977 lines
37 KiB
Rust
977 lines
37 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Handles translation of callees as well as other call-related
|
|
//! things. Callees are a superset of normal rust values and sometimes
|
|
//! have different representations. In particular, top-level fn items
|
|
//! and methods are represented as just a fn ptr and not a full
|
|
//! closure.
|
|
|
|
pub use self::CalleeData::*;
|
|
pub use self::CallArgs::*;
|
|
|
|
use arena::TypedArena;
|
|
use back::link;
|
|
use llvm::{self, ValueRef, get_params};
|
|
use middle::cstore::LOCAL_CRATE;
|
|
use middle::def_id::DefId;
|
|
use middle::infer;
|
|
use middle::subst;
|
|
use middle::subst::{Substs};
|
|
use rustc::front::map as hir_map;
|
|
use trans::adt;
|
|
use trans::base;
|
|
use trans::base::*;
|
|
use trans::build::*;
|
|
use trans::cleanup;
|
|
use trans::cleanup::CleanupMethods;
|
|
use trans::common::{self, Block, Result, NodeIdAndSpan, ExprId, CrateContext,
|
|
ExprOrMethodCall, FunctionContext, MethodCallKey};
|
|
use trans::consts;
|
|
use trans::datum::*;
|
|
use trans::debuginfo::DebugLoc;
|
|
use trans::declare;
|
|
use trans::expr;
|
|
use trans::glue;
|
|
use trans::inline;
|
|
use trans::foreign;
|
|
use trans::intrinsic;
|
|
use trans::meth;
|
|
use trans::monomorphize;
|
|
use trans::type_::Type;
|
|
use trans::type_of;
|
|
use trans::Disr;
|
|
use middle::ty::{self, Ty, TyCtxt, TypeFoldable};
|
|
use rustc_front::hir;
|
|
|
|
use syntax::abi::Abi;
|
|
use syntax::ast;
|
|
use syntax::codemap::DUMMY_SP;
|
|
use syntax::errors;
|
|
use syntax::ptr::P;
|
|
|
|
pub enum CalleeData<'tcx> {
|
|
/// Constructor for enum variant/tuple-like-struct.
|
|
NamedTupleConstructor(Disr),
|
|
|
|
/// Function pointer.
|
|
Fn(ValueRef),
|
|
|
|
Intrinsic(ast::NodeId, &'tcx subst::Substs<'tcx>),
|
|
|
|
/// Trait object found in the vtable at that index.
|
|
Virtual(usize)
|
|
}
|
|
|
|
pub struct Callee<'tcx> {
|
|
pub data: CalleeData<'tcx>,
|
|
pub ty: Ty<'tcx>
|
|
}
|
|
|
|
impl<'tcx> Callee<'tcx> {
|
|
/// Function pointer.
|
|
pub fn ptr(datum: Datum<'tcx, Rvalue>) -> Callee<'tcx> {
|
|
Callee {
|
|
data: Fn(datum.val),
|
|
ty: datum.ty
|
|
}
|
|
}
|
|
|
|
/// Trait or impl method call.
|
|
pub fn method_call<'blk>(bcx: Block<'blk, 'tcx>,
|
|
method_call: ty::MethodCall)
|
|
-> Callee<'tcx> {
|
|
let method = bcx.tcx().tables.borrow().method_map[&method_call];
|
|
Callee::method(bcx, method)
|
|
}
|
|
|
|
/// Trait or impl method.
|
|
pub fn method<'blk>(bcx: Block<'blk, 'tcx>,
|
|
method: ty::MethodCallee<'tcx>) -> Callee<'tcx> {
|
|
let substs = bcx.tcx().mk_substs(bcx.fcx.monomorphize(&method.substs));
|
|
let ty = bcx.fcx.monomorphize(&method.ty);
|
|
Callee::def(bcx.ccx(), method.def_id, substs, ty)
|
|
}
|
|
|
|
/// Function or method definition.
|
|
pub fn def<'a>(ccx: &CrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
substs: &'tcx subst::Substs<'tcx>,
|
|
ty: Ty<'tcx>)
|
|
-> Callee<'tcx> {
|
|
let tcx = ccx.tcx();
|
|
|
|
if substs.self_ty().is_some() {
|
|
// Only trait methods can have a Self parameter.
|
|
let method_item = tcx.impl_or_trait_item(def_id);
|
|
let trait_id = method_item.container().id();
|
|
let trait_ref = ty::Binder(substs.to_trait_ref(tcx, trait_id));
|
|
let vtbl = common::fulfill_obligation(ccx, DUMMY_SP, trait_ref);
|
|
return meth::callee_for_trait_impl(ccx, def_id, substs,
|
|
trait_id, ty, vtbl);
|
|
}
|
|
|
|
let maybe_node_id = inline::get_local_instance(ccx, def_id)
|
|
.and_then(|def_id| tcx.map.as_local_node_id(def_id));
|
|
let maybe_ast_node = maybe_node_id.and_then(|node_id| {
|
|
tcx.map.find(node_id)
|
|
});
|
|
match maybe_ast_node {
|
|
Some(hir_map::NodeStructCtor(_)) => {
|
|
return Callee {
|
|
data: NamedTupleConstructor(Disr(0)),
|
|
ty: ty
|
|
};
|
|
}
|
|
Some(hir_map::NodeVariant(_)) => {
|
|
let vinfo = common::inlined_variant_def(ccx, maybe_node_id.unwrap());
|
|
assert_eq!(vinfo.kind(), ty::VariantKind::Tuple);
|
|
|
|
return Callee {
|
|
data: NamedTupleConstructor(Disr::from(vinfo.disr_val)),
|
|
ty: ty
|
|
};
|
|
}
|
|
Some(hir_map::NodeForeignItem(fi)) => {
|
|
let abi = tcx.map.get_foreign_abi(fi.id);
|
|
if abi == Abi::RustIntrinsic || abi == Abi::PlatformIntrinsic {
|
|
return Callee {
|
|
data: Intrinsic(fi.id, substs),
|
|
ty: ty
|
|
};
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
Callee::ptr(trans_fn_ref_with_substs(ccx, def_id, Some(ty), substs))
|
|
}
|
|
|
|
/// This behemoth of a function translates function calls. Unfortunately, in
|
|
/// order to generate more efficient LLVM output at -O0, it has quite a complex
|
|
/// signature (refactoring this into two functions seems like a good idea).
