rust/src/libstd/path.rs
Aaron Turon a99e698628 Stabilize std::borrow
This commit stabilizes `std::borrow`, making the following modifications
to catch up the API with language changes:

* It renames `BorrowFrom` to `Borrow`, as was originally intended (but
  blocked for technical reasons), and reorders the parameters
  accordingly.

* It moves the type parameter of `ToOwned` to an associated type. This
  is somewhat less flexible, in that each borrowed type must have a
  unique owned type, but leads to a significant simplification for
  `Cow`. Flexibility can be regained by using newtyped slices, which is
  advisable for other reasons anyway.

* It removes the owned type parameter from `Cow`, making the type much
  less verbose.

* Deprecates the `is_owned` and `is_borrowed` predicates in favor of
  direct matching.

The above API changes are relatively minor; the basic functionality
remains the same, and essentially the whole module is now marked
`#[stable]`.

[breaking-change]
2015-02-18 15:23:58 -08:00

2598 lines
80 KiB
Rust
Executable File

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Cross-platform path manipulation.
//!
//! This module provides two types, `PathBuf` and `Path` (akin to `String` and
//! `str`), for working with paths abstractly. These types are thin wrappers
//! around `OsString` and `OsStr` respectively, meaning that they work directly
//! on strings according to the local platform's path syntax.
//!
//! ## Simple usage
//!
//! Path manipulation involves both parsing components from slices and building
//! new owned paths.
//!
//! To parse a path, you can create a `Path` slice from a `str`
//! slice and start asking questions:
//!
//! ```rust
//! use std::path::Path;
//!
//! let path = Path::new("/tmp/foo/bar.txt");
//! let file = path.file_name();
//! let extension = path.extension();
//! let parent_dir = path.parent();
//! ```
//!
//! To build or modify paths, use `PathBuf`:
//!
//! ```rust
//! use std::path::PathBuf;
//!
//! let mut path = PathBuf::new("c:\\");
//! path.push("windows");
//! path.push("system32");
//! path.set_extension("dll");
//! ```
//!
//! ## Path components and normalization
//!
//! The path APIs are built around the notion of "components", which roughly
//! correspond to the substrings between path separators (`/` and, on Windows,
//! `\`). The APIs for path parsing are largely specified in terms of the path's
//! components, so it's important to clearly understand how those are determined.
//!
//! A path can always be reconstructed into an equivalent path by putting
//! together its components via `push`. Syntactically, the paths may differ by
//! the normalization described below.
//!
//! ### Component types
//!
//! Components come in several types:
//!
//! * Normal components are the default: standard references to files or
//! directories. The path `a/b` has two normal components, `a` and `b`.
//!
//! * Current directory components represent the `.` character. For example,
//! `a/.` has a normal component `a` and a current directory component.
//!
//! * The root directory component represents a separator that designates
//! starting from root. For example, `/a/b` has a root directory component
//! followed by normal components `a` and `b`.
//!
//! On Windows, two additional component types come into play:
//!
//! * Prefix components, of which there is a large variety. For example, `C:`
//! and `\\server\share` are prefixes. The path `C:windows` has a prefix
//! component `C:` and a normal component `windows`; the path `C:\windows` has a
//! prefix component `C:`, a root directory component, and a normal component
//! `windows`.
//!
//! * Empty components, a special case for so-called "verbatim" paths where very
//! little normalization is allowed. For example, `\\?\C:\` has a "verbatim"
//! prefix `\\?\C:`, a root component, and an empty component (as a way of
//! representing the trailing `\`. Such a trailing `\` is in fact the only
//! situation in which an empty component is produced.
//!
//! ### Normalization
//!
//! Aside from splitting on the separator(s), there is a small amount of
//! "normalization":
//!
//! * Repeated separators are ignored: `a/b` and `a//b` both have components `a`
//! and `b`.
//!
//! * Paths ending in a separator are treated as if they has a current directory
//! component at the end (or, in verbatim paths, an empty component). For
//! example, while `a/b` has components `a` and `b`, the paths `a/b/` and
//! `a/b/.` both have components `a`, `b`, and `.` (current directory). The
//! reason for this normalization is that `a/b` and `a/b/` are treated
