binary heap in arbitrary order. The binary heap cannot be used
/// after calling this.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let pq = BinaryHeap::from_vec(vec![1i, 2, 3, 4]);
///
/// // Print 1, 2, 3, 4 in arbitrary order
/// for x in pq.into_iter() {
/// // x has type int, not &int
/// println!("{}", x);
/// }
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn into_iter(self) -> MoveItems<T> {
MoveItems { iter: self.data.into_iter() }
}
/// Returns the greatest item in a queue, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::new();
/// assert_eq!(heap.peek(), None);
///
/// heap.push(1i);
/// heap.push(5i);
/// heap.push(2i);
/// assert_eq!(heap.peek(), Some(&5i));
///
/// ```
#[stable]
pub fn peek(&self) -> Option<&T> {
self.data.get(0)
}
/// Returns the number of elements the queue can hold without reallocating.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let heap: BinaryHeap<uint> = BinaryHeap::with_capacity(100u);
/// assert!(heap.capacity() >= 100u);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn capacity(&self) -> uint { self.data.capacity() }
/// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
/// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it requests. Therefore
/// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
/// insertions are expected.
///
/// # Panics
///
/// Panics if the new capacity overflows `uint`.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap: BinaryHeap<uint> = BinaryHeap::new();
/// heap.reserve_exact(100u);
/// assert!(heap.capacity() >= 100u);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn reserve_exact(&mut self, additional: uint) { self.data.reserve_exact(additional) }
/// Reserves capacity for at least `additional` more elements to be inserted in the
/// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
///
/// # Panics
///
/// Panics if the new capacity overflows `uint`.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap: BinaryHeap<uint> = BinaryHeap::new();
/// heap.reserve(100u);
/// assert!(heap.capacity() >= 100u);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn reserve(&mut self, additional: uint) {
self.data.reserve(additional)
}
/// Discards as much additional capacity as possible.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn shrink_to_fit(&mut self) {
self.data.shrink_to_fit()
}
/// Removes the greatest item from a queue and returns it, or `None` if it
/// is empty.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::from_vec(vec![1i, 3]);
///
/// assert_eq!(heap.pop(), Some(3i));
/// assert_eq!(heap.pop(), Some(1i));
/// assert_eq!(heap.pop(), None);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn pop(&mut self) -> Option<T> {
match self.data.pop() {
None => { None }
Some(mut item) => {
if !self.is_empty() {
swap(&mut item, &mut self.data[0]);
self.siftdown(0);
}
Some(item)
}
}
}
/// Pushes an item onto the queue.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::new();
/// heap.push(3i);
/// heap.push(5i);
/// heap.push(1i);
///
/// assert_eq!(heap.len(), 3);
/// assert_eq!(heap.peek(), Some(&5i));
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn push(&mut self, item: T) {
let old_len = self.len();
self.data.push(item);
self.siftup(0, old_len);
}
/// Pushes an item onto a queue then pops the greatest item off the queue in
/// an optimized fashion.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::new();
/// heap.push(1i);
/// heap.push(5i);
///
/// assert_eq!(heap.push_pop(3i), 5);
/// assert_eq!(heap.push_pop(9i), 9);
/// assert_eq!(heap.len(), 2);
/// assert_eq!(heap.peek(), Some(&3i));
/// ```
pub fn push_pop(&mut self, mut item: T) -> T {
match self.data.get_mut(0) {
None => return item,
Some(top) => if *top > item {
swap(&mut item, top);
} else {
return item;
},
}
self.siftdown(0);
item
}
/// Pops the greatest item off a queue then pushes an item onto the queue in
/// an optimized fashion. The push is done regardless of whether the queue