|
|
///
|
|
/// In particular, for lang items, it is invoked with a dest of None, and in
|
|
/// that case the return value contains the result of the fn. The lang item must
|
|
/// not return a structural type or else all heck breaks loose.
|
|
///
|
|
/// For non-lang items, `dest` is always Some, and hence the result is written
|
|
/// into memory somewhere. Nonetheless we return the actual return value of the
|
|
/// function.
|
|
pub fn call<'a, 'blk>(self, bcx: Block<'blk, 'tcx>,
|
|
debug_loc: DebugLoc,
|
|
args: CallArgs<'a, 'tcx>,
|
|
dest: Option<expr::Dest>)
|
|
-> Result<'blk, 'tcx> {
|
|
trans_call_inner(bcx, debug_loc, self, args, dest)
|
|
}
|
|
|
|
/// Turn the callee into a function pointer.
|
|
pub fn reify<'a>(self, ccx: &CrateContext<'a, 'tcx>)
|
|
-> Datum<'tcx, Rvalue> {
|
|
match self.data {
|
|
Fn(llfn) => {
|
|
let fn_ptr_ty = match self.ty.sty {
|
|
ty::TyFnDef(_, _, f) => ccx.tcx().mk_ty(ty::TyFnPtr(f)),
|
|
_ => self.ty
|
|
};
|
|
immediate_rvalue(llfn, fn_ptr_ty)
|
|
}
|
|
Virtual(idx) => meth::trans_object_shim(ccx, self.ty, idx),
|
|
NamedTupleConstructor(_) => match self.ty.sty {
|
|
ty::TyFnDef(def_id, substs, _) => {
|
|
return trans_fn_ref_with_substs(ccx, def_id, Some(self.ty), substs);
|
|
}
|
|
_ => unreachable!("expected fn item type, found {}", self.ty)
|
|
},
|
|
Intrinsic(..) => unreachable!("intrinsic {} getting reified", self.ty)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Translates a reference (with id `ref_id`) to the fn/method with id `def_id` into a function
|
|
/// pointer. This may require monomorphization or inlining.
|
|
pub fn trans_fn_ref<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
node: ExprOrMethodCall,
|
|
param_substs: &'tcx subst::Substs<'tcx>)
|
|
-> Datum<'tcx, Rvalue> {
|
|
let _icx = push_ctxt("trans_fn_ref");
|
|
|
|
let substs = common::node_id_substs(ccx, node, param_substs);
|
|
debug!("trans_fn_ref(def_id={:?}, node={:?}, substs={:?})",
|
|
def_id,
|
|
node,
|
|
substs);
|
|
let ref_ty = match node {
|
|
ExprId(0) => return trans_fn_ref_with_substs(ccx, def_id, None, substs),
|
|
ExprId(id) => ccx.tcx().node_id_to_type(id),
|
|
MethodCallKey(method_call) => {
|
|
ccx.tcx().tables.borrow().method_map[&method_call].ty
|
|
}
|
|
};
|
|
let ref_ty = monomorphize::apply_param_substs(ccx.tcx(),
|
|
param_substs,
|
|
&ref_ty);
|
|
trans_fn_ref_with_substs(ccx, def_id, Some(ref_ty), substs)
|
|
}
|
|
|
|
/// Translates an adapter that implements the `Fn` trait for a fn
|
|
/// pointer. This is basically the equivalent of something like:
|
|
///
|
|
/// ```
|
|
/// impl<'a> Fn(&'a int) -> &'a int for fn(&int) -> &int {
|
|
/// extern "rust-abi" fn call(&self, args: (&'a int,)) -> &'a int {
|
|
/// (*self)(args.0)
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// but for the bare function type given.
|
|
pub fn trans_fn_pointer_shim<'a, 'tcx>(
|
|
ccx: &'a CrateContext<'a, 'tcx>,
|
|
closure_kind: ty::ClosureKind,
|
|
bare_fn_ty: Ty<'tcx>)
|
|
-> ValueRef
|
|
{
|
|
let _icx = push_ctxt("trans_fn_pointer_shim");
|
|
let tcx = ccx.tcx();
|
|
|
|
// Normalize the type for better caching.
|
|
let bare_fn_ty = tcx.erase_regions(&bare_fn_ty);
|
|
|
|
// If this is an impl of `Fn` or `FnMut` trait, the receiver is `&self`.
