rust/src/libstd/sort.rs
Niko Matsakis 97452c0ca1 Remove modes from map API and replace with regions.
API is (for now) mostly by value, there are options to use it by
reference if you like.  Hash and equality functions must be pure
and by reference (forward looking to the day when something
like send_map becomes the standard map).
2012-08-02 15:53:28 -07:00

308 lines
8.1 KiB
Rust

//! Sorting methods
import vec::{len, push};
import core::cmp::{eq, ord};
export le;
export merge_sort;
export quick_sort;
export quick_sort3;
type le<T> = pure fn(v1: &T, v2: &T) -> bool;
/**
* Merge sort. Returns a new vector containing the sorted list.
*
* Has worst case O(n log n) performance, best case O(n), but
* is not space efficient. This is a stable sort.
*/
fn merge_sort<T: copy>(le: le<T>, v: ~[const T]) -> ~[T] {
type slice = (uint, uint);
return merge_sort_(le, v, (0u, len(v)));
fn merge_sort_<T: copy>(le: le<T>, v: ~[const T], slice: slice)
-> ~[T] {
let begin = slice.first();
let end = slice.second();
let v_len = end - begin;
if v_len == 0u { return ~[]; }
if v_len == 1u { return ~[v[begin]]; }
let mid = v_len / 2u + begin;
let a = (begin, mid);
let b = (mid, end);
return merge(le, merge_sort_(le, v, a), merge_sort_(le, v, b));
}
fn merge<T: copy>(le: le<T>, a: ~[T], b: ~[T]) -> ~[T] {
let mut rs = ~[];
vec::reserve(rs, len(a) + len(b));
let a_len = len(a);
let mut a_ix = 0u;
let b_len = len(b);
let mut b_ix = 0u;
while a_ix < a_len && b_ix < b_len {
if le(&a[a_ix], &b[b_ix]) {
vec::push(rs, a[a_ix]);
a_ix += 1u;
} else { vec::push(rs, b[b_ix]); b_ix += 1u; }
}
rs = vec::append(rs, vec::slice(a, a_ix, a_len));
rs = vec::append(rs, vec::slice(b, b_ix, b_len));
return rs;
}
}
fn part<T: copy>(compare_func: le<T>, arr: ~[mut T], left: uint,
right: uint, pivot: uint) -> uint {
let pivot_value = arr[pivot];
arr[pivot] <-> arr[right];
let mut storage_index: uint = left;
let mut i: uint = left;
while i < right {
if compare_func(&arr[i], &pivot_value) {
arr[i] <-> arr[storage_index];
storage_index += 1u;
}
i += 1u;
}
arr[storage_index] <-> arr[right];
return storage_index;
}
fn qsort<T: copy>(compare_func: le<T>, arr: ~[mut T], left: uint,
right: uint) {
if right > left {
let pivot = (left + right) / 2u;
let new_pivot = part::<T>(compare_func, arr, left, right, pivot);
if new_pivot != 0u {
// Need to do this check before recursing due to overflow
qsort::<T>(compare_func, arr, left, new_pivot - 1u);
}
qsort::<T>(compare_func, arr, new_pivot + 1u, right);
}
}
/**
* Quicksort. Sorts a mut vector in place.
*
* Has worst case O(n^2) performance, average case O(n log n).
* This is an unstable sort.
*/
fn quick_sort<T: copy>(compare_func: le<T>, arr: ~[mut T]) {
if len::<T>(arr) == 0u { return; }
qsort::<T>(compare_func, arr, 0u, len::<T>(arr) - 1u);
}
fn qsort3<T: copy>(compare_func_lt: le<T>, compare_func_eq: le<T>,
arr: ~[mut T], left: int, right: int) {
if right <= left { return; }
let v: T = arr[right];
let mut i: int = left - 1;
let mut j: int = right;
let mut p: int = i;
let mut q: int = j;
loop {
i += 1;
while compare_func_lt(&arr[i], &v) { i += 1; }
j -= 1;
while compare_func_lt(&v, &arr[j]) {
if j == left { break; }
j -= 1;
}
if i >= j { break; }
arr[i] <-> arr[j];
if compare_func_eq(&arr[i], &v) {
p += 1;
arr[p] <-> arr[i];
}
if compare_func_eq(&v, &arr[j]) {
q -= 1;
arr[j] <-> arr[q];
}
}
arr[i] <-> arr[right];
j = i - 1;
i += 1;
let mut k: int = left;
while k < p {
arr[k] <-> arr[j];
k += 1;
j -= 1;
if k == len::<T>(arr) as int { break; }
}
k = right - 1;
while k > q {
arr[i] <-> arr[k];
k -= 1;
i += 1;
if k == 0 { break; }
}
qsort3::<T>(compare_func_lt, compare_func_eq, arr, left, j);
qsort3::<T>(compare_func_lt, compare_func_eq, arr, i, right);
}
/**
* Fancy quicksort. Sorts a mut vector in place.