/// was empty.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::new();
///
/// assert_eq!(heap.replace(1i), None);
/// assert_eq!(heap.replace(3i), Some(1i));
/// assert_eq!(heap.len(), 1);
/// assert_eq!(heap.peek(), Some(&3i));
/// ```
pub fn replace(&mut self, mut item: T) -> Option<T> {
if !self.is_empty() {
swap(&mut item, &mut self.data[0]);
self.siftdown(0);
Some(item)
} else {
self.push(item);
None
}
}
/// Consumes the `BinaryHeap` and returns the underlying vector
/// in arbitrary order.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let heap = BinaryHeap::from_vec(vec![1i, 2, 3, 4, 5, 6, 7]);
/// let vec = heap.into_vec();
///
/// // Will print in some order
/// for x in vec.iter() {
/// println!("{}", x);
/// }
/// ```
pub fn into_vec(self) -> Vec<T> { self.data }
/// Consumes the `BinaryHeap` and returns a vector in sorted
/// (ascending) order.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::from_vec(vec![1i, 2, 4, 5, 7]);
/// heap.push(6);
/// heap.push(3);
///
/// let vec = heap.into_sorted_vec();
/// assert_eq!(vec, vec![1i, 2, 3, 4, 5, 6, 7]);
/// ```
pub fn into_sorted_vec(mut self) -> Vec<T> {
let mut end = self.len();
while end > 1 {
end -= 1;
self.data.swap(0, end);
self.siftdown_range(0, end)
}
self.into_vec()
}
// The implementations of siftup and siftdown use unsafe blocks in
// order to move an element out of the vector (leaving behind a
// zeroed element), shift along the others and move it back into the
// vector over the junk element. This reduces the constant factor
// compared to using swaps, which involves twice as many moves.
fn siftup(&mut self, start: uint, mut pos: uint) {
unsafe {
let new = replace(&mut self.data[pos], zeroed());
while pos > start {
let parent = (pos - 1) >> 1;
if new > self.data[parent] {
let x = replace(&mut self.data[parent], zeroed());
ptr::write(&mut self.data[pos], x);
pos = parent;
continue
}
break
}
ptr::write(&mut self.data[pos], new);
}
}
fn siftdown_range(&mut self, mut pos: uint, end: uint) {
unsafe {
let start = pos;
let new = replace(&mut self.data[pos], zeroed());
let mut child = 2 * pos + 1;
while child < end {
let right = child + 1;
if right < end && !(self.data[child] > self.data[right]) {
child = right;
}
let x = replace(&mut self.data[child], zeroed());
ptr::write(&mut self.data[pos], x);
pos = child;
child = 2 * pos + 1;
}
ptr::write(&mut self.data[pos], new);
self.siftup(start, pos);
}
}
fn siftdown(&mut self, pos: uint) {
let len = self.len();
self.siftdown_range(pos, len);
}
/// Returns the length of the queue.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn len(&self) -> uint { self.data.len() }
/// Returns true if the queue contains no elements
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_empty(&self) -> bool { self.len() == 0 }
/// Clears the queue, returning an iterator over the removed elements.
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn drain<'a>(&'a mut self) -> Drain<'a, T> {
Drain {
iter: self.data.drain(),
}
}
/// Drops all items from the queue.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn clear(&mut self) { self.drain(); }
}
/// `BinaryHeap` iterator.
pub struct Items<'a, T: 'a> {
iter: slice::Items<'a, T>,
}
impl<'a, T> Iterator<&'a T> for Items<'a, T> {
#[inline]
fn next(&mut self) -> Option<&'a T> { self.iter.next() }
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
}
impl<'a, T> DoubleEndedIterator<&'a T> for Items<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a T> { self.iter.next_back() }
}
impl<'a, T> ExactSizeIterator<&'a T> for Items<'a, T> {}
/// An iterator that moves out of a `BinaryHeap`.
pub struct MoveItems<T> {
iter: vec::MoveItems<T>,
}
impl<T> Iterator<T> for MoveItems<T> {
#[inline]
fn next(&mut self) -> Option<T> { self.iter.next() }
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
}
impl<T> DoubleEndedIterator<T> for MoveItems<T> {
#[inline]
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
}
impl<T> ExactSizeIterator<T> for MoveItems<T> {}
/// An iterator that drains a `BinaryHeap`.