|
|
let is_by_ref = match closure_kind {
|
|
ty::ClosureKind::Fn | ty::ClosureKind::FnMut => true,
|
|
ty::ClosureKind::FnOnce => false,
|
|
};
|
|
let bare_fn_ty_maybe_ref = if is_by_ref {
|
|
tcx.mk_imm_ref(tcx.mk_region(ty::ReStatic), bare_fn_ty)
|
|
} else {
|
|
bare_fn_ty
|
|
};
|
|
|
|
// Check if we already trans'd this shim.
|
|
match ccx.fn_pointer_shims().borrow().get(&bare_fn_ty_maybe_ref) {
|
|
Some(&llval) => { return llval; }
|
|
None => { }
|
|
}
|
|
|
|
debug!("trans_fn_pointer_shim(bare_fn_ty={:?})",
|
|
bare_fn_ty);
|
|
|
|
// Construct the "tuply" version of `bare_fn_ty`. It takes two arguments: `self`,
|
|
// which is the fn pointer, and `args`, which is the arguments tuple.
|
|
let sig = match bare_fn_ty.sty {
|
|
ty::TyFnDef(_, _,
|
|
&ty::BareFnTy { unsafety: hir::Unsafety::Normal,
|
|
abi: Abi::Rust,
|
|
ref sig }) |
|
|
ty::TyFnPtr(&ty::BareFnTy { unsafety: hir::Unsafety::Normal,
|
|
abi: Abi::Rust,
|
|
ref sig }) => sig,
|
|
|
|
_ => {
|
|
tcx.sess.bug(&format!("trans_fn_pointer_shim invoked on invalid type: {}",
|
|
bare_fn_ty));
|
|
}
|
|
};
|
|
let sig = tcx.erase_late_bound_regions(sig);
|
|
let sig = infer::normalize_associated_type(ccx.tcx(), &sig);
|
|
let tuple_input_ty = tcx.mk_tup(sig.inputs.to_vec());
|
|
let tuple_fn_ty = tcx.mk_fn_ptr(ty::BareFnTy {
|
|
unsafety: hir::Unsafety::Normal,
|
|
abi: Abi::RustCall,
|
|
sig: ty::Binder(ty::FnSig {
|
|
inputs: vec![bare_fn_ty_maybe_ref,
|
|
tuple_input_ty],
|
|
output: sig.output,
|
|
variadic: false
|
|
})
|
|
});
|
|
debug!("tuple_fn_ty: {:?}", tuple_fn_ty);
|
|
|
|
//
|
|
let function_name = link::mangle_internal_name_by_type_and_seq(ccx, bare_fn_ty,
|
|
"fn_pointer_shim");
|
|
let llfn = declare::declare_internal_rust_fn(ccx, &function_name[..], tuple_fn_ty);
|
|
|
|
//
|
|
let empty_substs = tcx.mk_substs(Substs::trans_empty());
|
|
let (block_arena, fcx): (TypedArena<_>, FunctionContext);
|
|
block_arena = TypedArena::new();
|
|
fcx = new_fn_ctxt(ccx,
|
|
llfn,
|
|
ast::DUMMY_NODE_ID,
|
|
false,
|
|
sig.output,
|
|
empty_substs,
|
|
None,
|
|
&block_arena);
|
|
let mut bcx = init_function(&fcx, false, sig.output);
|
|
|
|
let llargs = get_params(fcx.llfn);
|
|
|
|
let self_idx = fcx.arg_offset();
|
|
let llfnpointer = match bare_fn_ty.sty {
|
|
ty::TyFnDef(def_id, substs, _) => {
|
|
// Function definitions have to be turned into a pointer.
|
|
Callee::def(ccx, def_id, substs, bare_fn_ty).reify(ccx).val
|
|
}
|
|
|
|
// the first argument (`self`) will be ptr to the fn pointer
|
|
_ => if is_by_ref {
|
|
Load(bcx, llargs[self_idx])
|
|
} else {
|
|
llargs[self_idx]
|
|
}
|
|
};
|
|
|
|
assert!(!fcx.needs_ret_allocas);
|
|
|
|
let dest = fcx.llretslotptr.get().map(|_|
|
|
expr::SaveIn(fcx.get_ret_slot(bcx, sig.output, "ret_slot"))
|
|
);
|
|
|
|
let callee = Callee {
|
|
data: Fn(llfnpointer),
|
|
ty: bare_fn_ty
|
|
};
|
|
bcx = callee.call(bcx, DebugLoc::None, ArgVals(&llargs[(self_idx + 1)..]), dest).bcx;
|
|
|
|
finish_fn(&fcx, bcx, sig.output, DebugLoc::None);
|
|
|
|
ccx.fn_pointer_shims().borrow_mut().insert(bare_fn_ty_maybe_ref, llfn);
|
|
|
|
llfn
|
|
}
|
|
|
|
/// Translates a reference to a fn/method item, monomorphizing and
|
|
/// inlining as it goes.
|
|
///
|
|
/// # Parameters
|
|
///
|
|
/// - `ccx`: the crate context
|
|
/// - `def_id`: def id of the fn or method item being referenced
|
|
/// - `node`: node id of the reference to the fn/method, if applicable.
|
|
/// This parameter may be zero; but, if so, the resulting value may not
|
|
/// have the right type, so it must be cast before being used.
|
|
/// - `ref_ty`: monotype of the reference to the fn/method, if applicable.
