1444 lines
57 KiB
Rust
1444 lines
57 KiB
Rust
//! Mono Item Collection
|
|
//! ====================
|
|
//!
|
|
//! This module is responsible for discovering all items that will contribute
|
|
//! to code generation of the crate. The important part here is that it not only
|
|
//! needs to find syntax-level items (functions, structs, etc) but also all
|
|
//! their monomorphized instantiations. Every non-generic, non-const function
|
|
//! maps to one LLVM artifact. Every generic function can produce
|
|
//! from zero to N artifacts, depending on the sets of type arguments it
|
|
//! is instantiated with.
|
|
//! This also applies to generic items from other crates: A generic definition
|
|
//! in crate X might produce monomorphizations that are compiled into crate Y.
|
|
//! We also have to collect these here.
|
|
//!
|
|
//! The following kinds of "mono items" are handled here:
|
|
//!
|
|
//! - Functions
|
|
//! - Methods
|
|
//! - Closures
|
|
//! - Statics
|
|
//! - Drop glue
|
|
//!
|
|
//! The following things also result in LLVM artifacts, but are not collected
|
|
//! here, since we instantiate them locally on demand when needed in a given
|
|
//! codegen unit:
|
|
//!
|
|
//! - Constants
|
|
//! - Vtables
|
|
//! - Object Shims
|
|
//!
|
|
//!
|
|
//! General Algorithm
|
|
//! -----------------
|
|
//! Let's define some terms first:
|
|
//!
|
|
//! - A "mono item" is something that results in a function or global in
|
|
//! the LLVM IR of a codegen unit. Mono items do not stand on their
|
|
//! own, they can reference other mono items. For example, if function
|
|
//! `foo()` calls function `bar()` then the mono item for `foo()`
|
|
//! references the mono item for function `bar()`. In general, the
|
|
//! definition for mono item A referencing a mono item B is that
|
|
//! the LLVM artifact produced for A references the LLVM artifact produced
|
|
//! for B.
|
|
//!
|
|
//! - Mono items and the references between them form a directed graph,
|
|
//! where the mono items are the nodes and references form the edges.
|
|
//! Let's call this graph the "mono item graph".
|
|
//!
|
|
//! - The mono item graph for a program contains all mono items
|
|
//! that are needed in order to produce the complete LLVM IR of the program.
|
|
//!
|
|
//! The purpose of the algorithm implemented in this module is to build the
|
|
//! mono item graph for the current crate. It runs in two phases:
|
|
//!
|
|
//! 1. Discover the roots of the graph by traversing the HIR of the crate.
|
|
//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
|
|
//! representation of the item corresponding to a given node, until no more
|
|
//! new nodes are found.
|
|
//!
|
|
//! ### Discovering roots
|
|
//!
|
|
//! The roots of the mono item graph correspond to the public non-generic
|
|
//! syntactic items in the source code. We find them by walking the HIR of the
|
|
//! crate, and whenever we hit upon a public function, method, or static item,
|
|
//! we create a mono item consisting of the items DefId and, since we only
|
|
//! consider non-generic items, an empty type-substitution set. (In eager
|
|
//! collection mode, during incremental compilation, all non-generic functions
|
|
//! are considered as roots, as well as when the `-Clink-dead-code` option is
|
|
//! specified. Functions marked `#[no_mangle]` and functions called by inlinable
|
|
//! functions also always act as roots.)
|
|
//!
|
|
//! ### Finding neighbor nodes
|
|
//! Given a mono item node, we can discover neighbors by inspecting its
|
|
//! MIR. We walk the MIR and any time we hit upon something that signifies a
|
|
//! reference to another mono item, we have found a neighbor. Since the
|
|
//! mono item we are currently at is always monomorphic, we also know the
|
|
//! concrete type arguments of its neighbors, and so all neighbors again will be
|
|
//! monomorphic. The specific forms a reference to a neighboring node can take
|
|
//! in MIR are quite diverse. Here is an overview:
|
|
//!
|
|
//! #### Calling Functions/Methods
|
|
//! The most obvious form of one mono item referencing another is a
|
|
//! function or method call (represented by a CALL terminator in MIR). But
|
|
//! calls are not the only thing that might introduce a reference between two
|
|
//! function mono items, and as we will see below, they are just a
|
|
//! specialization of the form described next, and consequently will not get any
|
|
//! special treatment in the algorithm.
|
|
//!
|
|
//! #### Taking a reference to a function or method
|
|
//! A function does not need to actually be called in order to be a neighbor of
|
|
//! another function. It suffices to just take a reference in order to introduce
|
|
//! an edge. Consider the following example:
|
|
//!
|
|
//! ```
|
|
//! # use core::fmt::Display;
|
|
//! fn print_val<T: Display>(x: T) {
|
|
//! println!("{}", x);
|
|
//! }
|
|
//!
|
|
//! fn call_fn(f: &dyn Fn(i32), x: i32) {
|
|
//! f(x);
|
|
//! }
|
|
//!
|
|
//! fn main() {
|
|
//! let print_i32 = print_val::<i32>;
|
|
//! call_fn(&print_i32, 0);
|
|
//! }
|
|
//! ```
|
|
//! The MIR of none of these functions will contain an explicit call to
|
|
//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
|
|
//! an instance of this function. Thus, whenever we encounter a function or
|
|
//! method in operand position, we treat it as a neighbor of the current
|
|
//! mono item. Calls are just a special case of that.
|
|
//!
|
|
//! #### Closures
|
|
//! In a way, closures are a simple case. Since every closure object needs to be
|
|
//! constructed somewhere, we can reliably discover them by observing
|
|
//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
|
|
//! true for closures inlined from other crates.
|
|
//!
|
|
//! #### Drop glue
|
|
//! Drop glue mono items are introduced by MIR drop-statements. The
|
|
//! generated mono item will again have drop-glue item neighbors if the
|
|
//! type to be dropped contains nested values that also need to be dropped. It
|
|
//! might also have a function item neighbor for the explicit `Drop::drop`
|
|
//! implementation of its type.
|
|
//!
|
|
//! #### Unsizing Casts
|
|
//! A subtle way of introducing neighbor edges is by casting to a trait object.
|
|
//! Since the resulting fat-pointer contains a reference to a vtable, we need to
|
|
//! instantiate all object-save methods of the trait, as we need to store
|
|
//! pointers to these functions even if they never get called anywhere. This can
|
|
//! be seen as a special case of taking a function reference.
|
|
//!
|
|
//! #### Boxes
|
|
//! Since `Box` expression have special compiler support, no explicit calls to
|
|
//! `exchange_malloc()` and `box_free()` may show up in MIR, even if the
|
|
//! compiler will generate them. We have to observe `Rvalue::Box` expressions
|
|
//! and Box-typed drop-statements for that purpose.
|
|
//!
|
|
//!
|
|
//! Interaction with Cross-Crate Inlining
|
|
//! -------------------------------------
|
|
//! The binary of a crate will not only contain machine code for the items
|
|
//! defined in the source code of that crate. It will also contain monomorphic
|
|
//! instantiations of any extern generic functions and of functions marked with
|
|
//! `#[inline]`.
|
|
//! The collection algorithm handles this more or less mono. If it is
|
|
//! about to create a mono item for something with an external `DefId`,
|
|
//! it will take a look if the MIR for that item is available, and if so just
|
|
//! proceed normally. If the MIR is not available, it assumes that the item is
|
|
//! just linked to and no node is created; which is exactly what we want, since
|
|
//! no machine code should be generated in the current crate for such an item.
