This allows cross-crate inlining which is *very* good because this is called a lot throughout libstd (even when libstd is inlined across crates). In one of my projects, I have a test case with the following performance characteristics commit | optimization level | runtime (seconds) ----|------|---- before | O2 | 22s before | O3 | 107s after | O2 | 13s after | O3 | 12s I'm a bit disturbed by the 107s runtime from O3 before this commit. The performance characteristics of this test involve doing an absurd amount of small operations. A huge portion of this is creating hashmaps which involves allocating vectors. The worst portions of the profile are: ![screen shot 2013-09-06 at 10 32 15 pm](https://f.cloud.github.com/assets/64996/1100723/e5e8744c-177e-11e3-83fc-ddc5f18c60f9.png) Which as you can see looks like some *serious* problems with inlining. I would expect the hash map methods to be high up in the profile, but the top 9 callers of `cast::transmute_copy` were `Repr::repr`'s various monomorphized instances. I wish there we a better way to detect things like this in the future, and it's unfortunate that this is required for performance in the first place. I suppose I'm not entirely sure why this is needed because all of the methods should have been generated in-crate (monomorphized versions of library functions), so they should have gotten inlined? It also could just be that by modifying LLVM's idea of the inline cost of this function it was able to inline it in many more locations.
The Rust Programming Language
This is a compiler for Rust, including standard libraries, tools and documentation.
Quick Start
Windows
Note: Windows users should read the detailed getting started notes on the wiki. Even when using the binary installer the Windows build requires a MinGW installation, the precise details of which are not discussed here.
Linux / OS X
-
Install the prerequisites (if not already installed)
- g++ 4.4 or clang++ 3.x
- python 2.6 or later (but not 3.x)
- perl 5.0 or later
- gnu make 3.81 or later
- curl
-
Download and build Rust You can either download a tarball or build directly from the repo.
To build from the tarball do:
$ curl -O http://static.rust-lang.org/dist/rust-0.7.tar.gz $ tar -xzf rust-0.7.tar.gz $ cd rust-0.7
Or to build from the repo do:
$ git clone https://github.com/mozilla/rust.git $ cd rust
Now that you have Rust's source code, you can configure and build it:
$ ./configure $ make && make install
You may need to use
sudo make install
if you do not normally have permission to modify the destination directory. The install locations can be adjusted by passing a--prefix
argument toconfigure
. Various other options are also supported, pass--help
for more information on them.When complete,
make install
will place several programs into/usr/local/bin
:rustc
, the Rust compiler;rustdoc
, the API-documentation tool, andrustpkg
, the Rust package manager and build system. -
Read the tutorial.
-
Enjoy!
Notes
Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.
Snapshot binaries are currently built and tested on several platforms:
- Windows (7, Server 2008 R2), x86 only
- Linux (various distributions), x86 and x86-64
- OSX 10.6 ("Snow Leopard") or greater, x86 and x86-64
You may find that other platforms work, but these are our "tier 1" supported build environments that are most likely to work.
Rust currently needs about 1.8G of RAM to build without swapping; if it hits swap, it will take a very long time to build.
There is lots more documentation in the wiki.
License
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.