rust/src/bootstrap/compile.rs
Mark Simulacrum e62fdf3a59 Pacify tidy
2017-07-20 11:23:58 -06:00

1055 lines
40 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Implementation of compiling various phases of the compiler and standard
//! library.
//!
//! This module contains some of the real meat in the rustbuild build system
//! which is where Cargo is used to compiler the standard library, libtest, and
//! compiler. This module is also responsible for assembling the sysroot as it
//! goes along from the output of the previous stage.
use std::env;
use std::fs::{self, File};
use std::io::BufReader;
use std::io::prelude::*;
use std::path::{Path, PathBuf};
use std::process::{Command, Stdio};
use std::str;
use build_helper::{output, mtime, up_to_date};
use filetime::FileTime;
use rustc_serialize::json;
use util::{exe, libdir, is_dylib, copy};
use {Build, Compiler, Mode};
use native;
use builder::{Step, Builder};
//
// // Crates which have build scripts need to rely on this rule to ensure that
// // the necessary prerequisites for a build script are linked and located in
// // place.
// rules.build("may-run-build-script", "path/to/nowhere")
// .dep(move |s| {
// s.name("libstd-link")
// .host(&build.build)
// .target(&build.build)
// });
// // ========================================================================
// // Crate compilations
// //
// // Tools used during the build system but not shipped
// // These rules are "pseudo rules" that don't actually do any work
// // themselves, but represent a complete sysroot with the relevant compiler
// // linked into place.
// //
// // That is, depending on "libstd" means that when the rule is completed then
// // the `stage` sysroot for the compiler `host` will be available with a
// // standard library built for `target` linked in place. Not all rules need
// // the compiler itself to be available, just the standard library, so
// // there's a distinction between the two.
// rules.build("libstd", "src/libstd")
// .dep(|s| s.name("rustc").target(s.host))
// .dep(|s| s.name("libstd-link"));
// rules.build("libtest", "src/libtest")
// .dep(|s| s.name("libstd"))
// .dep(|s| s.name("libtest-link"))
// .default(true);
// rules.build("librustc", "src/librustc")
// .dep(|s| s.name("libtest"))
// .dep(|s| s.name("librustc-link"))
// .host(true)
// .default(true);
// Helper method to define the rules to link a crate into its place in the
// sysroot.
//
// The logic here is a little subtle as there's a few cases to consider.
// Not all combinations of (stage, host, target) actually require something
// to be compiled, but rather libraries could get propagated from a
// different location. For example:
//
// * Any crate with a `host` that's not the build triple will not actually
// compile something. A different `host` means that the build triple will
// actually compile the libraries, and then we'll copy them over from the
// build triple to the `host` directory.
//
// * Some crates aren't even compiled by the build triple, but may be copied
// from previous stages. For example if we're not doing a full bootstrap
// then we may just depend on the stage1 versions of libraries to be
// available to get linked forward.
//
// * Finally, there are some cases, however, which do indeed comiple crates
// and link them into place afterwards.
//
// The rule definition below mirrors these three cases. The `dep` method
// calculates the correct dependency which either comes from stage1, a
// different compiler, or from actually building the crate itself (the `dep`
// rule). The `run` rule then mirrors these three cases and links the cases
// forward into the compiler sysroot specified from the correct location.
// fn crate_rule<'a, 'b>(build: &'a Build,
// rules: &'b mut Rules<'a>,
// krate: &'a str,
// dep: &'a str,
// link: fn(&Build, compiler, compiler, &str))
// -> RuleBuilder<'a, 'b> {
// let mut rule = rules.build(&krate, "path/to/nowhere");
// rule.dep(move |s| {
// if build.force_use_stage1(&s.compiler(), s.target) {
// s.host(&build.build).stage(1)
// } else if s.host == build.build {
// s.name(dep)
// } else {
// s.host(&build.build)
// }
// })
// .run(move |s| {
// if build.force_use_stage1(&s.compiler(), s.target) {
// link(build,
// &s.stage(1).host(&build.build).compiler(),
// &s.compiler(),
// s.target)
// } else if s.host == build.build {
// link(build, &s.compiler(), &s.compiler(), s.target)
// } else {
// link(build,
// &s.host(&build.build).compiler(),
// &s.compiler(),
// s.target)
// }
// });
// rule
// }
// rules.build("libstd", "src/libstd")
// .dep(|s| s.name("rustc").target(s.host))
// .dep(|s| s.name("libstd-link"));
// for (krate, path, _default) in krates("std") {
// rules.build(&krate.build_step, path)
// .dep(|s| s.name("startup-objects"))
// .dep(move |s| s.name("rustc").host(&build.build).target(s.host))
// .run(move |s| compile::std(build, s.target, &s.compiler()));
// }
#[derive(Serialize)]
pub struct Std<'a> {
pub target: &'a str,
pub compiler: Compiler<'a>,
}
impl<'a> Step<'a> for Std<'a> {
type Output = ();
const DEFAULT: bool = true;
fn should_run(builder: &Builder, path: &Path) -> bool {
path.ends_with("src/libstd") ||
builder.crates("std").into_iter().any(|(_, krate_path)| {
path.ends_with(krate_path)
})
}
fn make_run(builder: &Builder, _path: Option<&Path>, host: &str, target: &str) {
builder.ensure(Std {
compiler: builder.compiler(builder.top_stage, host),
target,
})
}
/// Build the standard library.