|
|
//!
|
|
//! Eager and Lazy Collection Mode
|
|
//! ------------------------------
|
|
//! Mono item collection can be performed in one of two modes:
|
|
//!
|
|
//! - Lazy mode means that items will only be instantiated when actually
|
|
//! referenced. The goal is to produce the least amount of machine code
|
|
//! possible.
|
|
//!
|
|
//! - Eager mode is meant to be used in conjunction with incremental compilation
|
|
//! where a stable set of mono items is more important than a minimal
|
|
//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
|
|
//! in the crate, even if no drop call for that type exists (yet). It will
|
|
//! also instantiate default implementations of trait methods, something that
|
|
//! otherwise is only done on demand.
|
|
//!
|
|
//!
|
|
//! Open Issues
|
|
//! -----------
|
|
//! Some things are not yet fully implemented in the current version of this
|
|
//! module.
|
|
//!
|
|
//! ### Const Fns
|
|
//! Ideally, no mono item should be generated for const fns unless there
|
|
//! is a call to them that cannot be evaluated at compile time. At the moment
|
|
//! this is not implemented however: a mono item will be produced
|
|
//! regardless of whether it is actually needed or not.
|
|
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_data_structures::sync::{par_iter, MTLock, MTRef, ParallelIterator};
|
|
use rustc_hir as hir;
|
|
use rustc_hir::def::DefKind;
|
|
use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId};
|
|
use rustc_hir::lang_items::LangItem;
|
|
use rustc_index::bit_set::GrowableBitSet;
|
|
use rustc_middle::mir::interpret::{AllocId, ConstValue};
|
|
use rustc_middle::mir::interpret::{ErrorHandled, GlobalAlloc, Scalar};
|
|
use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
|
|
use rustc_middle::mir::visit::Visitor as MirVisitor;
|
|
use rustc_middle::mir::{self, Local, Location};
|
|
use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCast};
|
|
use rustc_middle::ty::print::with_no_trimmed_paths;
|
|
use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts};
|
|
use rustc_middle::ty::{self, GenericParamDefKind, Instance, Ty, TyCtxt, TypeFoldable, VtblEntry};
|
|
use rustc_middle::{middle::codegen_fn_attrs::CodegenFnAttrFlags, mir::visit::TyContext};
|
|
use rustc_session::config::EntryFnType;
|
|
use rustc_session::lint::builtin::LARGE_ASSIGNMENTS;
|
|
use rustc_session::Limit;
|
|
use rustc_span::source_map::{dummy_spanned, respan, Span, Spanned, DUMMY_SP};
|
|
use rustc_target::abi::Size;
|
|
use std::iter;
|
|
use std::ops::Range;
|
|
use std::path::PathBuf;
|
|
|
|
#[derive(PartialEq)]
|
|
pub enum MonoItemCollectionMode {
|
|
Eager,
|
|
Lazy,
|
|
}
|
|
|
|
/// Maps every mono item to all mono items it references in its
|
|
/// body.
|
|
pub struct InliningMap<'tcx> {
|
|
// Maps a source mono item to the range of mono items
|
|
// accessed by it.
|
|
// The range selects elements within the `targets` vecs.
|
|
index: FxHashMap<MonoItem<'tcx>, Range<usize>>,
|
|
targets: Vec<MonoItem<'tcx>>,
|
|
|
|
// Contains one bit per mono item in the `targets` field. That bit
|
|
// is true if that mono item needs to be inlined into every CGU.
|
|
inlines: GrowableBitSet<usize>,
|
|
}
|
|
|
|
/// Struct to store mono items in each collecting and if they should
|
|
/// be inlined. We call `instantiation_mode` to get their inlining
|
|
/// status when inserting new elements, which avoids calling it in
|
|
/// `inlining_map.lock_mut()`. See the `collect_items_rec` implementation
|
|
/// below.
|
|
struct MonoItems<'tcx> {
|
|
// If this is false, we do not need to compute whether items
|
|
// will need to be inlined.
|
|
compute_inlining: bool,
|
|
|
|
// The TyCtxt used to determine whether the a item should
|
|
// be inlined.
|
|
tcx: TyCtxt<'tcx>,
|
|
|
|
// The collected mono items. The bool field in each element
|
|
// indicates whether this element should be inlined.
|
|
items: Vec<(Spanned<MonoItem<'tcx>>, bool /*inlined*/)>,
|
|
}
|
|
|
|
impl<'tcx> MonoItems<'tcx> {
|
|
#[inline]
|
|
fn push(&mut self, item: Spanned<MonoItem<'tcx>>) {
|
|
self.extend([item]);
|
|
}
|
|
|
|
#[inline]
|
|
fn extend<T: IntoIterator<Item = Spanned<MonoItem<'tcx>>>>(&mut self, iter: T) {
|
|
self.items.extend(iter.into_iter().map(|mono_item| {
|
|
let inlined = if !self.compute_inlining {
|
|
false
|
|
} else {
|
|
mono_item.node.instantiation_mode(self.tcx) == InstantiationMode::LocalCopy
|
|
};
|
|
(mono_item, inlined)
|
|
}))
|
|
}
|
|
}
|
|
|
|
impl<'tcx> InliningMap<'tcx> {
|
|
fn new() -> InliningMap<'tcx> {
|
|
InliningMap {
|
|
index: FxHashMap::default(),
|
|
targets: Vec::new(),
|
|
inlines: GrowableBitSet::with_capacity(1024),
|
|
}
|
|
}
|
|
|
|
fn record_accesses<'a>(
|
|
&mut self,
|
|
source: MonoItem<'tcx>,
|
|
new_targets: &'a [(Spanned<MonoItem<'tcx>>, bool)],
|
|
) where
|
|
'tcx: 'a,
|
|
{
|
|
let start_index = self.targets.len();
|
|
let new_items_count = new_targets.len();
|
|
let new_items_count_total = new_items_count + self.targets.len();
|
|
|
|
self.targets.reserve(new_items_count);
|
|
self.inlines.ensure(new_items_count_total);
|
|
|
|
for (i, (Spanned { node: mono_item, .. }, inlined)) in new_targets.into_iter().enumerate() {
|
|
self.targets.push(*mono_item);
|
|
if *inlined {
|
|
self.inlines.insert(i + start_index);
|
|
}
|
|
}
|
|
|
|
let end_index = self.targets.len();
|
|
assert!(self.index.insert(source, start_index..end_index).is_none());
|
|
}
|
|
|
|
// Internally iterate over all items referenced by `source` which will be
|
|
// made available for inlining.
|
|
pub fn with_inlining_candidates<F>(&self, source: MonoItem<'tcx>, mut f: F)
|
|
where
|
|
F: FnMut(MonoItem<'tcx>),
|
|
{
|
|
if let Some(range) = self.index.get(&source) {
|
|
for (i, candidate) in self.targets[range.clone()].iter().enumerate() {
|
|
if self.inlines.contains(range.start + i) {
|
|
f(*candidate);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Internally iterate over all items and the things each accesses.