|
|
/// This parameter may be None; but, if so, the resulting value may not
|
|
/// have the right type, so it must be cast before being used.
|
|
/// - `substs`: values for each of the fn/method's parameters
|
|
pub fn trans_fn_ref_with_substs<'a, 'tcx>(
|
|
ccx: &CrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
ref_ty: Option<Ty<'tcx>>,
|
|
substs: &'tcx subst::Substs<'tcx>)
|
|
-> Datum<'tcx, Rvalue>
|
|
{
|
|
let _icx = push_ctxt("trans_fn_ref_with_substs");
|
|
let tcx = ccx.tcx();
|
|
|
|
debug!("trans_fn_ref_with_substs(def_id={:?}, ref_ty={:?}, substs={:?})",
|
|
def_id, ref_ty, substs);
|
|
|
|
assert!(!substs.types.needs_infer());
|
|
assert!(!substs.types.has_escaping_regions());
|
|
|
|
// Check whether this fn has an inlined copy and, if so, redirect
|
|
// def_id to the local id of the inlined copy.
|
|
let def_id = inline::maybe_instantiate_inline(ccx, def_id);
|
|
|
|
fn is_named_tuple_constructor(tcx: &TyCtxt, def_id: DefId) -> bool {
|
|
let node_id = match tcx.map.as_local_node_id(def_id) {
|
|
Some(n) => n,
|
|
None => { return false; }
|
|
};
|
|
let map_node = errors::expect(
|
|
&tcx.sess.diagnostic(),
|
|
tcx.map.find(node_id),
|
|
|| "local item should be in ast map".to_string());
|
|
|
|
match map_node {
|
|
hir_map::NodeVariant(v) => {
|
|
v.node.data.is_tuple()
|
|
}
|
|
hir_map::NodeStructCtor(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
let must_monomorphise =
|
|
!substs.types.is_empty() || is_named_tuple_constructor(tcx, def_id);
|
|
|
|
debug!("trans_fn_ref_with_substs({:?}) must_monomorphise: {}",
|
|
def_id, must_monomorphise);
|
|
|
|
// Create a monomorphic version of generic functions
|
|
if must_monomorphise {
|
|
// Should be either intra-crate or inlined.
|
|
assert_eq!(def_id.krate, LOCAL_CRATE);
|
|
|
|
let substs = tcx.mk_substs(substs.clone().erase_regions());
|
|
let (mut val, fn_ty, must_cast) =
|
|
monomorphize::monomorphic_fn(ccx, def_id, substs);
|
|
let fn_ty = ref_ty.unwrap_or(fn_ty);
|
|
let fn_ptr_ty = match fn_ty.sty {
|
|
ty::TyFnDef(_, _, fty) => {
|
|
// Create a fn pointer with the substituted signature.
|
|
tcx.mk_ty(ty::TyFnPtr(fty))
|
|
}
|
|
_ => unreachable!("expected fn item type, found {}", fn_ty)
|
|
};
|
|
if must_cast && ref_ty.is_some() {
|
|
let llptrty = type_of::type_of(ccx, fn_ptr_ty);
|
|
if llptrty != common::val_ty(val) {
|
|
val = consts::ptrcast(val, llptrty);
|
|
}
|
|
}
|
|
return immediate_rvalue(val, fn_ptr_ty);
|
|
}
|
|
|
|
// Find the actual function pointer.
|
|
let local_node = ccx.tcx().map.as_local_node_id(def_id);
|
|
let mut datum = if let Some(node_id) = local_node {
|
|
// Type scheme of the function item (may have type params)
|
|
let fn_type_scheme = tcx.lookup_item_type(def_id);
|
|
let fn_type = match fn_type_scheme.ty.sty {
|
|
ty::TyFnDef(_, _, fty) => {
|
|
// Create a fn pointer with the normalized signature.
|
|
tcx.mk_fn_ptr(infer::normalize_associated_type(tcx, fty))
|
|
}
|
|
_ => unreachable!("expected fn item type, found {}",
|
|
fn_type_scheme.ty)
|
|
};
|
|
|
|
// Internal reference.
|
|
immediate_rvalue(get_item_val(ccx, node_id), fn_type)
|
|
} else {
|
|
// External reference.
|
|
get_extern_fn(ccx, def_id)
|
|
};
|
|
|
|
// This is subtle and surprising, but sometimes we have to bitcast
|
|
// the resulting fn pointer. The reason has to do with external
|
|
// functions. If you have two crates that both bind the same C
|
|
// library, they may not use precisely the same types: for
|
|
// example, they will probably each declare their own structs,
|
|
// which are distinct types from LLVM's point of view (nominal
|
|
// types).
|
|
//
|
|
// Now, if those two crates are linked into an application, and
|
|
// they contain inlined code, you can wind up with a situation
|
|
// where both of those functions wind up being loaded into this
|
|
// application simultaneously. In that case, the same function
|
|
// (from LLVM's point of view) requires two types. But of course
|
|
// LLVM won't allow one function to have two types.
|
|
//
|
|
// What we currently do, therefore, is declare the function with
|
|
// one of the two types (whichever happens to come first) and then
|
|
// bitcast as needed when the function is referenced to make sure
|
|
// it has the type we expect.
|
|
//
|
|
// This can occur on either a crate-local or crate-external
|
|
// reference. It also occurs when testing libcore and in some
|
|
// other weird situations. Annoying.