pub struct Drain<'a, T: 'a> {
iter: vec::Drain<'a, T>,
}
impl<'a, T: 'a> Iterator<T> for Drain<'a, T> {
#[inline]
fn next(&mut self) -> Option<T> { self.iter.next() }
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
}
impl<'a, T: 'a> DoubleEndedIterator<T> for Drain<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
}
impl<'a, T: 'a> ExactSizeIterator<T> for Drain<'a, T> {}
impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
fn from_iter<Iter: Iterator<T>>(iter: Iter) -> BinaryHeap<T> {
BinaryHeap::from_vec(iter.collect())
}
}
impl<T: Ord> Extend<T> for BinaryHeap<T> {
fn extend<Iter: Iterator<T>>(&mut self, mut iter: Iter) {
let (lower, _) = iter.size_hint();
self.reserve(lower);
for elem in iter {
self.push(elem);
}
}
}
#[cfg(test)]
mod tests {
use prelude::*;
use super::BinaryHeap;
#[test]
fn test_iterator() {
let data = vec!(5i, 9, 3);
let iterout = [9i, 5, 3];
let heap = BinaryHeap::from_vec(data);
let mut i = 0;
for el in heap.iter() {
assert_eq!(*el, iterout[i]);
i += 1;
}
}
#[test]
fn test_iterator_reverse() {
let data = vec!(5i, 9, 3);
let iterout = vec!(3i, 5, 9);
let pq = BinaryHeap::from_vec(data);
let v: Vec<int> = pq.iter().rev().map(|&x| x).collect();
assert_eq!(v, iterout);
}
#[test]
fn test_move_iter() {
let data = vec!(5i, 9, 3);
let iterout = vec!(9i, 5, 3);
let pq = BinaryHeap::from_vec(data);
let v: Vec<int> = pq.into_iter().collect();
assert_eq!(v, iterout);
}
#[test]
fn test_move_iter_size_hint() {
let data = vec!(5i, 9);
let pq = BinaryHeap::from_vec(data);
let mut it = pq.into_iter();
assert_eq!(it.size_hint(), (2, Some(2)));
assert_eq!(it.next(), Some(9i));
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(it.next(), Some(5i));
assert_eq!(it.size_hint(), (0, Some(0)));
assert_eq!(it.next(), None);
}
#[test]
fn test_move_iter_reverse() {
let data = vec!(5i, 9, 3);
let iterout = vec!(3i, 5, 9);
let pq = BinaryHeap::from_vec(data);
let v: Vec<int> = pq.into_iter().rev().collect();
assert_eq!(v, iterout);
}
#[test]
fn test_peek_and_pop() {
let data = vec!(2u, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1);
let mut sorted = data.clone();
sorted.sort();
let mut heap = BinaryHeap::from_vec(data);
while !heap.is_empty() {
assert_eq!(heap.peek().unwrap(), sorted.last().unwrap());
assert_eq!(heap.pop().unwrap(), sorted.pop().unwrap());
}
}
#[test]
fn test_push() {
let mut heap = BinaryHeap::from_vec(vec!(2i, 4, 9));
assert_eq!(heap.len(), 3);
assert!(*heap.peek().unwrap() == 9);
heap.push(11);
assert_eq!(heap.len(), 4);
assert!(*heap.peek().unwrap() == 11);
heap.push(5);
assert_eq!(heap.len(), 5);
assert!(*heap.peek().unwrap() == 11);
heap.push(27);
assert_eq!(heap.len(), 6);
assert!(*heap.peek().unwrap() == 27);
heap.push(3);
assert_eq!(heap.len(), 7);
assert!(*heap.peek().unwrap() == 27);
heap.push(103);
assert_eq!(heap.len(), 8);
assert!(*heap.peek().unwrap() == 103);
}
#[test]
fn test_push_unique() {