|
|
pub fn iter_accesses<F>(&self, mut f: F)
|
|
where
|
|
F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>]),
|
|
{
|
|
for (&accessor, range) in &self.index {
|
|
f(accessor, &self.targets[range.clone()])
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn collect_crate_mono_items(
|
|
tcx: TyCtxt<'_>,
|
|
mode: MonoItemCollectionMode,
|
|
) -> (FxHashSet<MonoItem<'_>>, InliningMap<'_>) {
|
|
let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
|
|
|
|
let roots =
|
|
tcx.sess.time("monomorphization_collector_root_collections", || collect_roots(tcx, mode));
|
|
|
|
debug!("building mono item graph, beginning at roots");
|
|
|
|
let mut visited = MTLock::new(FxHashSet::default());
|
|
let mut inlining_map = MTLock::new(InliningMap::new());
|
|
let recursion_limit = tcx.recursion_limit();
|
|
|
|
{
|
|
let visited: MTRef<'_, _> = &mut visited;
|
|
let inlining_map: MTRef<'_, _> = &mut inlining_map;
|
|
|
|
tcx.sess.time("monomorphization_collector_graph_walk", || {
|
|
par_iter(roots).for_each(|root| {
|
|
let mut recursion_depths = DefIdMap::default();
|
|
collect_items_rec(
|
|
tcx,
|
|
dummy_spanned(root),
|
|
visited,
|
|
&mut recursion_depths,
|
|
recursion_limit,
|
|
inlining_map,
|
|
);
|
|
});
|
|
});
|
|
}
|
|
|
|
(visited.into_inner(), inlining_map.into_inner())
|
|
}
|
|
|
|
// Find all non-generic items by walking the HIR. These items serve as roots to
|
|
// start monomorphizing from.
|
|
fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec<MonoItem<'_>> {
|
|
debug!("collecting roots");
|
|
let mut roots = MonoItems { compute_inlining: false, tcx, items: Vec::new() };
|
|
|
|
{
|
|
let entry_fn = tcx.entry_fn(());
|
|
|
|
debug!("collect_roots: entry_fn = {:?}", entry_fn);
|
|
|
|
let mut collector = RootCollector { tcx, mode, entry_fn, output: &mut roots };
|
|
|
|
let crate_items = tcx.hir_crate_items(());
|
|
|
|
for id in crate_items.items() {
|
|
collector.process_item(id);
|
|
}
|
|
|
|
for id in crate_items.impl_items() {
|
|
collector.process_impl_item(id);
|
|
}
|
|
|
|
collector.push_extra_entry_roots();
|
|
}
|
|
|
|
// We can only codegen items that are instantiable - items all of
|
|
// whose predicates hold. Luckily, items that aren't instantiable
|
|
// can't actually be used, so we can just skip codegenning them.
|
|
roots
|
|
.items
|
|
.into_iter()
|
|
.filter_map(|(Spanned { node: mono_item, .. }, _)| {
|
|
mono_item.is_instantiable(tcx).then_some(mono_item)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a
|
|
/// post-monorphization error is encountered during a collection step.
|
|
fn collect_items_rec<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
starting_point: Spanned<MonoItem<'tcx>>,
|
|
visited: MTRef<'_, MTLock<FxHashSet<MonoItem<'tcx>>>>,
|
|
recursion_depths: &mut DefIdMap<usize>,
|
|
recursion_limit: Limit,
|
|
inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>,
|
|
) {
|
|
if !visited.lock_mut().insert(starting_point.node) {
|
|
// We've been here already, no need to search again.
|
|
return;
|
|
}
|
|
debug!("BEGIN collect_items_rec({})", starting_point.node);
|
|
|
|
let mut neighbors = MonoItems { compute_inlining: true, tcx, items: Vec::new() };
|
|
let recursion_depth_reset;
|
|
|
|
//
|
|
// Post-monomorphization errors MVP
|
|
//
|
|
// We can encounter errors while monomorphizing an item, but we don't have a good way of
|
|
// showing a complete stack of spans ultimately leading to collecting the erroneous one yet.
|
|
// (It's also currently unclear exactly which diagnostics and information would be interesting
|
|
// to report in such cases)
|
|
//
|
|
// This leads to suboptimal error reporting: a post-monomorphization error (PME) will be
|
|
// shown with just a spanned piece of code causing the error, without information on where
|
|
// it was called from. This is especially obscure if the erroneous mono item is in a
|
|
// dependency. See for example issue #85155, where, before minimization, a PME happened two
|
|
// crates downstream from libcore's stdarch, without a way to know which dependency was the
|
|
// cause.
|
|
//
|
|
// If such an error occurs in the current crate, its span will be enough to locate the
|
|
// source. If the cause is in another crate, the goal here is to quickly locate which mono
|
|
// item in the current crate is ultimately responsible for causing the error.
|
|
//
|
|
// To give at least _some_ context to the user: while collecting mono items, we check the
|
|
// error count. If it has changed, a PME occurred, and we trigger some diagnostics about the
|
|
// current step of mono items collection.
|
|
//
|
|
// FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do.
|
|
let error_count = tcx.sess.diagnostic().err_count();
|
|
|
|
match starting_point.node {
|
|
MonoItem::Static(def_id) => {
|
|
let instance = Instance::mono(tcx, def_id);
|
|
|
|
// Sanity check whether this ended up being collected accidentally
|
|
debug_assert!(should_codegen_locally(tcx, &instance));
|
|
|
|
let ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
|
|
visit_drop_use(tcx, ty, true, starting_point.span, &mut neighbors);
|
|
|
|
recursion_depth_reset = None;
|
|
|
|
if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
|
|
for &id in alloc.inner().relocations().values() {
|
|
collect_miri(tcx, id, &mut neighbors);
|
|
}
|
|
}
|
|
}
|
|
MonoItem::Fn(instance) => {
|
|
// Sanity check whether this ended up being collected accidentally
|
|
debug_assert!(should_codegen_locally(tcx, &instance));
|
|
|
|
// Keep track of the monomorphization recursion depth
|
|
recursion_depth_reset = Some(check_recursion_limit(
|
|
tcx,
|
|
instance,
|
|
starting_point.span,
|
|
recursion_depths,
|
|
recursion_limit,
|
|
));
|
|
check_type_length_limit(tcx, instance);
|
|
|
|
rustc_data_structures::stack::ensure_sufficient_stack(|| {
|
|
collect_neighbours(tcx, instance, &mut neighbors);
|
|
});
|
|
}
|
|
MonoItem::GlobalAsm(item_id) => {
|
|
recursion_depth_reset = None;
|
|
|
|
let item = tcx.hir().item(item_id);
|
|
if let hir::ItemKind::GlobalAsm(asm) = item.kind {
|
|
for (op, op_sp) in asm.operands {
|
|
match op {
|
|
hir::InlineAsmOperand::Const { .. } => {
|
|
// Only constants which resolve to a plain integer
|
|
// are supported. Therefore the value should not
|
|
// depend on any other items.
|
|
}
|
|
hir::InlineAsmOperand::SymFn { anon_const } => {
|
|
let fn_ty =
|
|
tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id);
|
|
visit_fn_use(tcx, fn_ty, false, *op_sp, &mut neighbors);
|
|
}
|
|
hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
|
|
let instance = Instance::mono(tcx, *def_id);
|
|
if should_codegen_locally(tcx, &instance) {
|
|
trace!("collecting static {:?}", def_id);
|
|
neighbors.push(dummy_spanned(MonoItem::Static(*def_id)));
|
|
}
|
|
}
|
|
hir::InlineAsmOperand::In { .. }
|
|
| hir::InlineAsmOperand::Out { .. }
|
|
| hir::InlineAsmOperand::InOut { .. }
|
|
| hir::InlineAsmOperand::SplitInOut { .. } => {
|
|
span_bug!(*op_sp, "invalid operand type for global_asm!")
