84e0458c99
Now target_arch is powerpc64 on both big and little endian, we need to use target_endian when there are differences in the two ABIs.
260 lines
7.5 KiB
Rust
260 lines
7.5 KiB
Rust
// Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
// FIXME: The PowerPC64 ABI needs to zero or sign extend function
|
|
// call parameters, but compute_abi_info() is passed LLVM types
|
|
// which have no sign information.
|
|
//
|
|
// Alignment of 128 bit types is not currently handled, this will
|
|
// need to be fixed when PowerPC vector support is added.
|
|
|
|
use llvm::{Integer, Pointer, Float, Double, Struct, Array, Attribute};
|
|
use trans::cabi::{FnType, ArgType};
|
|
use trans::context::CrateContext;
|
|
use trans::type_::Type;
|
|
|
|
use std::cmp;
|
|
|
|
fn align_up_to(off: usize, a: usize) -> usize {
|
|
return (off + a - 1) / a * a;
|
|
}
|
|
|
|
fn align(off: usize, ty: Type) -> usize {
|
|
let a = ty_align(ty);
|
|
return align_up_to(off, a);
|
|
}
|
|
|
|
fn ty_align(ty: Type) -> usize {
|
|
match ty.kind() {
|
|
Integer => ((ty.int_width() as usize) + 7) / 8,
|
|
Pointer => 8,
|
|
Float => 4,
|
|
Double => 8,
|
|
Struct => {
|
|
if ty.is_packed() {
|
|
1
|
|
} else {
|
|
let str_tys = ty.field_types();
|
|
str_tys.iter().fold(1, |a, t| cmp::max(a, ty_align(*t)))
|
|
}
|
|
}
|
|
Array => {
|
|
let elt = ty.element_type();
|
|
ty_align(elt)
|
|
}
|
|
_ => panic!("ty_align: unhandled type")
|
|
}
|
|
}
|
|
|
|
fn ty_size(ty: Type) -> usize {
|
|
match ty.kind() {
|
|
Integer => ((ty.int_width() as usize) + 7) / 8,
|
|
Pointer => 8,
|
|
Float => 4,
|
|
Double => 8,
|
|
Struct => {
|
|
if ty.is_packed() {
|
|
let str_tys = ty.field_types();
|
|
str_tys.iter().fold(0, |s, t| s + ty_size(*t))
|
|
} else {
|
|
let str_tys = ty.field_types();
|
|
let size = str_tys.iter().fold(0, |s, t| align(s, *t) + ty_size(*t));
|
|
align(size, ty)
|
|
}
|
|
}
|
|
Array => {
|
|
let len = ty.array_length();
|
|
let elt = ty.element_type();
|
|
let eltsz = ty_size(elt);
|
|
len * eltsz
|
|
}
|
|
_ => panic!("ty_size: unhandled type")
|
|
}
|
|
}
|
|
|
|
fn is_homogenous_aggregate_ty(ty: Type) -> Option<(Type, u64)> {
|
|
fn check_array(ty: Type) -> Option<(Type, u64)> {
|
|
let len = ty.array_length() as u64;
|
|
if len == 0 {
|
|
return None
|
|
}
|
|
let elt = ty.element_type();
|
|
|
|
// if our element is an HFA/HVA, so are we; multiply members by our len
|
|
is_homogenous_aggregate_ty(elt).map(|(base_ty, members)| (base_ty, len * members))
|
|
}
|
|
|
|
fn check_struct(ty: Type) -> Option<(Type, u64)> {
|
|
let str_tys = ty.field_types();
|
|
if str_tys.len() == 0 {
|
|
return None
|
|
}
|
|
|
|
let mut prev_base_ty = None;
|
|
let mut members = 0;
|
|
for opt_homog_agg in str_tys.iter().map(|t| is_homogenous_aggregate_ty(*t)) {
|
|
match (prev_base_ty, opt_homog_agg) {
|
|
// field isn't itself an HFA, so we aren't either
|
|
(_, None) => return None,
|
|
|
|
// first field - store its type and number of members
|
|
(None, Some((field_ty, field_members))) => {
|
|
prev_base_ty = Some(field_ty);
|
|
members = field_members;
|
|
},
|
|
|
|
// 2nd or later field - give up if it's a different type; otherwise incr. members
|
|
(Some(prev_ty), Some((field_ty, field_members))) => {
|
|
if prev_ty != field_ty {
|
|
return None;
|
|
}
|
|
members += field_members;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Because of previous checks, we know prev_base_ty is Some(...) because
|
|
// 1. str_tys has at least one element; and
|
|
// 2. prev_base_ty was filled in (or we would've returned early)
|
|
let (base_ty, members) = (prev_base_ty.unwrap(), members);
|
|
|
|
// Ensure there is no padding.