//! differently in some contexts, but `a/b/` and `a/b/.` are always treated
//! the same.
//!
//! No other normalization takes place by default. In particular, `a/./b/` and
//! `a/b` are treated distinctly in terms of components, as are `a/c` and
//! `a/b/../c`. Further normalization is possible to build on top of the
//! components APIs, and will be included in this library very soon.
#![unstable(feature = "path")]
use core::prelude::*;
use ascii::*;
use borrow::{Borrow, ToOwned, Cow};
use cmp;
use iter;
use mem;
use ops::{self, Deref};
use vec::Vec;
use fmt;
use ffi::{OsStr, OsString, AsOsStr};
use self::platform::{is_sep_byte, is_verbatim_sep, MAIN_SEP_STR, parse_prefix};
////////////////////////////////////////////////////////////////////////////////
// GENERAL NOTES
////////////////////////////////////////////////////////////////////////////////
//
// Parsing in this module is done by directly transmuting OsStr to [u8] slices,
// taking advantage of the fact that OsStr always encodes ASCII characters
// as-is. Eventually, this transmutation should be replaced by direct uses of
// OsStr APIs for parsing, but it will take a while for those to become
// available.
////////////////////////////////////////////////////////////////////////////////
// Platform-specific definitions
////////////////////////////////////////////////////////////////////////////////
// The following modules give the most basic tools for parsing paths on various
// platforms. The bulk of the code is devoted to parsing prefixes on Windows.
#[cfg(unix)]
mod platform {
use super::Prefix;
use core::prelude::*;
use ffi::OsStr;
#[inline]
pub fn is_sep_byte(b: u8) -> bool {
b == b'/'
}
#[inline]
pub fn is_verbatim_sep(b: u8) -> bool {
b == b'/'
}
pub fn parse_prefix(_: &OsStr) -> Option<Prefix> {
None
}
pub const MAIN_SEP_STR: &'static str = "/";
pub const MAIN_SEP: char = '/';
}
#[cfg(windows)]
mod platform {
use core::prelude::*;
use ascii::*;
use char::CharExt as UnicodeCharExt;
use super::{os_str_as_u8_slice, u8_slice_as_os_str, Prefix};
use ffi::OsStr;
#[inline]
pub fn is_sep_byte(b: u8) -> bool {
b == b'/' || b == b'\\'
}
#[inline]
pub fn is_verbatim_sep(b: u8) -> bool {
b == b'\\'
}
pub fn parse_prefix<'a>(path: &'a OsStr) -> Option<Prefix> {
use super::Prefix::*;
unsafe {
// The unsafety here stems from converting between &OsStr and &[u8]
// and back. This is safe to do because (1) we only look at ASCII
// contents of the encoding and (2) new &OsStr values are produced
// only from ASCII-bounded slices of existing &OsStr values.
let mut path = os_str_as_u8_slice(path);
if path.starts_with(br"\\") {
// \\
path = &path[2..];
if path.starts_with(br"?\") {
// \\?\
path = &path[2..];
if path.starts_with(br"UNC\") {
// \\?\UNC\server\share
path = &path[4..];
let (server, share) = match parse_two_comps(path, is_verbatim_sep) {
Some((server, share)) => (u8_slice_as_os_str(server),
u8_slice_as_os_str(share)),
None => (u8_slice_as_os_str(path),
u8_slice_as_os_str(&[])),
};
return Some(VerbatimUNC(server, share));
} else {
// \\?\path
let idx = path.position_elem(&b'\\');
if idx == Some(2) && path[1] == b':' {
let c = path[0];
if c.is_ascii() && (c as char).is_alphabetic() {
// \\?\C:\ path
return Some(VerbatimDisk(c.to_ascii_uppercase()));
}
}
let slice = &path[.. idx.unwrap_or(path.len())];
return Some(Verbatim(u8_slice_as_os_str(slice)));
}
} else if path.starts_with(b".\\") {
// \\.\path
path = &path[2..];
let slice = &path[.. path.position_elem(&b'\\').unwrap_or(path.len())];
return Some(DeviceNS(u8_slice_as_os_str(slice)));
}
match parse_two_comps(path, is_sep_byte) {
Some((server, share)) if server.len() > 0 && share.len() > 0 => {
// \\server\share
return Some(UNC(u8_slice_as_os_str(server),
u8_slice_as_os_str(share)));
}
_ => ()
}
} else if path.len() > 1 && path[1] == b':' {
// C:
let c = path[0];
if c.is_ascii() && (c as char).is_alphabetic() {
return Some(Disk(c.to_ascii_uppercase()));
}
}
return None;
}
fn parse_two_comps(mut path: &[u8], f: fn(u8) -> bool) -> Option<(&[u8], &[u8])> {
let first = match path.iter().position(|x| f(*x)) {
None => return None,
Some(x) => &path[.. x]
};
path = &path[(first.len()+1)..];
let idx = path.iter().position(|x| f(*x));
let second = &path[.. idx.unwrap_or(path.len())];
Some((first, second))
}
}
pub const MAIN_SEP_STR: &'static str = "\\";
pub const MAIN_SEP: char = '\\';
}
////////////////////////////////////////////////////////////////////////////////
// Windows Prefixes
////////////////////////////////////////////////////////////////////////////////
/// Path prefixes (Windows only).
///