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the
|
|
// mono item graph.
|
|
if tcx.sess.diagnostic().err_count() > error_count
|
|
&& starting_point.node.is_generic_fn()
|
|
&& starting_point.node.is_user_defined()
|
|
{
|
|
let formatted_item = with_no_trimmed_paths!(starting_point.node.to_string());
|
|
tcx.sess.span_note_without_error(
|
|
starting_point.span,
|
|
&format!("the above error was encountered while instantiating `{}`", formatted_item),
|
|
);
|
|
}
|
|
inlining_map.lock_mut().record_accesses(starting_point.node, &neighbors.items);
|
|
|
|
for (neighbour, _) in neighbors.items {
|
|
collect_items_rec(tcx, neighbour, visited, recursion_depths, recursion_limit, inlining_map);
|
|
}
|
|
|
|
if let Some((def_id, depth)) = recursion_depth_reset {
|
|
recursion_depths.insert(def_id, depth);
|
|
}
|
|
|
|
debug!("END collect_items_rec({})", starting_point.node);
|
|
}
|
|
|
|
/// Format instance name that is already known to be too long for rustc.
|
|
/// Show only the first and last 32 characters to avoid blasting
|
|
/// the user's terminal with thousands of lines of type-name.
|
|
///
|
|
/// If the type name is longer than before+after, it will be written to a file.
|
|
fn shrunk_instance_name<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
instance: &Instance<'tcx>,
|
|
before: usize,
|
|
after: usize,
|
|
) -> (String, Option<PathBuf>) {
|
|
let s = instance.to_string();
|
|
|
|
// Only use the shrunk version if it's really shorter.
|
|
// This also avoids the case where before and after slices overlap.
|
|
if s.chars().nth(before + after + 1).is_some() {
|
|
// An iterator of all byte positions including the end of the string.
|
|
let positions = || s.char_indices().map(|(i, _)| i).chain(iter::once(s.len()));
|
|
|
|
let shrunk = format!(
|
|
"{before}...{after}",
|
|
before = &s[..positions().nth(before).unwrap_or(s.len())],
|
|
after = &s[positions().rev().nth(after).unwrap_or(0)..],
|
|
);
|
|
|
|
let path = tcx.output_filenames(()).temp_path_ext("long-type.txt", None);
|
|
let written_to_path = std::fs::write(&path, s).ok().map(|_| path);
|
|
|
|
(shrunk, written_to_path)
|
|
} else {
|
|
(s, None)
|
|
}
|
|
}
|
|
|
|
fn check_recursion_limit<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
instance: Instance<'tcx>,
|
|
span: Span,
|
|
recursion_depths: &mut DefIdMap<usize>,
|
|
recursion_limit: Limit,
|
|
) -> (DefId, usize) {
|
|
let def_id = instance.def_id();
|
|
let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
|
|
debug!(" => recursion depth={}", recursion_depth);
|
|
|
|
let adjusted_recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
|
|
// HACK: drop_in_place creates tight monomorphization loops. Give
|
|
// it more margin.
|
|
recursion_depth / 4
|
|
} else {
|
|
recursion_depth
|
|
};
|
|
|
|
// Code that needs to instantiate the same function recursively
|
|
// more than the recursion limit is assumed to be causing an
|
|
// infinite expansion.
|
|
if !recursion_limit.value_within_limit(adjusted_recursion_depth) {
|
|
let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
|
|
let error = format!("reached the recursion limit while instantiating `{}`", shrunk);
|
|
let mut err = tcx.sess.struct_span_fatal(span, &error);
|
|
err.span_note(
|
|
tcx.def_span(def_id),
|
|
&format!("`{}` defined here", tcx.def_path_str(def_id)),
|
|
);
|
|
if let Some(path) = written_to_path {
|
|
err.note(&format!("the full type name has been written to '{}'", path.display()));
|
|
}
|
|
err.emit()
|
|
}
|
|
|
|
recursion_depths.insert(def_id, recursion_depth + 1);
|
|
|
|
(def_id, recursion_depth)
|
|
}
|
|
|
|
fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) {
|
|
let type_length = instance
|
|
.substs
|
|
.iter()
|
|
.flat_map(|arg| arg.walk())
|
|
.filter(|arg| match arg.unpack() {
|
|
GenericArgKind::Type(_) | GenericArgKind::Const(_) => true,
|
|
GenericArgKind::Lifetime(_) => false,
|
|
})
|
|
.count();
|
|
debug!(" => type length={}", type_length);
|
|
|
|
// Rust code can easily create exponentially-long types using only a
|
|
// polynomial recursion depth. Even with the default recursion
|
|
// depth, you can easily get cases that take >2^60 steps to run,
|
|
// which means that rustc basically hangs.
|
|
//
|
|
// Bail out in these cases to avoid that bad user experience.
|
|
if !tcx.type_length_limit().value_within_limit(type_length) {
|
|
let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
|
|
let msg = format!("reached the type-length limit while instantiating `{}`", shrunk);
|
|
let mut diag = tcx.sess.struct_span_fatal(tcx.def_span(instance.def_id()), &msg);
|
|
if let Some(path) = written_to_path {
|
|
diag.note(&format!("the full type name has been written to '{}'", path.display()));
|
|
}
|
|
diag.help(&format!(
|
|
"consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
|
|
type_length
|
|
));
|
|
diag.emit()
|
|
}
|
|
}
|
|
|
|
struct MirNeighborCollector<'a, 'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
body: &'a mir::Body<'tcx>,
|
|
output: &'a mut MonoItems<'tcx>,
|
|
instance: Instance<'tcx>,
|
|
}
|
|
|
|
impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> {
|
|
pub fn monomorphize<T>(&self, value: T) -> T
|
|
where
|
|
T: TypeFoldable<'tcx>,
|
|
{
|
|
debug!("monomorphize: self.instance={:?}", self.instance);
|
|
self.instance.subst_mir_and_normalize_erasing_regions(
|
|
self.tcx,
|
|
ty::ParamEnv::reveal_all(),
|
|
value,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
|
|
fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
|
|
debug!("visiting rvalue {:?}", *rvalue);
|
|
|
|
let span = self.body.source_info(location).span;
|
|
|
|
match *rvalue {
|
|
// When doing an cast from a regular pointer to a fat pointer, we
|
|
// have to instantiate all methods of the trait being cast to, so we
|
|
// can build the appropriate vtable.
|
|
mir::Rvalue::Cast(
|
|
mir::CastKind::Pointer(PointerCast::Unsize),
|
|
ref operand,
|
|
target_ty,
|
|
) => {
|
|
let target_ty = self.monomorphize(target_ty);
|
|
let source_ty = operand.ty(self.body, self.tcx);
|
|
let source_ty = self.monomorphize(source_ty);
|
|
let (source_ty, target_ty) =
|
|
find_vtable_types_for_unsizing(self.tcx, source_ty, target_ty);
|
|
// This could also be a different Unsize instruction, like
|
|
// from a fixed sized array to a slice. But we are only
|
|
// interested in things that produce a vtable.