///
/// This will build the standard library for a particular stage of the build
/// using the `compiler` targeting the `target` architecture. The artifacts
/// created will also be linked into the sysroot directory.
fn run(self, builder: &Builder) {
let build = builder.build;
let target = self.target;
let compiler = self.compiler;
builder.ensure(StartupObjects { compiler, target });
if build.force_use_stage1(compiler, target) {
let from = builder.compiler(1, &build.build);
builder.ensure(Std {
compiler: from,
target: target,
});
println!("Uplifting stage1 std ({} -> {})", from.host, target);
builder.ensure(StdLink {
compiler: from,
target_compiler: compiler,
target: target,
});
return;
}
let _folder = build.fold_output(|| format!("stage{}-std", compiler.stage));
println!("Building stage{} std artifacts ({} -> {})", compiler.stage,
compiler.host, target);
let out_dir = build.cargo_out(compiler, Mode::Libstd, target);
build.clear_if_dirty(&out_dir, &builder.rustc(compiler));
let mut cargo = builder.cargo(compiler, Mode::Libstd, target, "build");
let mut features = build.std_features();
if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
}
// When doing a local rebuild we tell cargo that we're stage1 rather than
// stage0. This works fine if the local rust and being-built rust have the
// same view of what the default allocator is, but fails otherwise. Since
// we don't have a way to express an allocator preference yet, work
// around the issue in the case of a local rebuild with jemalloc disabled.
if compiler.stage == 0 && build.local_rebuild && !build.config.use_jemalloc {
features.push_str(" force_alloc_system");
}
if compiler.stage != 0 && build.config.sanitizers {
// This variable is used by the sanitizer runtime crates, e.g.
// rustc_lsan, to build the sanitizer runtime from C code
// When this variable is missing, those crates won't compile the C code,
// so we don't set this variable during stage0 where llvm-config is
// missing
// We also only build the runtimes when --enable-sanitizers (or its
// config.toml equivalent) is used
cargo.env("LLVM_CONFIG", build.llvm_config(target));
}
cargo.arg("--features").arg(features)
.arg("--manifest-path")
.arg(build.src.join("src/libstd/Cargo.toml"));
if let Some(target) = build.config.target_config.get(target) {
if let Some(ref jemalloc) = target.jemalloc {
cargo.env("JEMALLOC_OVERRIDE", jemalloc);
}
}
if target.contains("musl") {
if let Some(p) = build.musl_root(target) {
cargo.env("MUSL_ROOT", p);
}
}
run_cargo(build,
&mut cargo,
&libstd_stamp(build, compiler, target));
builder.ensure(StdLink {
compiler: builder.compiler(compiler.stage, &build.build),
target_compiler: compiler,
target: target,
});
}
}
// crate_rule(build,
// &mut rules,
// "libstd-link",
// "build-crate-std",
// compile::std_link)
// .dep(|s| s.name("startup-objects"))
// .dep(|s| s.name("create-sysroot").target(s.host));
#[derive(Serialize)]
struct StdLink<'a> {
pub compiler: Compiler<'a>,
pub target_compiler: Compiler<'a>,
pub target: &'a str,
}
impl<'a> Step<'a> for StdLink<'a> {
type Output = ();
/// Link all libstd rlibs/dylibs into the sysroot location.
///
/// Links those artifacts generated by `compiler` to a the `stage` compiler's
/// sysroot for the specified `host` and `target`.
///
/// Note that this assumes that `compiler` has already generated the libstd
/// libraries for `target`, and this method will find them in the relevant
/// output directory.
fn run(self, builder: &Builder) {
let build = builder.build;
let compiler = self.compiler;
let target_compiler = self.target_compiler;
let target = self.target;
println!("Copying stage{} std from stage{} ({} -> {} / {})",
target_compiler.stage,
compiler.stage,
compiler.host,
target_compiler.host,
target);
let libdir = builder.sysroot_libdir(target_compiler, target);
add_to_sysroot(&libdir, &libstd_stamp(build, compiler, target));
if target.contains("musl") && !target.contains("mips") {
copy_musl_third_party_objects(build, target, &libdir);
}
if build.config.sanitizers && compiler.stage != 0 && target == "x86_64-apple-darwin" {
// The sanitizers are only built in stage1 or above, so the dylibs will
// be missing in stage0 and causes panic. See the `std()` function above
// for reason why the sanitizers are not built in stage0.
copy_apple_sanitizer_dylibs(&build.native_dir(target), "osx", &libdir);
}
}
}
/// Copies the crt(1,i,n).o startup objects
///
/// Only required for musl targets that statically link to libc
fn copy_musl_third_party_objects(build: &Build, target: &str, into: &Path) {
for &obj in &["crt1.o", "crti.o", "crtn.o"] {
copy(&build.musl_root(target).unwrap().join("lib").join(obj), &into.join(obj));
}
}
fn copy_apple_sanitizer_dylibs(native_dir: &Path, platform: &str, into: &Path) {
for &sanitizer in &["asan", "tsan"] {
let filename = format!("libclang_rt.{}_{}_dynamic.dylib", sanitizer, platform);
let mut src_path = native_dir.join(sanitizer);
src_path.push("build");
src_path.push("lib");
src_path.push("darwin");
src_path.push(&filename);
copy(&src_path, &into.join(filename));
}
}
// rules.build("startup-objects", "src/rtstartup")
// .dep(|s| s.name("create-sysroot").target(s.host))
// .run(move |s| compile::build_startup_objects(build, &s.compiler(), s.target));
#[derive(Serialize)]
pub struct StartupObjects<'a> {
pub compiler: Compiler<'a>,
pub target: &'a str,
}
impl<'a> Step<'a> for StartupObjects<'a> {
type Output = ();
fn should_run(_builder: &Builder, path: &Path) -> bool {
path.ends_with("src/rtstartup")
}
fn make_run(builder: &Builder, _path: Option<&Path>, host: &str, target: &str) {
builder.ensure(StartupObjects {
compiler: builder.compiler(builder.top_stage, host),
target,
})
}
/// Build and prepare startup objects like rsbegin.o and rsend.o
///
/// These are primarily used on Windows right now for linking executables/dlls.
/// They don't require any library support as they're just plain old object
/// files, so we just use the nightly snapshot compiler to always build them (as
/// no other compilers are guaranteed to be available).
fn run(self, builder: &Builder) {
let build = builder.build;
let for_compiler = self.compiler;
let target = self.target;
if !target.contains("pc-windows-gnu") {
return
}
let compiler = builder.compiler(0, &build.build);
let compiler_path = builder.rustc(compiler);
let src_dir = &build.src.join("src/rtstartup");
let dst_dir = &build.native_dir(target).join("rtstartup");
let sysroot_dir = &builder.sysroot_libdir(for_compiler, target);
t!(fs::create_dir_all(dst_dir));
t!(fs::create_dir_all(sysroot_dir));
for file in &["rsbegin", "rsend"] {
let src_file = &src_dir.join(file.to_string() + ".rs");
let dst_file = &dst_dir.join(file.to_string() + ".o");
if !up_to_date(src_file, dst_file) {
let mut cmd = Command::new(&compiler_path);
build.run(cmd.env("RUSTC_BOOTSTRAP", "1")
.arg("--cfg").arg(format!("stage{}", compiler.stage))
.arg("--target").arg(target)
.arg("--emit=obj")
.arg("--out-dir").arg(dst_dir)
.arg(src_file));
}
copy(dst_file, &sysroot_dir.join(file.to_string() + ".o"));
}
for obj in ["crt2.o", "dllcrt2.o"].iter() {
copy(&compiler_file(build.cc(target), obj), &sysroot_dir.join(obj));
}
}
}
// for (krate, path, _default) in krates("test") {
// rules.build(&krate.build_step, path)
// .dep(|s| s.name("libstd-link"))
// .run(move |s| compile::test(build, s.target, &s.compiler()));
// }
#[derive(Serialize)]
pub struct Test<'a> {
pub compiler: Compiler<'a>,
pub target: &'a str,
}
impl<'a> Step<'a> for Test<'a> {
type Output = ();
const DEFAULT: bool = true;
fn should_run(builder: &Builder, path: &Path) -> bool {
path.ends_with("src/libtest") ||
builder.crates("test").into_iter().any(|(_, krate_path)| {
path.ends_with(krate_path)
})
}
fn make_run(builder: &Builder, _path: Option<&Path>, host: &str, target: &str) {
builder.ensure(Test {
compiler: builder.compiler(builder.top_stage, host),
target,
})
}
/// Build libtest.