|
|
if ty_size(ty) == ty_size(base_ty) * (members as usize) {
|
|
Some((base_ty, members))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
let homog_agg = match ty.kind() {
|
|
Float => Some((ty, 1)),
|
|
Double => Some((ty, 1)),
|
|
Array => check_array(ty),
|
|
Struct => check_struct(ty),
|
|
_ => None
|
|
};
|
|
|
|
// Ensure we have at most eight uniquely addressable members
|
|
homog_agg.and_then(|(base_ty, members)| {
|
|
if members > 0 && members <= 8 {
|
|
Some((base_ty, members))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
}
|
|
|
|
fn classify_ret_ty(ccx: &CrateContext, ty: Type) -> ArgType {
|
|
if is_reg_ty(ty) {
|
|
let attr = if ty == Type::i1(ccx) { Some(Attribute::ZExt) } else { None };
|
|
return ArgType::direct(ty, None, None, attr);
|
|
}
|
|
|
|
// The PowerPC64 big endian ABI doesn't return aggregates in registers
|
|
if ccx.sess().target.target.target_endian == "big" {
|
|
return ArgType::indirect(ty, Some(Attribute::StructRet))
|
|
}
|
|
|
|
if let Some((base_ty, members)) = is_homogenous_aggregate_ty(ty) {
|
|
let llty = Type::array(&base_ty, members);
|
|
return ArgType::direct(ty, Some(llty), None, None);
|
|
}
|
|
let size = ty_size(ty);
|
|
if size <= 16 {
|
|
let llty = if size <= 1 {
|
|
Type::i8(ccx)
|
|
} else if size <= 2 {
|
|
Type::i16(ccx)
|
|
} else if size <= 4 {
|
|
Type::i32(ccx)
|
|
} else if size <= 8 {
|
|
Type::i64(ccx)
|
|
} else {
|
|
Type::array(&Type::i64(ccx), ((size + 7 ) / 8 ) as u64)
|
|
};
|
|
return ArgType::direct(ty, Some(llty), None, None);
|
|
}
|
|
|
|
ArgType::indirect(ty, Some(Attribute::StructRet))
|
|
}
|
|
|
|
fn classify_arg_ty(ccx: &CrateContext, ty: Type) -> ArgType {
|
|
if is_reg_ty(ty) {
|
|
let attr = if ty == Type::i1(ccx) { Some(Attribute::ZExt) } else { None };
|
|
return ArgType::direct(ty, None, None, attr);
|
|
}
|
|
if let Some((base_ty, members)) = is_homogenous_aggregate_ty(ty) {
|
|
let llty = Type::array(&base_ty, members);
|
|
return ArgType::direct(ty, Some(llty), None, None);
|
|
}
|
|
|
|
ArgType::direct(
|
|
ty,
|
|
Some(struct_ty(ccx, ty)),
|
|
None,
|
|
None
|
|
)
|
|
}
|
|
|
|
fn is_reg_ty(ty: Type) -> bool {
|
|
match ty.kind() {
|
|
Integer
|
|
| Pointer
|
|
| Float
|
|
| Double => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
fn coerce_to_long(ccx: &CrateContext, size: usize) -> Vec<Type> {
|
|
let long_ty = Type::i64(ccx);
|
|
let mut args = Vec::new();
|
|
|
|
let mut n = size / 64;
|
|
while n > 0 {
|
|
args.push(long_ty);
|
|
n -= 1;
|
|
}
|
|
|
|
let r = size % 64;
|
|
if r > 0 {
|
|
args.push(Type::ix(ccx, r as u64));
|
|
}
|
|
|
|
args
|
|
}
|
|
|
|
fn struct_ty(ccx: &CrateContext, ty: Type) -> Type {
|
|
let size = ty_size(ty) * 8;
|
|
Type::struct_(ccx, &coerce_to_long(ccx, size), false)
|
|
}
|
|
|
|
pub fn compute_abi_info(ccx: &CrateContext,
|
|
atys: &[Type],
|
|
rty: Type,
|
|
ret_def: bool) -> FnType {
|
|
let ret_ty = if ret_def {
|
|
classify_ret_ty(ccx, rty)
|
|
} else {
|
|
ArgType::direct(Type::void(ccx), None, None, None)
|
|
};
|
|
|
|
let mut arg_tys = Vec::new();
|
|
for &aty in atys {
|
|
let ty = classify_arg_ty(ccx, aty);
|
|
arg_tys.push(ty);
|
|
};
|
|
|
|
return FnType {
|
|
arg_tys: arg_tys,
|
|
ret_ty: ret_ty,
|
|
};
|
|
}
|