|
|
if target_ty.is_trait() && !source_ty.is_trait() {
|
|
create_mono_items_for_vtable_methods(
|
|
self.tcx,
|
|
target_ty,
|
|
source_ty,
|
|
span,
|
|
self.output,
|
|
);
|
|
}
|
|
}
|
|
mir::Rvalue::Cast(
|
|
mir::CastKind::Pointer(PointerCast::ReifyFnPointer),
|
|
ref operand,
|
|
_,
|
|
) => {
|
|
let fn_ty = operand.ty(self.body, self.tcx);
|
|
let fn_ty = self.monomorphize(fn_ty);
|
|
visit_fn_use(self.tcx, fn_ty, false, span, &mut self.output);
|
|
}
|
|
mir::Rvalue::Cast(
|
|
mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)),
|
|
ref operand,
|
|
_,
|
|
) => {
|
|
let source_ty = operand.ty(self.body, self.tcx);
|
|
let source_ty = self.monomorphize(source_ty);
|
|
match *source_ty.kind() {
|
|
ty::Closure(def_id, substs) => {
|
|
let instance = Instance::resolve_closure(
|
|
self.tcx,
|
|
def_id,
|
|
substs,
|
|
ty::ClosureKind::FnOnce,
|
|
);
|
|
if should_codegen_locally(self.tcx, &instance) {
|
|
self.output.push(create_fn_mono_item(self.tcx, instance, span));
|
|
}
|
|
}
|
|
_ => bug!(),
|
|
}
|
|
}
|
|
mir::Rvalue::ThreadLocalRef(def_id) => {
|
|
assert!(self.tcx.is_thread_local_static(def_id));
|
|
let instance = Instance::mono(self.tcx, def_id);
|
|
if should_codegen_locally(self.tcx, &instance) {
|
|
trace!("collecting thread-local static {:?}", def_id);
|
|
self.output.push(respan(span, MonoItem::Static(def_id)));
|
|
}
|
|
}
|
|
_ => { /* not interesting */ }
|
|
}
|
|
|
|
self.super_rvalue(rvalue, location);
|
|
}
|
|
|
|
/// This does not walk the constant, as it has been handled entirely here and trying
|
|
/// to walk it would attempt to evaluate the `ty::Const` inside, which doesn't necessarily
|
|
/// work, as some constants cannot be represented in the type system.
|
|
fn visit_constant(&mut self, constant: &mir::Constant<'tcx>, location: Location) {
|
|
let literal = self.monomorphize(constant.literal);
|
|
let val = match literal {
|
|
mir::ConstantKind::Val(val, _) => val,
|
|
mir::ConstantKind::Ty(ct) => match ct.val() {
|
|
ty::ConstKind::Value(val) => val,
|
|
ty::ConstKind::Unevaluated(ct) => {
|
|
let param_env = ty::ParamEnv::reveal_all();
|
|
match self.tcx.const_eval_resolve(param_env, ct, None) {
|
|
// The `monomorphize` call should have evaluated that constant already.
|
|
Ok(val) => val,
|
|
Err(ErrorHandled::Reported(_) | ErrorHandled::Linted) => return,
|
|
Err(ErrorHandled::TooGeneric) => span_bug!(
|
|
self.body.source_info(location).span,
|
|
"collection encountered polymorphic constant: {:?}",
|
|
literal
|
|
),
|
|
}
|
|
}
|
|
_ => return,
|
|
},
|
|
};
|
|
collect_const_value(self.tcx, val, self.output);
|
|
self.visit_ty(literal.ty(), TyContext::Location(location));
|
|
}
|
|
|
|
fn visit_const(&mut self, constant: ty::Const<'tcx>, location: Location) {
|
|
debug!("visiting const {:?} @ {:?}", constant, location);
|
|
|
|
let substituted_constant = self.monomorphize(constant);
|
|
let param_env = ty::ParamEnv::reveal_all();
|
|
|
|
match substituted_constant.val() {
|
|
ty::ConstKind::Value(val) => collect_const_value(self.tcx, val, self.output),
|
|
ty::ConstKind::Unevaluated(unevaluated) => {
|
|
match self.tcx.const_eval_resolve(param_env, unevaluated, None) {
|
|
// The `monomorphize` call should have evaluated that constant already.
|
|
Ok(val) => span_bug!(
|
|
self.body.source_info(location).span,
|
|
"collection encountered the unevaluated constant {} which evaluated to {:?}",
|
|
substituted_constant,
|
|
val
|
|
),
|
|
Err(ErrorHandled::Reported(_) | ErrorHandled::Linted) => {}
|
|
Err(ErrorHandled::TooGeneric) => span_bug!(
|
|
self.body.source_info(location).span,
|
|
"collection encountered polymorphic constant: {}",
|
|
substituted_constant
|
|
),
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
self.super_const(constant);
|
|
}
|
|
|
|
fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
|
|
debug!("visiting terminator {:?} @ {:?}", terminator, location);
|
|
let source = self.body.source_info(location).span;
|
|
|
|
let tcx = self.tcx;
|
|
match terminator.kind {
|
|
mir::TerminatorKind::Call { ref func, .. } => {
|
|
let callee_ty = func.ty(self.body, tcx);
|
|
let callee_ty = self.monomorphize(callee_ty);
|
|
visit_fn_use(self.tcx, callee_ty, true, source, &mut self.output);
|
|
}
|
|
mir::TerminatorKind::Drop { ref place, .. }
|
|
| mir::TerminatorKind::DropAndReplace { ref place, .. } => {
|
|
let ty = place.ty(self.body, self.tcx).ty;
|
|
let ty = self.monomorphize(ty);
|
|
visit_drop_use(self.tcx, ty, true, source, self.output);
|
|
}
|
|
mir::TerminatorKind::InlineAsm { ref operands, .. } => {
|
|
for op in operands {
|
|
match *op {
|
|
mir::InlineAsmOperand::SymFn { ref value } => {
|
|
let fn_ty = self.monomorphize(value.literal.ty());
|
|
visit_fn_use(self.tcx, fn_ty, false, source, &mut self.output);
|
|
}
|
|
mir::InlineAsmOperand::SymStatic { def_id } => {
|
|
let instance = Instance::mono(self.tcx, def_id);
|
|
if should_codegen_locally(self.tcx, &instance) {
|
|
trace!("collecting asm sym static {:?}", def_id);
|
|
self.output.push(respan(source, MonoItem::Static(def_id)));
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
mir::TerminatorKind::Assert { ref msg, .. } => {
|
|
let lang_item = match msg {
|
|
mir::AssertKind::BoundsCheck { .. } => LangItem::PanicBoundsCheck,
|
|
_ => LangItem::Panic,
|
|
};
|
|
let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, Some(source)));
|
|
if should_codegen_locally(tcx, &instance) {
|
|
self.output.push(create_fn_mono_item(tcx, instance, source));
|
|
}
|
|
}
|
|
mir::TerminatorKind::Abort { .. } => {
|
|
let instance = Instance::mono(
|
|
tcx,
|
|
tcx.require_lang_item(LangItem::PanicNoUnwind, Some(source)),
|
|
);
|
|
if should_codegen_locally(tcx, &instance) {
|
|
self.output.push(create_fn_mono_item(tcx, instance, source));
|
|
}
|
|
}
|
|
mir::TerminatorKind::Goto { .. }
|
|
| mir::TerminatorKind::SwitchInt { .. }
|
|
| mir::TerminatorKind::Resume
|
|
| mir::TerminatorKind::Return
|
|
| mir::TerminatorKind::Unreachable => {}
|
|
mir::TerminatorKind::GeneratorDrop
|
|
| mir::TerminatorKind::Yield { .. }
|
|
| mir::TerminatorKind::FalseEdge { .. }
|
|
| mir::TerminatorKind::FalseUnwind { .. } => bug!(),
|
|
}
|
|
|
|
self.super_terminator(terminator, location);
|
|
}
|
|
|
|
fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
|
|
self.super_operand(operand, location);
|
|
let limit = self.tcx.move_size_limit().0;
|
|
if limit == 0 {
|
|
return;
|
|
}
|
|
let limit = Size::from_bytes(limit);
|
|
let ty = operand.ty(self.body, self.tcx);
|
|
let ty = self.monomorphize(ty);
|
|
let layout = self.tcx.layout_of(ty::ParamEnv::reveal_all().and(ty));
|
|
if let Ok(layout) = layout {
|
|
if layout.size > limit {
|
|
debug!(?layout);
|
|
let source_info = self.body.source_info(location);
|
|
debug!(?source_info);
|
|
let lint_root = source_info.scope.lint_root(&self.body.source_scopes);
|
|
debug!(?lint_root);
|
|
let Some(lint_root) = lint_root else {
|
|
// This happens when the issue is in a function from a foreign crate that
|
|
// we monomorphized in the current crate. We can't get a `HirId` for things
|
|
// in other crates.