///
/// This will build libtest and supporting libraries for a particular stage of
/// the build using the `compiler` targeting the `target` architecture. The
/// artifacts created will also be linked into the sysroot directory.
fn run(self, builder: &Builder) {
let build = builder.build;
let target = self.target;
let compiler = self.compiler;
builder.ensure(Std { compiler, target });
if build.force_use_stage1(compiler, target) {
builder.ensure(Test {
compiler: builder.compiler(1, &build.build),
target: target,
});
println!("Uplifting stage1 test ({} -> {})", &build.build, target);
builder.ensure(TestLink {
compiler: builder.compiler(1, &build.build),
target_compiler: compiler,
target: target,
});
return;
}
let _folder = build.fold_output(|| format!("stage{}-test", compiler.stage));
println!("Building stage{} test artifacts ({} -> {})", compiler.stage,
compiler.host, target);
let out_dir = build.cargo_out(compiler, Mode::Libtest, target);
build.clear_if_dirty(&out_dir, &libstd_stamp(build, compiler, target));
let mut cargo = builder.cargo(compiler, Mode::Libtest, target, "build");
if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
}
cargo.arg("--manifest-path")
.arg(build.src.join("src/libtest/Cargo.toml"));
run_cargo(build,
&mut cargo,
&libtest_stamp(build, compiler, target));
builder.ensure(TestLink {
compiler: builder.compiler(compiler.stage, &build.build),
target_compiler: compiler,
target: target,
});
}
}
// crate_rule(build,
// &mut rules,
// "libtest-link",
// "build-crate-test",
// compile::test_link)
// .dep(|s| s.name("libstd-link"));
#[derive(Serialize)]
pub struct TestLink<'a> {
pub compiler: Compiler<'a>,
pub target_compiler: Compiler<'a>,
pub target: &'a str,
}
impl<'a> Step<'a> for TestLink<'a> {
type Output = ();
/// Same as `std_link`, only for libtest
fn run(self, builder: &Builder) {
let build = builder.build;
let compiler = self.compiler;
let target_compiler = self.target_compiler;
let target = self.target;
println!("Copying stage{} test from stage{} ({} -> {} / {})",
target_compiler.stage,
compiler.stage,
compiler.host,
target_compiler.host,
target);
add_to_sysroot(&builder.sysroot_libdir(target_compiler, target),
&libtest_stamp(build, compiler, target));
}
}
// for (krate, path, _default) in krates("rustc-main") {
// rules.build(&krate.build_step, path)
// .dep(|s| s.name("libtest-link"))
// .dep(move |s| s.name("llvm").host(&build.build).stage(0))
// .dep(|s| s.name("may-run-build-script"))
// .run(move |s| compile::rustc(build, s.target, &s.compiler()));
// }
#[derive(Serialize)]
pub struct Rustc<'a> {
pub compiler: Compiler<'a>,
pub target: &'a str,
}
impl<'a> Step<'a> for Rustc<'a> {
type Output = ();
const ONLY_HOSTS: bool = true;
const DEFAULT: bool = true;
fn should_run(builder: &Builder, path: &Path) -> bool {
path.ends_with("src/librustc") ||
builder.crates("rustc-main").into_iter().any(|(_, krate_path)| {
path.ends_with(krate_path)
})
}
fn make_run(builder: &Builder, _path: Option<&Path>, host: &str, target: &str) {
builder.ensure(Rustc {
compiler: builder.compiler(builder.top_stage, host),
target,
})
}
/// Build the compiler.