|
|
let llptrty = type_of::type_of(ccx, datum.ty);
|
|
if common::val_ty(datum.val) != llptrty {
|
|
debug!("trans_fn_ref_with_substs(): casting pointer!");
|
|
datum.val = consts::ptrcast(datum.val, llptrty);
|
|
} else {
|
|
debug!("trans_fn_ref_with_substs(): not casting pointer!");
|
|
}
|
|
|
|
datum
|
|
}
|
|
|
|
// ______________________________________________________________________
|
|
// Translating calls
|
|
|
|
pub fn trans_lang_call<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
did: DefId,
|
|
args: &[ValueRef],
|
|
dest: Option<expr::Dest>,
|
|
debug_loc: DebugLoc)
|
|
-> Result<'blk, 'tcx> {
|
|
let datum = trans_fn_ref(bcx.ccx(), did, ExprId(0), bcx.fcx.param_substs);
|
|
Callee::ptr(datum).call(bcx, debug_loc, ArgVals(args), dest)
|
|
}
|
|
|
|
fn trans_call_inner<'a, 'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
|
|
debug_loc: DebugLoc,
|
|
callee: Callee<'tcx>,
|
|
args: CallArgs<'a, 'tcx>,
|
|
dest: Option<expr::Dest>)
|
|
-> Result<'blk, 'tcx> {
|
|
// Introduce a temporary cleanup scope that will contain cleanups
|
|
// for the arguments while they are being evaluated. The purpose
|
|
// this cleanup is to ensure that, should a panic occur while
|
|
// evaluating argument N, the values for arguments 0...N-1 are all
|
|
// cleaned up. If no panic occurs, the values are handed off to
|
|
// the callee, and hence none of the cleanups in this temporary
|
|
// scope will ever execute.
|
|
let fcx = bcx.fcx;
|
|
let ccx = fcx.ccx;
|
|
|
|
let (abi, ret_ty) = match callee.ty.sty {
|
|
ty::TyFnDef(_, _, ref f) | ty::TyFnPtr(ref f) => {
|
|
let sig = bcx.tcx().erase_late_bound_regions(&f.sig);
|
|
let sig = infer::normalize_associated_type(bcx.tcx(), &sig);
|
|
(f.abi, sig.output)
|
|
}
|
|
_ => panic!("expected fn item or ptr in Callee::call")
|
|
};
|
|
|
|
match callee.data {
|
|
Intrinsic(node, substs) => {
|
|
assert!(abi == Abi::RustIntrinsic || abi == Abi::PlatformIntrinsic);
|
|
assert!(dest.is_some());
|
|
|
|
let call_info = match debug_loc {
|
|
DebugLoc::At(id, span) => NodeIdAndSpan { id: id, span: span },
|
|
DebugLoc::None => {
|
|
bcx.sess().bug("No call info for intrinsic call?")
|
|
}
|
|
};
|
|
|
|
let arg_cleanup_scope = fcx.push_custom_cleanup_scope();
|
|
return intrinsic::trans_intrinsic_call(bcx, node, callee.ty,
|
|
arg_cleanup_scope, args,
|
|
dest.unwrap(),
|
|
substs,
|
|
call_info);
|
|
}
|
|
NamedTupleConstructor(disr) => {
|
|
assert!(dest.is_some());
|
|
|
|
return base::trans_named_tuple_constructor(bcx,
|
|
callee.ty,
|
|
disr,
|
|
args,
|
|
dest.unwrap(),
|
|
debug_loc);
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
// Intrinsics should not become actual functions.
|
|
// We trans them in place in `trans_intrinsic_call`
|
|
assert!(abi != Abi::RustIntrinsic && abi != Abi::PlatformIntrinsic);
|
|
|
|
let is_rust_fn = abi == Abi::Rust || abi == Abi::RustCall;
|
|
|
|
// Generate a location to store the result. If the user does
|
|
// not care about the result, just make a stack slot.
|
|
let opt_llretslot = dest.and_then(|dest| match dest {
|
|
expr::SaveIn(dst) => Some(dst),
|
|
expr::Ignore => {
|
|
let ret_ty = match ret_ty {
|
|
ty::FnConverging(ret_ty) => ret_ty,
|
|
ty::FnDiverging => ccx.tcx().mk_nil()
|
|
};
|
|
if !is_rust_fn ||
|
|
type_of::return_uses_outptr(ccx, ret_ty) ||
|
|
bcx.fcx.type_needs_drop(ret_ty) {
|
|
// Push the out-pointer if we use an out-pointer for this
|
|
// return type, otherwise push "undef".
|
|
if common::type_is_zero_size(ccx, ret_ty) {
|
|
let llty = type_of::type_of(ccx, ret_ty);
|
|
Some(common::C_undef(llty.ptr_to()))
|
|
} else {
|
|
let llresult = alloc_ty(bcx, ret_ty, "__llret");
|
|
call_lifetime_start(bcx, llresult);
|
|
Some(llresult)
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
});
|
|
|
|
let mut llresult = unsafe {
|
|
llvm::LLVMGetUndef(Type::nil(ccx).ptr_to().to_ref())
|
|
};
|
|
|
|
let arg_cleanup_scope = fcx.push_custom_cleanup_scope();
|
|
|
|
// The code below invokes the function, using either the Rust
|
|
// conventions (if it is a rust fn) or the native conventions
|
|
// (otherwise). The important part is that, when all is said
|
|
// and done, either the return value of the function will have been
|
|
// written in opt_llretslot (if it is Some) or `llresult` will be
|
|
// set appropriately (otherwise).