|
|
// FIXME: Find out where to report the lint on. Maybe simply crate-level lint root
|
|
// but correct span? This would make the lint at least accept crate-level lint attributes.
|
|
return;
|
|
};
|
|
self.tcx.struct_span_lint_hir(
|
|
LARGE_ASSIGNMENTS,
|
|
lint_root,
|
|
source_info.span,
|
|
|lint| {
|
|
let mut err = lint.build(&format!("moving {} bytes", layout.size.bytes()));
|
|
err.span_label(source_info.span, "value moved from here");
|
|
err.note(&format!(r#"The current maximum size is {}, but it can be customized with the move_size_limit attribute: `#![move_size_limit = "..."]`"#, limit.bytes()));
|
|
err.emit();
|
|
},
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn visit_local(
|
|
&mut self,
|
|
_place_local: &Local,
|
|
_context: mir::visit::PlaceContext,
|
|
_location: Location,
|
|
) {
|
|
}
|
|
}
|
|
|
|
fn visit_drop_use<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
is_direct_call: bool,
|
|
source: Span,
|
|
output: &mut MonoItems<'tcx>,
|
|
) {
|
|
let instance = Instance::resolve_drop_in_place(tcx, ty);
|
|
visit_instance_use(tcx, instance, is_direct_call, source, output);
|
|
}
|
|
|
|
fn visit_fn_use<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
is_direct_call: bool,
|
|
source: Span,
|
|
output: &mut MonoItems<'tcx>,
|
|
) {
|
|
if let ty::FnDef(def_id, substs) = *ty.kind() {
|
|
let instance = if is_direct_call {
|
|
ty::Instance::resolve(tcx, ty::ParamEnv::reveal_all(), def_id, substs).unwrap().unwrap()
|
|
} else {
|
|
ty::Instance::resolve_for_fn_ptr(tcx, ty::ParamEnv::reveal_all(), def_id, substs)
|
|
.unwrap()
|
|
};
|
|
visit_instance_use(tcx, instance, is_direct_call, source, output);
|
|
}
|
|
}
|
|
|
|
fn visit_instance_use<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
instance: ty::Instance<'tcx>,
|
|
is_direct_call: bool,
|
|
source: Span,
|
|
output: &mut MonoItems<'tcx>,
|
|
) {
|
|
debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
|
|
if !should_codegen_locally(tcx, &instance) {
|
|
return;
|
|
}
|
|
|
|
match instance.def {
|
|
ty::InstanceDef::Virtual(..) | ty::InstanceDef::Intrinsic(_) => {
|
|
if !is_direct_call {
|
|
bug!("{:?} being reified", instance);
|
|
}
|
|
}
|
|
ty::InstanceDef::DropGlue(_, None) => {
|
|
// Don't need to emit noop drop glue if we are calling directly.
|
|
if !is_direct_call {
|
|
output.push(create_fn_mono_item(tcx, instance, source));
|
|
}
|
|
}
|
|
ty::InstanceDef::DropGlue(_, Some(_))
|
|
| ty::InstanceDef::VtableShim(..)
|
|
| ty::InstanceDef::ReifyShim(..)
|
|
| ty::InstanceDef::ClosureOnceShim { .. }
|
|
| ty::InstanceDef::Item(..)
|
|
| ty::InstanceDef::FnPtrShim(..)
|
|
| ty::InstanceDef::CloneShim(..) => {
|
|
output.push(create_fn_mono_item(tcx, instance, source));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we
|
|
/// can just link to the upstream crate and therefore don't need a mono item.
|
|
fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>) -> bool {
|
|
let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() else {
|
|
return true;
|
|
};
|
|
|
|
if tcx.is_foreign_item(def_id) {
|
|
// Foreign items are always linked against, there's no way of instantiating them.
|
|
return false;
|
|
}
|
|
|
|
if def_id.is_local() {
|
|
// Local items cannot be referred to locally without monomorphizing them locally.
|
|
return true;
|
|
}
|
|
|
|
if tcx.is_reachable_non_generic(def_id)
|
|
|| instance.polymorphize(tcx).upstream_monomorphization(tcx).is_some()
|
|
{
|
|
// We can link to the item in question, no instance needed in this crate.
|
|
return false;
|
|
}
|
|
|
|
if !tcx.is_mir_available(def_id) {
|
|
bug!("no MIR available for {:?}", def_id);
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
/// For a given pair of source and target type that occur in an unsizing coercion,
|
|
/// this function finds the pair of types that determines the vtable linking
|
|
/// them.
|
|
///
|
|
/// For example, the source type might be `&SomeStruct` and the target type
|
|
/// might be `&SomeTrait` in a cast like:
|
|
///
|
|
/// let src: &SomeStruct = ...;
|
|
/// let target = src as &SomeTrait;
|
|
///
|
|
/// Then the output of this function would be (SomeStruct, SomeTrait) since for
|
|
/// constructing the `target` fat-pointer we need the vtable for that pair.
|
|
///
|
|
/// Things can get more complicated though because there's also the case where
|
|
/// the unsized type occurs as a field:
|
|
///
|
|
/// ```rust
|
|
/// struct ComplexStruct<T: ?Sized> {
|
|
/// a: u32,
|
|
/// b: f64,
|
|
/// c: T
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
|
|
/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
|
|
/// for the pair of `T` (which is a trait) and the concrete type that `T` was
|
|
/// originally coerced from:
|
|
///
|
|
/// let src: &ComplexStruct<SomeStruct> = ...;
|
|
/// let target = src as &ComplexStruct<SomeTrait>;
|
|
///
|
|
/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
|
|
/// `(SomeStruct, SomeTrait)`.
|
|
///
|
|
/// Finally, there is also the case of custom unsizing coercions, e.g., for
|
|
/// smart pointers such as `Rc` and `Arc`.