let mut heap = BinaryHeap::from_vec(vec!(box 2i, box 4, box 9));
assert_eq!(heap.len(), 3);
assert!(*heap.peek().unwrap() == box 9);
heap.push(box 11);
assert_eq!(heap.len(), 4);
assert!(*heap.peek().unwrap() == box 11);
heap.push(box 5);
assert_eq!(heap.len(), 5);
assert!(*heap.peek().unwrap() == box 11);
heap.push(box 27);
assert_eq!(heap.len(), 6);
assert!(*heap.peek().unwrap() == box 27);
heap.push(box 3);
assert_eq!(heap.len(), 7);
assert!(*heap.peek().unwrap() == box 27);
heap.push(box 103);
assert_eq!(heap.len(), 8);
assert!(*heap.peek().unwrap() == box 103);
}
#[test]
fn test_push_pop() {
let mut heap = BinaryHeap::from_vec(vec!(5i, 5, 2, 1, 3));
assert_eq!(heap.len(), 5);
assert_eq!(heap.push_pop(6), 6);
assert_eq!(heap.len(), 5);
assert_eq!(heap.push_pop(0), 5);
assert_eq!(heap.len(), 5);
assert_eq!(heap.push_pop(4), 5);
assert_eq!(heap.len(), 5);
assert_eq!(heap.push_pop(1), 4);
assert_eq!(heap.len(), 5);
}
#[test]
fn test_replace() {
let mut heap = BinaryHeap::from_vec(vec!(5i, 5, 2, 1, 3));
assert_eq!(heap.len(), 5);
assert_eq!(heap.replace(6).unwrap(), 5);
assert_eq!(heap.len(), 5);
assert_eq!(heap.replace(0).unwrap(), 6);
assert_eq!(heap.len(), 5);
assert_eq!(heap.replace(4).unwrap(), 5);
assert_eq!(heap.len(), 5);
assert_eq!(heap.replace(1).unwrap(), 4);
assert_eq!(heap.len(), 5);
}
fn check_to_vec(mut data: Vec<int>) {
let heap = BinaryHeap::from_vec(data.clone());
let mut v = heap.clone().into_vec();
v.sort();
data.sort();
assert_eq!(v, data);
assert_eq!(heap.into_sorted_vec(), data);
}
#[test]
fn test_to_vec() {
check_to_vec(vec!());
check_to_vec(vec!(5i));
check_to_vec(vec!(3i, 2));
check_to_vec(vec!(2i, 3));
check_to_vec(vec!(5i, 1, 2));
check_to_vec(vec!(1i, 100, 2, 3));
check_to_vec(vec!(1i, 3, 5, 7, 9, 2, 4, 6, 8, 0));
check_to_vec(vec!(2i, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1));
check_to_vec(vec!(9i, 11, 9, 9, 9, 9, 11, 2, 3, 4, 11, 9, 0, 0, 0, 0));
check_to_vec(vec!(0i, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10));
check_to_vec(vec!(10i, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0));
check_to_vec(vec!(0i, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 1, 2));
check_to_vec(vec!(5i, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1));
}
#[test]
fn test_empty_pop() {
let mut heap = BinaryHeap::<int>::new();
assert!(heap.pop().is_none());
}
#[test]
fn test_empty_peek() {
let empty = BinaryHeap::<int>::new();
assert!(empty.peek().is_none());
}
#[test]
fn test_empty_replace() {
let mut heap = BinaryHeap::<int>::new();
assert!(heap.replace(5).is_none());
}
#[test]
fn test_from_iter() {
let xs = vec!(9u, 8, 7, 6, 5, 4, 3, 2, 1);
let mut q: BinaryHeap<uint> = xs.iter().rev().map(|&x| x).collect();
for &x in xs.iter() {
assert_eq!(q.pop().unwrap(), x);
}
}
#[test]
fn test_drain() {
let mut q: BinaryHeap<_> =
[9u, 8, 7, 6, 5, 4, 3, 2, 1].iter().cloned().collect();
assert_eq!(q.drain().take(5).count(), 5);
assert!(q.is_empty());
}
}