|
|
if is_rust_fn {
|
|
let mut llargs = Vec::new();
|
|
|
|
if let (ty::FnConverging(ret_ty), Some(mut llretslot)) = (ret_ty, opt_llretslot) {
|
|
if type_of::return_uses_outptr(ccx, ret_ty) {
|
|
let llformal_ret_ty = type_of::type_of(ccx, ret_ty).ptr_to();
|
|
let llret_ty = common::val_ty(llretslot);
|
|
if llformal_ret_ty != llret_ty {
|
|
// this could happen due to e.g. subtyping
|
|
debug!("casting actual return type ({}) to match formal ({})",
|
|
bcx.llty_str(llret_ty), bcx.llty_str(llformal_ret_ty));
|
|
llretslot = PointerCast(bcx, llretslot, llformal_ret_ty);
|
|
}
|
|
llargs.push(llretslot);
|
|
}
|
|
}
|
|
|
|
let arg_start = llargs.len();
|
|
|
|
// Push the arguments.
|
|
bcx = trans_args(bcx,
|
|
args,
|
|
callee.ty,
|
|
&mut llargs,
|
|
cleanup::CustomScope(arg_cleanup_scope),
|
|
abi);
|
|
|
|
fcx.scopes.borrow_mut().last_mut().unwrap().drop_non_lifetime_clean();
|
|
|
|
let datum = match callee.data {
|
|
Fn(f) => immediate_rvalue(f, callee.ty),
|
|
Virtual(idx) => {
|
|
// The data and vtable pointers were split by trans_arg_datum.
|
|
let vtable = llargs.remove(arg_start + 1);
|
|
meth::get_virtual_method(bcx, vtable, idx, callee.ty)
|
|
}
|
|
_ => unreachable!()
|
|
};
|
|
|
|
// Invoke the actual rust fn and update bcx/llresult.
|
|
let (llret, b) = base::invoke(bcx,
|
|
datum.val,
|
|
&llargs[..],
|
|
datum.ty,
|
|
debug_loc);
|
|
bcx = b;
|
|
llresult = llret;
|
|
|
|
// If the Rust convention for this type is return via
|
|
// the return value, copy it into llretslot.
|
|
match (opt_llretslot, ret_ty) {
|
|
(Some(llretslot), ty::FnConverging(ret_ty)) => {
|
|
if !type_of::return_uses_outptr(bcx.ccx(), ret_ty) &&
|
|
!common::type_is_zero_size(bcx.ccx(), ret_ty)
|
|
{
|
|
store_ty(bcx, llret, llretslot, ret_ty)
|
|
}
|
|
}
|
|
(_, _) => {}
|
|
}
|
|
} else {
|
|
// Lang items are the only case where dest is None, and
|
|
// they are always Rust fns.
|
|
assert!(dest.is_some());
|
|
|
|
let mut llargs = Vec::new();
|
|
let (llfn, arg_tys) = match (callee.data, &args) {
|
|
(Fn(f), &ArgExprs(a)) => {
|
|
(f, a.iter().map(|x| common::expr_ty_adjusted(bcx, &x)).collect())
|
|
}
|
|
_ => panic!("expected fn ptr and arg exprs.")
|
|
};
|
|
bcx = trans_args(bcx,
|
|
args,
|
|
callee.ty,
|
|
&mut llargs,
|
|
cleanup::CustomScope(arg_cleanup_scope),
|
|
abi);
|
|
fcx.scopes.borrow_mut().last_mut().unwrap().drop_non_lifetime_clean();
|
|
|
|
bcx = foreign::trans_native_call(bcx,
|
|
callee.ty,
|
|
llfn,
|
|
opt_llretslot.unwrap(),
|
|
&llargs[..],
|
|
arg_tys,
|
|
debug_loc);
|
|
}
|
|
|
|
fcx.pop_and_trans_custom_cleanup_scope(bcx, arg_cleanup_scope);
|
|
|
|
// If the caller doesn't care about the result of this fn call,
|
|
// drop the temporary slot we made.
|
|
match (dest, opt_llretslot, ret_ty) {
|
|
(Some(expr::Ignore), Some(llretslot), ty::FnConverging(ret_ty)) => {
|
|
// drop the value if it is not being saved.
|
|
bcx = glue::drop_ty(bcx,
|
|
llretslot,
|
|
ret_ty,
|
|
debug_loc);
|
|
call_lifetime_end(bcx, llretslot);
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
if ret_ty == ty::FnDiverging {
|
|
Unreachable(bcx);
|
|
}
|
|
|
|
Result::new(bcx, llresult)
|
|
}
|
|
|
|
pub enum CallArgs<'a, 'tcx> {
|
|
/// Supply value of arguments as a list of expressions that must be
|
|
/// translated. This is used in the common case of `foo(bar, qux)`.
|
|
ArgExprs(&'a [P<hir::Expr>]),
|
|
|
|
/// Supply value of arguments as a list of LLVM value refs; frequently
|
|
/// used with lang items and so forth, when the argument is an internal
|
|
/// value.
|
|
ArgVals(&'a [ValueRef]),
|
|
|
|
/// For overloaded operators: `(lhs, Option(rhs))`.