///
/// This will build the compiler for a particular stage of the build using
/// the `compiler` targeting the `target` architecture. The artifacts
/// created will also be linked into the sysroot directory.
fn run(self, builder: &Builder) {
let build = builder.build;
let compiler = self.compiler;
let target = self.target;
builder.ensure(Test { compiler, target });
// Build LLVM for our target. This will implicitly build the host LLVM
// if necessary.
builder.ensure(native::Llvm { target });
if build.force_use_stage1(compiler, target) {
builder.ensure(Rustc {
compiler: builder.compiler(1, &build.build),
target: target,
});
println!("Uplifting stage1 rustc ({} -> {})", &build.build, target);
builder.ensure(RustcLink {
compiler: builder.compiler(1, &build.build),
target_compiler: compiler,
target,
});
return;
}
// Ensure that build scripts have a std to link against.
builder.ensure(Std {
compiler: builder.compiler(self.compiler.stage, &build.build),
target: &build.build,
});
let _folder = build.fold_output(|| format!("stage{}-rustc", compiler.stage));
println!("Building stage{} compiler artifacts ({} -> {})",
compiler.stage, compiler.host, target);
let out_dir = build.cargo_out(compiler, Mode::Librustc, target);
build.clear_if_dirty(&out_dir, &libtest_stamp(build, compiler, target));
let mut cargo = builder.cargo(compiler, Mode::Librustc, target, "build");
cargo.arg("--features").arg(build.rustc_features())
.arg("--manifest-path")
.arg(build.src.join("src/rustc/Cargo.toml"));
// Set some configuration variables picked up by build scripts and
// the compiler alike
cargo.env("CFG_RELEASE", build.rust_release())
.env("CFG_RELEASE_CHANNEL", &build.config.channel)
.env("CFG_VERSION", build.rust_version())
.env("CFG_PREFIX", build.config.prefix.clone().unwrap_or_default());
if compiler.stage == 0 {
cargo.env("CFG_LIBDIR_RELATIVE", "lib");
} else {
let libdir_relative =
build.config.libdir_relative.clone().unwrap_or(PathBuf::from("lib"));
cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative);
}
// If we're not building a compiler with debugging information then remove
// these two env vars which would be set otherwise.
if build.config.rust_debuginfo_only_std {
cargo.env_remove("RUSTC_DEBUGINFO");
cargo.env_remove("RUSTC_DEBUGINFO_LINES");
}
if let Some(ref ver_date) = build.rust_info.commit_date() {
cargo.env("CFG_VER_DATE", ver_date);
}
if let Some(ref ver_hash) = build.rust_info.sha() {
cargo.env("CFG_VER_HASH", ver_hash);
}
if !build.unstable_features() {
cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
}
// Flag that rust llvm is in use
if build.is_rust_llvm(target) {
cargo.env("LLVM_RUSTLLVM", "1");
}
cargo.env("LLVM_CONFIG", build.llvm_config(target));
let target_config = build.config.target_config.get(target);
if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) {
cargo.env("CFG_LLVM_ROOT", s);
}
// Building with a static libstdc++ is only supported on linux right now,
// not for MSVC or macOS
if build.config.llvm_static_stdcpp &&
!target.contains("windows") &&
!target.contains("apple") {
cargo.env("LLVM_STATIC_STDCPP",
compiler_file(build.cxx(target).unwrap(), "libstdc++.a"));
}
if build.config.llvm_link_shared {
cargo.env("LLVM_LINK_SHARED", "1");
}
if let Some(ref s) = build.config.rustc_default_linker {
cargo.env("CFG_DEFAULT_LINKER", s);
}
if let Some(ref s) = build.config.rustc_default_ar {
cargo.env("CFG_DEFAULT_AR", s);
}
run_cargo(build,
&mut cargo,
&librustc_stamp(build, compiler, target));
builder.ensure(RustcLink {
compiler: builder.compiler(compiler.stage, &build.build),
target_compiler: compiler,
target,
});
}
}
// crate_rule(build,
// &mut rules,
// "librustc-link",
// "build-crate-rustc-main",
// compile::rustc_link)
// .dep(|s| s.name("libtest-link"));
#[derive(Serialize)]
struct RustcLink<'a> {
pub compiler: Compiler<'a>,
pub target_compiler: Compiler<'a>,
pub target: &'a str,
}
impl<'a> Step<'a> for RustcLink<'a> {
type Output = ();
/// Same as `std_link`, only for librustc
fn run(self, builder: &Builder) {
let build = builder.build;
let compiler = self.compiler;
let target_compiler = self.target_compiler;
let target = self.target;
println!("Copying stage{} rustc from stage{} ({} -> {} / {})",
target_compiler.stage,
compiler.stage,
compiler.host,
target_compiler.host,
target);
add_to_sysroot(&builder.sysroot_libdir(target_compiler, target),
&librustc_stamp(build, compiler, target));
}
}
/// Cargo's output path for the standard library in a given stage, compiled
/// by a particular compiler for the specified target.
pub fn libstd_stamp(build: &Build, compiler: Compiler, target: &str) -> PathBuf {
build.cargo_out(compiler, Mode::Libstd, target).join(".libstd.stamp")
}
/// Cargo's output path for libtest in a given stage, compiled by a particular
/// compiler for the specified target.
pub fn libtest_stamp(build: &Build, compiler: Compiler, target: &str) -> PathBuf {
build.cargo_out(compiler, Mode::Libtest, target).join(".libtest.stamp")
}
/// Cargo's output path for librustc in a given stage, compiled by a particular
/// compiler for the specified target.
pub fn librustc_stamp(build: &Build, compiler: Compiler, target: &str) -> PathBuf {
build.cargo_out(compiler, Mode::Librustc, target).join(".librustc.stamp")
}
fn compiler_file(compiler: &Path, file: &str) -> PathBuf {
let out = output(Command::new(compiler)
.arg(format!("-print-file-name={}", file)));
PathBuf::from(out.trim())
}
// rules.build("create-sysroot", "path/to/nowhere")
// .run(move |s| compile::create_sysroot(build, &s.compiler()));
#[derive(Serialize)]
pub struct Sysroot<'a> {
pub compiler: Compiler<'a>,
}
impl<'a> Step<'a> for Sysroot<'a> {
type Output = PathBuf;
/// Returns the sysroot for the `compiler` specified that *this build system
/// generates*.
///
/// That is, the sysroot for the stage0 compiler is not what the compiler
/// thinks it is by default, but it's the same as the default for stages
/// 1-3.
fn run(self, builder: &Builder) -> PathBuf {
let build = builder.build;
let compiler = self.compiler;
let sysroot = if compiler.stage == 0 {
build.out.join(compiler.host).join("stage0-sysroot")
} else {
build.out.join(compiler.host).join(format!("stage{}", compiler.stage))
};
let _ = fs::remove_dir_all(&sysroot);
t!(fs::create_dir_all(&sysroot));
sysroot
}
}
// the compiler with no target libraries ready to go
// rules.build("rustc", "src/rustc")
// .dep(|s| s.name("create-sysroot").target(s.host))
// .dep(move |s| {
// if s.stage == 0 {
// Step::noop()
// } else {
// s.name("librustc")
// .host(&build.build)
// .stage(s.stage - 1)
// }
// })
// .run(move |s| compile::assemble_rustc(build, s.stage, s.target));
#[derive(Serialize)]
pub struct Assemble<'a> {
/// The compiler which we will produce in this step. Assemble itself will
/// take care of ensuring that the necessary prerequisites to do so exist,
/// that is, this target can be a stage2 compiler and Assemble will build
/// previous stages for you.
pub target_compiler: Compiler<'a>,
}
impl<'a> Step<'a> for Assemble<'a> {
type Output = Compiler<'a>;
/// Prepare a new compiler from the artifacts in `stage`
///
/// This will assemble a compiler in `build/$host/stage$stage`. The compiler
/// must have been previously produced by the `stage - 1` build.build
/// compiler.
fn run(self, builder: &Builder) -> Compiler<'a> {
let build = builder.build;
let target_compiler = self.target_compiler;
if target_compiler.stage == 0 {
assert_eq!(build.build, target_compiler.host,
"Cannot obtain compiler for non-native build triple at stage 0");
// The stage 0 compiler for the build triple is always pre-built.
return target_compiler;
}
// Get the compiler that we'll use to bootstrap ourselves.
let build_compiler = if target_compiler.host != build.build {
// Build a compiler for the host platform. We cannot use the stage0
// compiler for the host platform for this because it doesn't have
// the libraries we need. FIXME: Perhaps we should download those
// libraries? It would make builds faster...
builder.ensure(Assemble {
target_compiler: Compiler {
// FIXME: It may be faster if we build just a stage 1
// compiler and then use that to bootstrap this compiler
// forward.
stage: target_compiler.stage - 1,
host: &build.build
},
})
} else {
// Build the compiler we'll use to build the stage requested. This
// may build more than one compiler (going down to stage 0).