*
* Based on algorithm presented by ~[Sedgewick and Bentley]
* (http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf).
* According to these slides this is the algorithm of choice for
* 'randomly ordered keys, abstract compare' & 'small number of key values'.
*
* This is an unstable sort.
*/
fn quick_sort3<T: copy ord eq>(arr: ~[mut T]) {
if arr.len() <= 1 { return; }
qsort3(core::cmp::lt, core::cmp::eq, arr, 0, (arr.len() - 1) as int);
}
#[cfg(test)]
mod test_qsort3 {
fn check_sort(v1: ~[mut int], v2: ~[mut int]) {
let len = vec::len::<int>(v1);
quick_sort3::<int>(v1);
let mut i = 0u;
while i < len {
log(debug, v2[i]);
assert (v2[i] == v1[i]);
i += 1u;
}
}
#[test]
fn test() {
{
let v1 = ~[mut 3, 7, 4, 5, 2, 9, 5, 8];
let v2 = ~[mut 2, 3, 4, 5, 5, 7, 8, 9];
check_sort(v1, v2);
}
{
let v1 = ~[mut 1, 1, 1];
let v2 = ~[mut 1, 1, 1];
check_sort(v1, v2);
}
{
let v1: ~[mut int] = ~[mut];
let v2: ~[mut int] = ~[mut];
check_sort(v1, v2);
}
{ let v1 = ~[mut 9]; let v2 = ~[mut 9]; check_sort(v1, v2); }
{
let v1 = ~[mut 9, 3, 3, 3, 9];
let v2 = ~[mut 3, 3, 3, 9, 9];
check_sort(v1, v2);
}
}
}
#[cfg(test)]
mod test_qsort {
fn check_sort(v1: ~[mut int], v2: ~[mut int]) {
let len = vec::len::<int>(v1);
pure fn leual(a: &int, b: &int) -> bool { *a <= *b }
quick_sort::<int>(leual, v1);
let mut i = 0u;
while i < len {
log(debug, v2[i]);
assert (v2[i] == v1[i]);
i += 1u;
}
}
#[test]
fn test() {
{
let v1 = ~[mut 3, 7, 4, 5, 2, 9, 5, 8];
let v2 = ~[mut 2, 3, 4, 5, 5, 7, 8, 9];
check_sort(v1, v2);
}
{
let v1 = ~[mut 1, 1, 1];
let v2 = ~[mut 1, 1, 1];
check_sort(v1, v2);
}
{
let v1: ~[mut int] = ~[mut];
let v2: ~[mut int] = ~[mut];
check_sort(v1, v2);
}
{ let v1 = ~[mut 9]; let v2 = ~[mut 9]; check_sort(v1, v2); }
{
let v1 = ~[mut 9, 3, 3, 3, 9];
let v2 = ~[mut 3, 3, 3, 9, 9];
check_sort(v1, v2);
}
}
// Regression test for #750
#[test]
fn test_simple() {
let names = ~[mut 2, 1, 3];
let expected = ~[1, 2, 3];
sort::quick_sort(int::le, names);
let immut_names = vec::from_mut(names);
let pairs = vec::zip(expected, immut_names);
for vec::each(pairs) |p| {
let (a, b) = p;
debug!{"%d %d", a, b};
assert (a == b);
}
}
}
#[cfg(test)]
mod tests {
fn check_sort(v1: ~[int], v2: ~[int]) {
let len = vec::len::<int>(v1);
pure fn le(a: &int, b: &int) -> bool { *a <= *b }
let f = le;
let v3 = merge_sort::<int>(f, v1);
let mut i = 0u;
while i < len {
log(debug, v3[i]);
assert (v3[i] == v2[i]);
i += 1u;
}
}
#[test]
fn test() {
{
let v1 = ~[3, 7, 4, 5, 2, 9, 5, 8];
let v2 = ~[2, 3, 4, 5, 5, 7, 8, 9];
check_sort(v1, v2);
}
{ let v1 = ~[1, 1, 1]; let v2 = ~[1, 1, 1]; check_sort(v1, v2); }
{ let v1:~[int] = ~[]; let v2:~[int] = ~[]; check_sort(v1, v2); }
{ let v1 = ~[9]; let v2 = ~[9]; check_sort(v1, v2); }
{
let v1 = ~[9, 3, 3, 3, 9];
let v2 = ~[3, 3, 3, 9, 9];
check_sort(v1, v2);
}
}
#[test]
fn test_merge_sort_mutable() {
pure fn le(a: &int, b: &int) -> bool { *a <= *b }
let v1 = ~[mut 3, 2, 1];
let v2 = merge_sort(le, v1);
assert v2 == ~[1, 2, 3];
}
}
// Local Variables:
// mode: rust;
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: