Allow instantiating object trait binder when upcasting
This PR fixes two bugs (that probably need an FCP).
### We use equality rather than subtyping for upcasting dyn conversions
This code should be valid:
```rust
#![feature(trait_upcasting)]
trait Foo: for<'h> Bar<'h> {}
trait Bar<'a> {}
fn foo(x: &dyn Foo) {
let y: &dyn Bar<'static> = x;
}
```
But instead:
```
error[E0308]: mismatched types
--> src/lib.rs:7:32
|
7 | let y: &dyn Bar<'static> = x;
| ^ one type is more general than the other
|
= note: expected existential trait ref `for<'h> Bar<'h>`
found existential trait ref `Bar<'_>`
```
And so should this:
```rust
#![feature(trait_upcasting)]
fn foo(x: &dyn for<'h> Fn(&'h ())) {
let y: &dyn FnOnce(&'static ()) = x;
}
```
But instead:
```
error[E0308]: mismatched types
--> src/lib.rs:4:39
|
4 | let y: &dyn FnOnce(&'static ()) = x;
| ^ one type is more general than the other
|
= note: expected existential trait ref `for<'h> FnOnce<(&'h (),)>`
found existential trait ref `FnOnce<(&(),)>`
```
Specifically, both of these fail because we use *equality* when comparing the supertrait to the *target* of the unsize goal. For the first example, since our supertrait is `for<'h> Bar<'h>` but our target is `Bar<'static>`, there's a higher-ranked type mismatch even though we *should* be able to instantiate that supertrait binder when upcasting. Similarly for the second example.
### New solver uses equality rather than subtyping for no-op (i.e. non-upcasting) dyn conversions
This code should be valid in the new solver, like it is with the old solver:
```rust
// -Znext-solver
fn foo<'a>(x: &mut for<'h> dyn Fn(&'h ())) {
let _: &mut dyn Fn(&'a ()) = x;
}
```
But instead:
```
error: lifetime may not live long enough
--> <source>:2:11
|
1 | fn foo<'a>(x: &mut dyn for<'h> Fn(&'h ())) {
| -- lifetime `'a` defined here
2 | let _: &mut dyn Fn(&'a ()) = x;
| ^^^^^^^^^^^^^^^^^^^ type annotation requires that `'a` must outlive `'static`
|
= note: requirement occurs because of a mutable reference to `dyn Fn(&())`
```
Specifically, this fails because we try to coerce `&mut dyn for<'h> Fn(&'h ())` to `&mut dyn Fn(&'a ())`, which registers an `dyn for<'h> Fn(&'h ()): dyn Fn(&'a ())` goal. This fails because the new solver uses *equating* rather than *subtyping* in `Unsize` goals.
This is *mostly* not a problem... You may wonder why the same code passes on the new solver for immutable references:
```
// -Znext-solver
fn foo<'a>(x: &dyn Fn(&())) {
let _: &dyn Fn(&'a ()) = x; // works
}
```
That's because in this case, we first try to coerce via `Unsize`, but due to the leak check the goal fails. Then, later in coercion, we fall back to a simple subtyping operation, which *does* work.
Since `&T` is covariant over `T`, but `&mut T` is invariant, that's where the discrepancy between these two examples crops up.
---
r? lcnr or reassign :D