|
|
fn find_vtable_types_for_unsizing<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
source_ty: Ty<'tcx>,
|
|
target_ty: Ty<'tcx>,
|
|
) -> (Ty<'tcx>, Ty<'tcx>) {
|
|
let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
|
|
let param_env = ty::ParamEnv::reveal_all();
|
|
let type_has_metadata = |ty: Ty<'tcx>| -> bool {
|
|
if ty.is_sized(tcx.at(DUMMY_SP), param_env) {
|
|
return false;
|
|
}
|
|
let tail = tcx.struct_tail_erasing_lifetimes(ty, param_env);
|
|
match tail.kind() {
|
|
ty::Foreign(..) => false,
|
|
ty::Str | ty::Slice(..) | ty::Dynamic(..) => true,
|
|
_ => bug!("unexpected unsized tail: {:?}", tail),
|
|
}
|
|
};
|
|
if type_has_metadata(inner_source) {
|
|
(inner_source, inner_target)
|
|
} else {
|
|
tcx.struct_lockstep_tails_erasing_lifetimes(inner_source, inner_target, param_env)
|
|
}
|
|
};
|
|
|
|
match (&source_ty.kind(), &target_ty.kind()) {
|
|
(&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
|
|
| (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
|
|
ptr_vtable(*a, *b)
|
|
}
|
|
(&ty::Adt(def_a, _), &ty::Adt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
|
|
ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
|
|
}
|
|
|
|
(&ty::Adt(source_adt_def, source_substs), &ty::Adt(target_adt_def, target_substs)) => {
|
|
assert_eq!(source_adt_def, target_adt_def);
|
|
|
|
let CustomCoerceUnsized::Struct(coerce_index) =
|
|
crate::custom_coerce_unsize_info(tcx, source_ty, target_ty);
|
|
|
|
let source_fields = &source_adt_def.non_enum_variant().fields;
|
|
let target_fields = &target_adt_def.non_enum_variant().fields;
|
|
|
|
assert!(
|
|
coerce_index < source_fields.len() && source_fields.len() == target_fields.len()
|
|
);
|
|
|
|
find_vtable_types_for_unsizing(
|
|
tcx,
|
|
source_fields[coerce_index].ty(tcx, source_substs),
|
|
target_fields[coerce_index].ty(tcx, target_substs),
|
|
)
|
|
}
|
|
_ => bug!(
|
|
"find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
|
|
source_ty,
|
|
target_ty
|
|
),
|
|
}
|
|
}
|
|
|
|
fn create_fn_mono_item<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
instance: Instance<'tcx>,
|
|
source: Span,
|
|
) -> Spanned<MonoItem<'tcx>> {
|
|
debug!("create_fn_mono_item(instance={})", instance);
|
|
|
|
let def_id = instance.def_id();
|
|
if tcx.sess.opts.debugging_opts.profile_closures && def_id.is_local() && tcx.is_closure(def_id)
|
|
{
|
|
crate::util::dump_closure_profile(tcx, instance);
|
|
}
|
|
|
|
respan(source, MonoItem::Fn(instance.polymorphize(tcx)))
|
|
}
|
|
|
|
/// Creates a `MonoItem` for each method that is referenced by the vtable for
|
|
/// the given trait/impl pair.
|
|
fn create_mono_items_for_vtable_methods<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
trait_ty: Ty<'tcx>,
|
|
impl_ty: Ty<'tcx>,
|
|
source: Span,
|
|
output: &mut MonoItems<'tcx>,
|
|
) {
|
|
assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars());
|
|
|
|
if let ty::Dynamic(ref trait_ty, ..) = trait_ty.kind() {
|
|
if let Some(principal) = trait_ty.principal() {
|
|
let poly_trait_ref = principal.with_self_ty(tcx, impl_ty);
|
|
assert!(!poly_trait_ref.has_escaping_bound_vars());
|
|
|
|
// Walk all methods of the trait, including those of its supertraits
|
|
let entries = tcx.vtable_entries(poly_trait_ref);
|
|
let methods = entries
|
|
.iter()
|
|
.filter_map(|entry| match entry {
|
|
VtblEntry::MetadataDropInPlace
|
|
| VtblEntry::MetadataSize
|
|
| VtblEntry::MetadataAlign
|
|
| VtblEntry::Vacant => None,
|
|
VtblEntry::TraitVPtr(_) => {
|
|
// all super trait items already covered, so skip them.
|
|
None
|
|
}
|
|
VtblEntry::Method(instance) => {
|
|
Some(*instance).filter(|instance| should_codegen_locally(tcx, instance))
|
|
}
|
|
})
|
|
.map(|item| create_fn_mono_item(tcx, item, source));
|
|
output.extend(methods);
|
|
}
|
|
|
|
// Also add the destructor.
|
|
visit_drop_use(tcx, impl_ty, false, source, output);
|
|
}
|
|
}
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Root Collection
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
struct RootCollector<'a, 'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
mode: MonoItemCollectionMode,
|
|
output: &'a mut MonoItems<'tcx>,
|
|
entry_fn: Option<(DefId, EntryFnType)>,
|
|
}
|
|
|
|
impl<'v> RootCollector<'_, 'v> {
|
|
fn process_item(&mut self, id: hir::ItemId) {
|
|
match self.tcx.def_kind(id.def_id) {
|
|
DefKind::Enum | DefKind::Struct | DefKind::Union => {
|
|
let item = self.tcx.hir().item(id);
|
|
match item.kind {
|
|
hir::ItemKind::Enum(_, ref generics)
|
|
| hir::ItemKind::Struct(_, ref generics)
|
|
| hir::ItemKind::Union(_, ref generics) => {
|
|
if generics.params.is_empty() {
|
|
if self.mode == MonoItemCollectionMode::Eager {
|
|
debug!(
|
|
"RootCollector: ADT drop-glue for {}",
|
|
self.tcx.def_path_str(item.def_id.to_def_id())
|
|
);
|
|
|
|
let ty =
|
|
Instance::new(item.def_id.to_def_id(), InternalSubsts::empty())
|
|
.ty(self.tcx, ty::ParamEnv::reveal_all());
|
|
visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output);
|
|
}
|
|
}
|
|
}
|
|
_ => bug!(),
|
|
}
|
|
}
|
|
DefKind::GlobalAsm => {
|
|
debug!(
|
|
"RootCollector: ItemKind::GlobalAsm({})",
|
|
self.tcx.def_path_str(id.def_id.to_def_id())
|
|
);
|
|
self.output.push(dummy_spanned(MonoItem::GlobalAsm(id)));
|
|
}
|
|
DefKind::Static(..) => {
|
|
debug!(
|
|
"RootCollector: ItemKind::Static({})",
|
|
self.tcx.def_path_str(id.def_id.to_def_id())
|
|
);
|
|
self.output.push(dummy_spanned(MonoItem::Static(id.def_id.to_def_id())));
|
|
}
|
|
DefKind::Const => {
|
|
// const items only generate mono items if they are
|
|
// actually used somewhere. Just declaring them is insufficient.
