a77322c16f
Add `Ord::cmp` for primitives as a `BinOp` in MIR
Update: most of this OP was written months ago. See https://github.com/rust-lang/rust/pull/118310#issuecomment-2016940014 below for where we got to recently that made it ready for review.
---
There are dozens of reasonable ways to implement `Ord::cmp` for integers using comparison, bit-ops, and branches. Those differences are irrelevant at the rust level, however, so we can make things better by adding `BinOp::Cmp` at the MIR level:
1. Exactly how to implement it is left up to the backends, so LLVM can use whatever pattern its optimizer best recognizes and cranelift can use whichever pattern codegens the fastest.
2. By not inlining those details for every use of `cmp`, we drastically reduce the amount of MIR generated for `derive`d `PartialOrd`, while also making it more amenable to MIR-level optimizations.
Having extremely careful `if` ordering to μoptimize resource usage on broadwell (#63767) is great, but it really feels to me like libcore is the wrong place to put that logic. Similarly, using subtraction [tricks](https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign) (#105840) is arguably even nicer, but depends on the optimizer understanding it (https://github.com/llvm/llvm-project/issues/73417) to be practical. Or maybe [bitor is better than add](https://discourse.llvm.org/t/representing-in-ir/67369/2?u=scottmcm)? But maybe only on a future version that [has `or disjoint` support](https://discourse.llvm.org/t/rfc-add-or-disjoint-flag/75036?u=scottmcm)? And just because one of those forms happens to be good for LLVM, there's no guarantee that it'd be the same form that GCC or Cranelift would rather see -- especially given their very different optimizers. Not to mention that if LLVM gets a spaceship intrinsic -- [which it should](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Suboptimal.20inlining.20in.20std.20function.20.60binary_search.60/near/404250586) -- we'll need at least a rustc intrinsic to be able to call it.
As for simplifying it in Rust, we now regularly inline `{integer}::partial_cmp`, but it's quite a large amount of IR. The best way to see that is with
|
||
---|---|---|
.. | ||
.github/workflows | ||
build_sysroot | ||
build_system | ||
deps | ||
doc | ||
example | ||
patches | ||
src | ||
tests | ||
tools | ||
.gitignore | ||
.ignore | ||
.rustfmt.toml | ||
build.rs | ||
Cargo.lock | ||
Cargo.toml | ||
config.example.toml | ||
libgccjit.version | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
messages.ftl | ||
Readme.md | ||
rust-toolchain | ||
y.sh |
WIP libgccjit codegen backend for rust
This is a GCC codegen for rustc, which means it can be loaded by the existing rustc frontend, but benefits from GCC: more architectures are supported and GCC's optimizations are used.
Despite its name, libgccjit can be used for ahead-of-time compilation, as is used here.
Motivation
The primary goal of this project is to be able to compile Rust code on platforms unsupported by LLVM. A secondary goal is to check if using the gcc backend will provide any run-time speed improvement for the programs compiled using rustc.
Building
This requires a patched libgccjit in order to work. You need to use my fork of gcc which already includes these patches.
$ cp config.example.toml config.toml
If don't need to test GCC patches you wrote in our GCC fork, then the default configuration should
be all you need. You can update the rustc_codegen_gcc
without worrying about GCC.
Building with your own GCC version
If you wrote a patch for GCC and want to test it without this backend, you will need to do a few more things.
To build it (most of these instructions come from here, so don't hesitate to take a look there if you encounter an issue):
$ git clone https://github.com/antoyo/gcc
$ sudo apt install flex libmpfr-dev libgmp-dev libmpc3 libmpc-dev
$ mkdir gcc-build gcc-install
$ cd gcc-build
$ ../gcc/configure \
--enable-host-shared \
--enable-languages=jit \
--enable-checking=release \ # it enables extra checks which allow to find bugs
--disable-bootstrap \
--disable-multilib \
--prefix=$(pwd)/../gcc-install
$ make -j4 # You can replace `4` with another number depending on how many cores you have.
If you want to run libgccjit tests, you will need to also enable the C++ language in the configure
:
--enable-languages=jit,c++
Then to run libgccjit tests:
$ cd gcc # from the `gcc-build` folder
$ make check-jit
# To run one specific test:
$ make check-jit RUNTESTFLAGS="-v -v -v jit.exp=jit.dg/test-asm.cc"
Put the path to your custom build of libgccjit in the file config.toml
.
You now need to set the gcc-path
value in config.toml
with the result of this command:
$ dirname $(readlink -f `find . -name libgccjit.so`)
and to comment the download-gccjit
setting:
gcc-path = "[MY PATH]"
# download-gccjit = true
Then you can run commands like this:
$ ./y.sh prepare # download and patch sysroot src and install hyperfine for benchmarking
$ ./y.sh build --release
To run the tests:
$ ./y.sh test --release
Usage
$CG_GCCJIT_DIR
is the directory you cloned this repo into in the following instructions:
export CG_GCCJIT_DIR=[the full path to rustc_codegen_gcc]
Cargo
$ CHANNEL="release" $CG_GCCJIT_DIR/y.sh cargo run
If you compiled cg_gccjit in debug mode (aka you didn't pass --release
to ./y.sh test
) you should use CHANNEL="debug"
instead or omit CHANNEL="release"
completely.
LTO
To use LTO, you need to set the variable FAT_LTO=1
and EMBED_LTO_BITCODE=1
in addition to setting lto = "fat"
in the Cargo.toml
.
Don't set FAT_LTO
when compiling the sysroot, though: only set EMBED_LTO_BITCODE=1
.
Failing to set EMBED_LTO_BITCODE
will give you the following error:
error: failed to copy bitcode to object file: No such file or directory (os error 2)
Rustc
You should prefer using the Cargo method.
$ LIBRARY_PATH="[gcc-path value]" LD_LIBRARY_PATH="[gcc-path value]" rustc +$(cat $CG_GCCJIT_DIR/rust-toolchain | grep 'channel' | cut -d '=' -f 2 | sed 's/"//g' | sed 's/ //g') -Cpanic=abort -Zcodegen-backend=$CG_GCCJIT_DIR/target/release/librustc_codegen_gcc.so --sysroot $CG_GCCJIT_DIR/build_sysroot/sysroot my_crate.rs
Env vars
- CG_GCCJIT_INCR_CACHE_DISABLED
- Don't cache object files in the incremental cache. Useful during development of cg_gccjit to make it possible to use incremental mode for all analyses performed by rustc without caching object files when their content should have been changed by a change to cg_gccjit.
- CG_GCCJIT_DISPLAY_CG_TIME
- Display the time it took to perform codegen for a crate
- CG_RUSTFLAGS
- Send additional flags to rustc. Can be used to build the sysroot without unwinding by setting `CG_RUSTFLAGS=-Cpanic=abort`.
- CG_GCCJIT_DUMP_TO_FILE
- Dump a C-like representation to /tmp/gccjit_dumps and enable debug info in order to debug this C-like representation.
Extra documentation
More specific documentation is available in the doc
folder:
- Common errors
- Debugging GCC LTO
- Debugging libgccjit
- Git subtree sync
- List of useful commands
- Send a patch to GCC
Licensing
While this crate is licensed under a dual Apache/MIT license, it links to libgccjit
which is under the GPLv3+ and thus, the resulting toolchain (rustc + GCC codegen) will need to be released under the GPL license.
However, programs compiled with rustc_codegen_gcc
do not need to be released under a GPL license.