builder.ensure(Assemble {
target_compiler: target_compiler.with_stage(target_compiler.stage - 1),
})
};
// Build the libraries for this compiler to link to (i.e., the libraries
// it uses at runtime). NOTE: Crates the target compiler compiles don't
// link to these. (FIXME: Is that correct? It seems to be correct most
// of the time but I think we do link to these for stage2/bin compilers
// when not performing a full bootstrap).
builder.ensure(Rustc { compiler: build_compiler, target: target_compiler.host });
let stage = target_compiler.stage;
let host = target_compiler.host;
println!("Assembling stage{} compiler ({})", stage, host);
// Link in all dylibs to the libdir
let sysroot = builder.sysroot(target_compiler);
let sysroot_libdir = sysroot.join(libdir(host));
t!(fs::create_dir_all(&sysroot_libdir));
let src_libdir = builder.sysroot_libdir(build_compiler, host);
for f in t!(fs::read_dir(&src_libdir)).map(|f| t!(f)) {
let filename = f.file_name().into_string().unwrap();
if is_dylib(&filename) {
copy(&f.path(), &sysroot_libdir.join(&filename));
}
}
let out_dir = build.cargo_out(build_compiler, Mode::Librustc, host);
// Link the compiler binary itself into place
let rustc = out_dir.join(exe("rustc", host));
let bindir = sysroot.join("bin");
t!(fs::create_dir_all(&bindir));
let compiler = builder.rustc(target_compiler);
let _ = fs::remove_file(&compiler);
copy(&rustc, &compiler);
// See if rustdoc exists to link it into place
let rustdoc = exe("rustdoc", host);
let rustdoc_src = out_dir.join(&rustdoc);
let rustdoc_dst = bindir.join(&rustdoc);
if fs::metadata(&rustdoc_src).is_ok() {
let _ = fs::remove_file(&rustdoc_dst);
copy(&rustdoc_src, &rustdoc_dst);
}
target_compiler
}
}
/// Link some files into a rustc sysroot.
///
/// For a particular stage this will link the file listed in `stamp` into the
/// `sysroot_dst` provided.
fn add_to_sysroot(sysroot_dst: &Path, stamp: &Path) {
t!(fs::create_dir_all(&sysroot_dst));
let mut contents = Vec::new();
t!(t!(File::open(stamp)).read_to_end(&mut contents));
// This is the method we use for extracting paths from the stamp file passed to us. See
// run_cargo for more information (in this file).
for part in contents.split(|b| *b == 0) {
if part.is_empty() {
continue
}
let path = Path::new(t!(str::from_utf8(part)));
copy(&path, &sysroot_dst.join(path.file_name().unwrap()));
}
}
// Avoiding a dependency on winapi to keep compile times down
#[cfg(unix)]
fn stderr_isatty() -> bool {
use libc;
unsafe { libc::isatty(libc::STDERR_FILENO) != 0 }
}
#[cfg(windows)]
fn stderr_isatty() -> bool {
type DWORD = u32;
type BOOL = i32;
type HANDLE = *mut u8;
const STD_ERROR_HANDLE: DWORD = -12i32 as DWORD;
extern "system" {
fn GetStdHandle(which: DWORD) -> HANDLE;
fn GetConsoleMode(hConsoleHandle: HANDLE, lpMode: *mut DWORD) -> BOOL;
}
unsafe {
let handle = GetStdHandle(STD_ERROR_HANDLE);
let mut out = 0;
GetConsoleMode(handle, &mut out) != 0
}
}
fn run_cargo(build: &Build, cargo: &mut Command, stamp: &Path) {
// Instruct Cargo to give us json messages on stdout, critically leaving
// stderr as piped so we can get those pretty colors.
cargo.arg("--message-format").arg("json")
.stdout(Stdio::piped());
if stderr_isatty() {
// since we pass message-format=json to cargo, we need to tell the rustc
// wrapper to give us colored output if necessary. This is because we
// only want Cargo's JSON output, not rustcs.