|
|
|
|
// but even just declaring them must collect the items they refer to
|
|
if let Ok(val) = self.tcx.const_eval_poly(id.def_id.to_def_id()) {
|
|
collect_const_value(self.tcx, val, &mut self.output);
|
|
}
|
|
}
|
|
DefKind::Impl => {
|
|
if self.mode == MonoItemCollectionMode::Eager {
|
|
let item = self.tcx.hir().item(id);
|
|
create_mono_items_for_default_impls(self.tcx, item, self.output);
|
|
}
|
|
}
|
|
DefKind::Fn => {
|
|
self.push_if_root(id.def_id);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
fn process_impl_item(&mut self, id: hir::ImplItemId) {
|
|
if matches!(self.tcx.def_kind(id.def_id), DefKind::AssocFn) {
|
|
self.push_if_root(id.def_id);
|
|
}
|
|
}
|
|
|
|
fn is_root(&self, def_id: LocalDefId) -> bool {
|
|
!item_requires_monomorphization(self.tcx, def_id)
|
|
&& match self.mode {
|
|
MonoItemCollectionMode::Eager => true,
|
|
MonoItemCollectionMode::Lazy => {
|
|
self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id)
|
|
|| self.tcx.is_reachable_non_generic(def_id)
|
|
|| self
|
|
.tcx
|
|
.codegen_fn_attrs(def_id)
|
|
.flags
|
|
.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If `def_id` represents a root, pushes it onto the list of
|
|
/// outputs. (Note that all roots must be monomorphic.)
|
|
fn push_if_root(&mut self, def_id: LocalDefId) {
|
|
if self.is_root(def_id) {
|
|
debug!("RootCollector::push_if_root: found root def_id={:?}", def_id);
|
|
|
|
let instance = Instance::mono(self.tcx, def_id.to_def_id());
|
|
self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP));
|
|
}
|
|
}
|
|
|
|
/// As a special case, when/if we encounter the
|
|
/// `main()` function, we also have to generate a
|
|
/// monomorphized copy of the start lang item based on
|
|
/// the return type of `main`. This is not needed when
|
|
/// the user writes their own `start` manually.
|
|
fn push_extra_entry_roots(&mut self) {
|
|
let Some((main_def_id, EntryFnType::Main)) = self.entry_fn else {
|
|
return;
|
|
};
|
|
|
|
let start_def_id = match self.tcx.lang_items().require(LangItem::Start) {
|
|
Ok(s) => s,
|
|
Err(err) => self.tcx.sess.fatal(&err),
|
|
};
|
|
let main_ret_ty = self.tcx.fn_sig(main_def_id).output();
|
|
|
|
// Given that `main()` has no arguments,
|
|
// then its return type cannot have
|
|
// late-bound regions, since late-bound
|
|
// regions must appear in the argument
|
|
// listing.
|
|
let main_ret_ty = self.tcx.normalize_erasing_regions(
|
|
ty::ParamEnv::reveal_all(),
|
|
main_ret_ty.no_bound_vars().unwrap(),
|
|
);
|
|
|
|
let start_instance = Instance::resolve(
|
|
self.tcx,
|
|
ty::ParamEnv::reveal_all(),
|
|
start_def_id,
|
|
self.tcx.intern_substs(&[main_ret_ty.into()]),
|
|
)
|
|
.unwrap()
|
|
.unwrap();
|
|
|
|
self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP));
|
|
}
|
|
}
|
|
|
|
fn item_requires_monomorphization(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
|
|
let generics = tcx.generics_of(def_id);
|
|
generics.requires_monomorphization(tcx)
|
|
}
|
|
|
|
fn create_mono_items_for_default_impls<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
item: &'tcx hir::Item<'tcx>,
|
|
output: &mut MonoItems<'tcx>,
|
|
) {
|
|
match item.kind {
|
|
hir::ItemKind::Impl(ref impl_) => {
|
|
for param in impl_.generics.params {
|
|
match param.kind {
|
|
hir::GenericParamKind::Lifetime { .. } => {}
|
|
hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
debug!(
|
|
"create_mono_items_for_default_impls(item={})",
|
|
tcx.def_path_str(item.def_id.to_def_id())
|
|
);
|
|
|
|
if let Some(trait_ref) = tcx.impl_trait_ref(item.def_id) {
|
|
let param_env = ty::ParamEnv::reveal_all();
|
|
let trait_ref = tcx.normalize_erasing_regions(param_env, trait_ref);
|
|
let overridden_methods = tcx.impl_item_implementor_ids(item.def_id);
|
|
for method in tcx.provided_trait_methods(trait_ref.def_id) {
|
|
if overridden_methods.contains_key(&method.def_id) {
|
|
continue;
|
|
}
|
|
|
|
if tcx.generics_of(method.def_id).own_requires_monomorphization() {
|
|
continue;
|
|
}
|
|
|
|
let substs =
|
|
InternalSubsts::for_item(tcx, method.def_id, |param, _| match param.kind {
|
|
GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
|
|
GenericParamDefKind::Type { .. }
|
|
| GenericParamDefKind::Const { .. } => {
|
|
trait_ref.substs[param.index as usize]
|
|
}
|
|
});
|
|
let instance = ty::Instance::resolve(tcx, param_env, method.def_id, substs)
|
|
.unwrap()
|
|
.unwrap();
|
|
|
|
let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP);
|
|
if mono_item.node.is_instantiable(tcx) && should_codegen_locally(tcx, &instance)
|
|
{
|
|
output.push(mono_item);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_ => bug!(),
|
|
}
|
|
}
|
|
|
|
/// Scans the miri alloc in order to find function calls, closures, and drop-glue.
|
|
fn collect_miri<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoItems<'tcx>) {
|
|
match tcx.global_alloc(alloc_id) {
|
|
GlobalAlloc::Static(def_id) => {
|
|
assert!(!tcx.is_thread_local_static(def_id));
|
|
let instance = Instance::mono(tcx, def_id);
|
|
if should_codegen_locally(tcx, &instance) {
|
|
trace!("collecting static {:?}", def_id);
|
|
output.push(dummy_spanned(MonoItem::Static(def_id)));
|
|
}
|
|
}
|
|
GlobalAlloc::Memory(alloc) => {
|
|
trace!("collecting {:?} with {:#?}", alloc_id, alloc);
|
|
for &inner in alloc.inner().relocations().values() {
|
|
rustc_data_structures::stack::ensure_sufficient_stack(|| {
|
|
collect_miri(tcx, inner, output);
|
|
});
|
|
}
|
|
}
|
|
GlobalAlloc::Function(fn_instance) => {
|
|
if should_codegen_locally(tcx, &fn_instance) {
|
|
trace!("collecting {:?} with {:#?}", alloc_id, fn_instance);
|
|
output.push(create_fn_mono_item(tcx, fn_instance, DUMMY_SP));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Scans the MIR in order to find function calls, closures, and drop-glue.
|
|
fn collect_neighbours<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
instance: Instance<'tcx>,
|
|
output: &mut MonoItems<'tcx>,
|
|
) {
|
|
debug!("collect_neighbours: {:?}", instance.def_id());
|
|
let body = tcx.instance_mir(instance.def);
|
|
|
|
MirNeighborCollector { tcx, body: &body, output, instance }.visit_body(&body);
|
|
}
|
|
|
|
fn collect_const_value<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
value: ConstValue<'tcx>,
|
|
output: &mut MonoItems<'tcx>,
|
|
) {
|
|
match value {
|
|
ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => collect_miri(tcx, ptr.provenance, output),
|
|
ConstValue::Slice { data: alloc, start: _, end: _ } | ConstValue::ByRef { alloc, .. } => {
|
|
for &id in alloc.inner().relocations().values() {
|
|
collect_miri(tcx, id, output);
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|