|
|
/// `lhs` is the left-hand-side and `rhs` is the datum
|
|
/// of the right-hand-side argument (if any).
|
|
ArgOverloadedOp(Datum<'tcx, Expr>, Option<Datum<'tcx, Expr>>),
|
|
|
|
/// Supply value of arguments as a list of expressions that must be
|
|
/// translated, for overloaded call operators.
|
|
ArgOverloadedCall(Vec<&'a hir::Expr>),
|
|
}
|
|
|
|
fn trans_args_under_call_abi<'blk, 'tcx>(
|
|
mut bcx: Block<'blk, 'tcx>,
|
|
arg_exprs: &[P<hir::Expr>],
|
|
fn_ty: Ty<'tcx>,
|
|
llargs: &mut Vec<ValueRef>,
|
|
arg_cleanup_scope: cleanup::ScopeId)
|
|
-> Block<'blk, 'tcx>
|
|
{
|
|
let sig = bcx.tcx().erase_late_bound_regions(&fn_ty.fn_sig());
|
|
let sig = infer::normalize_associated_type(bcx.tcx(), &sig);
|
|
let args = sig.inputs;
|
|
|
|
// Translate the `self` argument first.
|
|
let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &arg_exprs[0]));
|
|
bcx = trans_arg_datum(bcx,
|
|
args[0],
|
|
arg_datum,
|
|
arg_cleanup_scope,
|
|
llargs);
|
|
|
|
// Now untuple the rest of the arguments.
|
|
let tuple_expr = &arg_exprs[1];
|
|
let tuple_type = common::node_id_type(bcx, tuple_expr.id);
|
|
|
|
match tuple_type.sty {
|
|
ty::TyTuple(ref field_types) => {
|
|
let tuple_datum = unpack_datum!(bcx,
|
|
expr::trans(bcx, &tuple_expr));
|
|
let tuple_lvalue_datum =
|
|
unpack_datum!(bcx,
|
|
tuple_datum.to_lvalue_datum(bcx,
|
|
"args",
|
|
tuple_expr.id));
|
|
let repr = adt::represent_type(bcx.ccx(), tuple_type);
|
|
let repr_ptr = &repr;
|
|
for (i, field_type) in field_types.iter().enumerate() {
|
|
let arg_datum = tuple_lvalue_datum.get_element(
|
|
bcx,
|
|
field_type,
|
|
|srcval| {
|
|
adt::trans_field_ptr(bcx, repr_ptr, srcval, Disr(0), i)
|
|
}).to_expr_datum();
|
|
bcx = trans_arg_datum(bcx,
|
|
field_type,
|
|
arg_datum,
|
|
arg_cleanup_scope,
|
|
llargs);
|
|
}
|
|
}
|
|
_ => {
|
|
bcx.sess().span_bug(tuple_expr.span,
|
|
"argument to `.call()` wasn't a tuple?!")
|
|
}
|
|
};
|
|
|
|
bcx
|
|
}
|
|
|
|
fn trans_overloaded_call_args<'blk, 'tcx>(
|
|
mut bcx: Block<'blk, 'tcx>,
|
|
arg_exprs: Vec<&hir::Expr>,
|
|
fn_ty: Ty<'tcx>,
|
|
llargs: &mut Vec<ValueRef>,
|
|
arg_cleanup_scope: cleanup::ScopeId)
|
|
-> Block<'blk, 'tcx> {
|
|
// Translate the `self` argument first.
|
|
let sig = bcx.tcx().erase_late_bound_regions(&fn_ty.fn_sig());
|
|
let sig = infer::normalize_associated_type(bcx.tcx(), &sig);
|
|
let arg_tys = sig.inputs;
|
|
|
|
let arg_datum = unpack_datum!(bcx, expr::trans(bcx, arg_exprs[0]));
|
|
bcx = trans_arg_datum(bcx,
|
|
arg_tys[0],
|
|
arg_datum,
|
|
arg_cleanup_scope,
|
|
llargs);
|
|
|
|
// Now untuple the rest of the arguments.
|
|
let tuple_type = arg_tys[1];
|
|
match tuple_type.sty {
|
|
ty::TyTuple(ref field_types) => {
|
|
for (i, &field_type) in field_types.iter().enumerate() {
|
|
let arg_datum =
|
|
unpack_datum!(bcx, expr::trans(bcx, arg_exprs[i + 1]));
|
|
bcx = trans_arg_datum(bcx,
|
|
field_type,
|
|
arg_datum,
|
|
arg_cleanup_scope,
|
|
llargs);
|
|
}
|
|
}
|
|
_ => {
|
|
bcx.sess().span_bug(arg_exprs[0].span,
|
|
"argument to `.call()` wasn't a tuple?!")
|
|
}
|
|
};
|
|
|
|
bcx
|
|
}
|
|
|
|
pub fn trans_args<'a, 'blk, 'tcx>(cx: Block<'blk, 'tcx>,
|
|
args: CallArgs<'a, 'tcx>,
|
|
fn_ty: Ty<'tcx>,
|
|
llargs: &mut Vec<ValueRef>,
|
|
arg_cleanup_scope: cleanup::ScopeId,
|
|
abi: Abi)
|
|
-> Block<'blk, 'tcx> {
|
|
debug!("trans_args(abi={})", abi);
|
|
|
|
let _icx = push_ctxt("trans_args");
|
|
let sig = cx.tcx().erase_late_bound_regions(&fn_ty.fn_sig());
|
|
let sig = infer::normalize_associated_type(cx.tcx(), &sig);
|
|
let arg_tys = sig.inputs;
|
|
let variadic = sig.variadic;
|
|
|
|
let mut bcx = cx;
|
|
|
|
// First we figure out the caller's view of the types of the arguments.