cargo.env("RUSTC_COLOR", "1");
}
build.verbose(&format!("running: {:?}", cargo));
let mut child = match cargo.spawn() {
Ok(child) => child,
Err(e) => panic!("failed to execute command: {:?}\nerror: {}", cargo, e),
};
// `target_root_dir` looks like $dir/$target/release
let target_root_dir = stamp.parent().unwrap();
// `target_deps_dir` looks like $dir/$target/release/deps
let target_deps_dir = target_root_dir.join("deps");
// `host_root_dir` looks like $dir/release
let host_root_dir = target_root_dir.parent().unwrap() // chop off `release`
.parent().unwrap() // chop off `$target`
.join(target_root_dir.file_name().unwrap());
// Spawn Cargo slurping up its JSON output. We'll start building up the
// `deps` array of all files it generated along with a `toplevel` array of
// files we need to probe for later.
let mut deps = Vec::new();
let mut toplevel = Vec::new();
let stdout = BufReader::new(child.stdout.take().unwrap());
for line in stdout.lines() {
let line = t!(line);
let json = if line.starts_with("{") {
t!(line.parse::<json::Json>())
} else {
// If this was informational, just print it out and continue
println!("{}", line);
continue
};
if json.find("reason").and_then(|j| j.as_string()) != Some("compiler-artifact") {
continue
}
for filename in json["filenames"].as_array().unwrap() {
let filename = filename.as_string().unwrap();
// Skip files like executables
if !filename.ends_with(".rlib") &&
!filename.ends_with(".lib") &&
!is_dylib(&filename) {
continue
}
let filename = Path::new(filename);
// If this was an output file in the "host dir" we don't actually
// worry about it, it's not relevant for us.
if filename.starts_with(&host_root_dir) {
continue;
}
// If this was output in the `deps` dir then this is a precise file
// name (hash included) so we start tracking it.
if filename.starts_with(&target_deps_dir) {
deps.push(filename.to_path_buf());
continue;
}
// Otherwise this was a "top level artifact" which right now doesn't
// have a hash in the name, but there's a version of this file in
// the `deps` folder which *does* have a hash in the name. That's
// the one we'll want to we'll probe for it later.
toplevel.push((filename.file_stem().unwrap()
.to_str().unwrap().to_string(),
filename.extension().unwrap().to_owned()
.to_str().unwrap().to_string()));
}
}
// Make sure Cargo actually succeeded after we read all of its stdout.
let status = t!(child.wait());
if !status.success() {
panic!("command did not execute successfully: {:?}\n\
expected success, got: {}",
cargo,
status);
}
// Ok now we need to actually find all the files listed in `toplevel`. We've
// got a list of prefix/extensions and we basically just need to find the
// most recent file in the `deps` folder corresponding to each one.
let contents = t!(target_deps_dir.read_dir())
.map(|e| t!(e))
.map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata())))
.collect::<Vec<_>>();
for (prefix, extension) in toplevel {
let candidates = contents.iter().filter(|&&(_, ref filename, _)| {
filename.starts_with(&prefix[..]) &&
filename[prefix.len()..].starts_with("-") &&
filename.ends_with(&extension[..])
});
let max = candidates.max_by_key(|&&(_, _, ref metadata)| {
FileTime::from_last_modification_time(metadata)
});
let path_to_add = match max {
Some(triple) => triple.0.to_str().unwrap(),
None => panic!("no output generated for {:?} {:?}", prefix, extension),
};
if is_dylib(path_to_add) {
let candidate = format!("{}.lib", path_to_add);
let candidate = PathBuf::from(candidate);
if candidate.exists() {
deps.push(candidate);
}
}
deps.push(path_to_add.into());
}
// Now we want to update the contents of the stamp file, if necessary. First
// we read off the previous contents along with its mtime. If our new
// contents (the list of files to copy) is different or if any dep's mtime
// is newer then we rewrite the stamp file.
deps.sort();
let mut stamp_contents = Vec::new();
if let Ok(mut f) = File::open(stamp) {
t!(f.read_to_end(&mut stamp_contents));
}
let stamp_mtime = mtime(&stamp);
let mut new_contents = Vec::new();
let mut max = None;
let mut max_path = None;
for dep in deps {
let mtime = mtime(&dep);
if Some(mtime) > max {
max = Some(mtime);
max_path = Some(dep.clone());
}
new_contents.extend(dep.to_str().unwrap().as_bytes());
new_contents.extend(b"\0");
}
let max = max.unwrap();
let max_path = max_path.unwrap();
if stamp_contents == new_contents && max <= stamp_mtime {
return
}
if max > stamp_mtime {
build.verbose(&format!("updating {:?} as {:?} changed", stamp, max_path));
} else {
build.verbose(&format!("updating {:?} as deps changed", stamp));
}
t!(t!(File::create(stamp)).write_all(&new_contents));
}