|
|
// This will be needed if this is a generic call, because the callee has
|
|
// to cast her view of the arguments to the caller's view.
|
|
match args {
|
|
ArgExprs(arg_exprs) => {
|
|
if abi == Abi::RustCall {
|
|
// This is only used for direct calls to the `call`,
|
|
// `call_mut` or `call_once` functions.
|
|
return trans_args_under_call_abi(cx,
|
|
arg_exprs,
|
|
fn_ty,
|
|
llargs,
|
|
arg_cleanup_scope)
|
|
}
|
|
|
|
let num_formal_args = arg_tys.len();
|
|
for (i, arg_expr) in arg_exprs.iter().enumerate() {
|
|
let arg_ty = if i >= num_formal_args {
|
|
assert!(variadic);
|
|
common::expr_ty_adjusted(cx, &arg_expr)
|
|
} else {
|
|
arg_tys[i]
|
|
};
|
|
|
|
let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &arg_expr));
|
|
bcx = trans_arg_datum(bcx, arg_ty, arg_datum,
|
|
arg_cleanup_scope,
|
|
llargs);
|
|
}
|
|
}
|
|
ArgOverloadedCall(arg_exprs) => {
|
|
return trans_overloaded_call_args(cx,
|
|
arg_exprs,
|
|
fn_ty,
|
|
llargs,
|
|
arg_cleanup_scope)
|
|
}
|
|
ArgOverloadedOp(lhs, rhs) => {
|
|
assert!(!variadic);
|
|
|
|
bcx = trans_arg_datum(bcx, arg_tys[0], lhs,
|
|
arg_cleanup_scope,
|
|
llargs);
|
|
|
|
if let Some(rhs) = rhs {
|
|
assert_eq!(arg_tys.len(), 2);
|
|
bcx = trans_arg_datum(bcx, arg_tys[1], rhs,
|
|
arg_cleanup_scope,
|
|
llargs);
|
|
} else {
|
|
assert_eq!(arg_tys.len(), 1);
|
|
}
|
|
}
|
|
ArgVals(vs) => {
|
|
llargs.extend_from_slice(vs);
|
|
}
|
|
}
|
|
|
|
bcx
|
|
}
|
|
|
|
pub fn trans_arg_datum<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
formal_arg_ty: Ty<'tcx>,
|
|
arg_datum: Datum<'tcx, Expr>,
|
|
arg_cleanup_scope: cleanup::ScopeId,
|
|
llargs: &mut Vec<ValueRef>)
|
|
-> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_arg_datum");
|
|
let mut bcx = bcx;
|
|
let ccx = bcx.ccx();
|
|
|
|
debug!("trans_arg_datum({:?})",
|
|
formal_arg_ty);
|
|
|
|
let arg_datum_ty = arg_datum.ty;
|
|
|
|
debug!(" arg datum: {}", arg_datum.to_string(bcx.ccx()));
|
|
|
|
let mut val = if common::type_is_fat_ptr(bcx.tcx(), arg_datum_ty) &&
|
|
!bcx.fcx.type_needs_drop(arg_datum_ty) {
|
|
arg_datum.val
|
|
} else {
|
|
// Make this an rvalue, since we are going to be
|
|
// passing ownership.
|
|
let arg_datum = unpack_datum!(
|
|
bcx, arg_datum.to_rvalue_datum(bcx, "arg"));
|
|
|
|
// Now that arg_datum is owned, get it into the appropriate
|
|
// mode (ref vs value).
|
|
let arg_datum = unpack_datum!(
|
|
bcx, arg_datum.to_appropriate_datum(bcx));
|
|
|
|
// Technically, ownership of val passes to the callee.
|
|
// However, we must cleanup should we panic before the
|
|
// callee is actually invoked.
|
|
arg_datum.add_clean(bcx.fcx, arg_cleanup_scope)
|
|
};
|
|
|
|
if type_of::arg_is_indirect(ccx, formal_arg_ty) && formal_arg_ty != arg_datum_ty {
|
|
// this could happen due to e.g. subtyping
|
|
let llformal_arg_ty = type_of::type_of_explicit_arg(ccx, formal_arg_ty);
|
|
debug!("casting actual type ({}) to match formal ({})",
|
|
bcx.val_to_string(val), bcx.llty_str(llformal_arg_ty));
|
|
debug!("Rust types: {:?}; {:?}", arg_datum_ty,
|
|
formal_arg_ty);
|
|
val = PointerCast(bcx, val, llformal_arg_ty);
|
|
}
|
|
|
|
debug!("--- trans_arg_datum passing {}", bcx.val_to_string(val));
|
|
|
|
if common::type_is_fat_ptr(bcx.tcx(), formal_arg_ty) {
|
|
llargs.push(Load(bcx, expr::get_dataptr(bcx, val)));
|
|
llargs.push(Load(bcx, expr::get_meta(bcx, val)));
|
|
} else {
|
|
llargs.push(val);
|
|
}
|
|
|
|
bcx
|
|
}
|