/// Windows uses a variety of path styles, including references to drive
/// volumes (like `C:`), network shared (like `\\server\share`) and
/// others. In addition, some path prefixes are "verbatim", in which case
/// `/` is *not* treated as a separator and essentially no normalization is
/// performed.
#[derive(Copy, Clone, Debug, Hash, PartialOrd, Ord, PartialEq, Eq)]
pub enum Prefix<'a> {
/// Prefix `\\?\`, together with the given component immediately following it.
Verbatim(&'a OsStr),
/// Prefix `\\?\UNC\`, with the "server" and "share" components following it.
VerbatimUNC(&'a OsStr, &'a OsStr),
/// Prefix like `\\?\C:\`, for the given drive letter
VerbatimDisk(u8),
/// Prefix `\\.\`, together with the given component immediately following it.
DeviceNS(&'a OsStr),
/// Prefix `\\server\share`, with the given "server" and "share" components.
UNC(&'a OsStr, &'a OsStr),
/// Prefix `C:` for the given disk drive.
Disk(u8),
}
impl<'a> Prefix<'a> {
#[inline]
fn len(&self) -> usize {
use self::Prefix::*;
fn os_str_len(s: &OsStr) -> usize {
os_str_as_u8_slice(s).len()
}
match *self {
Verbatim(x) => 4 + os_str_len(x),
VerbatimUNC(x,y) => 8 + os_str_len(x) +
if os_str_len(y) > 0 { 1 + os_str_len(y) }
else { 0 },
VerbatimDisk(_) => 6,
UNC(x,y) => 2 + os_str_len(x) +
if os_str_len(y) > 0 { 1 + os_str_len(y) }
else { 0 },
DeviceNS(x) => 4 + os_str_len(x),
Disk(_) => 2
}
}
/// Determine if the prefix is verbatim, i.e. begins `\\?\`.
#[inline]
pub fn is_verbatim(&self) -> bool {
use self::Prefix::*;
match *self {
Verbatim(_) | VerbatimDisk(_) | VerbatimUNC(_, _) => true,
_ => false
}
}
#[inline]
fn is_drive(&self) -> bool {
match *self {
Prefix::Disk(_) => true,
_ => false,
}
}
#[inline]
fn has_implicit_root(&self) -> bool {
!self.is_drive()
}
}
////////////////////////////////////////////////////////////////////////////////
// Exposed parsing helpers
////////////////////////////////////////////////////////////////////////////////
/// Determine whether the character is one of the permitted path
/// separators for the current platform.
pub fn is_separator(c: char) -> bool {
use ascii::*;
c.is_ascii() && is_sep_byte(c as u8)
}
/// The primary sperator for the current platform
pub const MAIN_SEPARATOR: char = platform::MAIN_SEP;
////////////////////////////////////////////////////////////////////////////////
// Misc helpers
////////////////////////////////////////////////////////////////////////////////
// Iterate through `iter` while it matches `prefix`; return `None` if `prefix`
// is not a prefix of `iter`, otherwise return `Some(iter_after_prefix)` giving
// `iter` after having exhausted `prefix`.
fn iter_after<A, I, J>(mut iter: I, mut prefix: J) -> Option<I> where
I: Iterator<Item=A> + Clone, J: Iterator<Item=A>, A: PartialEq
{
loop {
let mut iter_next = iter.clone();
match (iter_next.next(), prefix.next()) {
(Some(x), Some(y)) => {
if x != y { return None }
}
(Some(_), None) => return Some(iter),
(None, None) => return Some(iter),
(None, Some(_)) => return None,
}
iter = iter_next;
}
}
// See note at the top of this module to understand why these are used:
fn os_str_as_u8_slice(s: &OsStr) -> &[u8] {
unsafe { mem::transmute(s) }
}
unsafe fn u8_slice_as_os_str(s: &[u8]) -> &OsStr {
mem::transmute(s)
}
////////////////////////////////////////////////////////////////////////////////
// Cross-platform parsing
////////////////////////////////////////////////////////////////////////////////
/// Says whether the path ends in a separator character and therefore needs to
/// be treated as if it ended with an additional `.`
fn has_suffix(s: &[u8], prefix: Option<Prefix>) -> bool {
let (prefix_len, verbatim) = if let Some(p) = prefix {
(p.len(), p.is_verbatim())
} else { (0, false) };
if prefix_len > 0 && prefix_len == s.len() && !verbatim { return true; }
let mut splits = s[prefix_len..].split(|b| is_sep_byte(*b));
let last = splits.next_back().unwrap();
let more = splits.next_back().is_some();
more && last == b""
}
/// Says whether the first byte after the prefix is a separator.
fn has_physical_root(s: &[u8], prefix: Option<Prefix>) -> bool {
let path = if let Some(p) = prefix { &s[p.len()..] } else { s };
path.len() > 0 && is_sep_byte(path[0])
}
fn parse_single_component(comp: &[u8]) -> Option<Component> {
match comp {
b"." => Some(Component::CurDir),
b".." => Some(Component::ParentDir),
b"" => None,
_ => Some(Component::Normal(unsafe { u8_slice_as_os_str(comp) }))
}
}
// basic workhorse for splitting stem and extension
#[allow(unused_unsafe)] // FIXME
fn split_file_at_dot(file: &OsStr) -> (Option<&OsStr>, Option<&OsStr>) {
unsafe {
if os_str_as_u8_slice(file) == b".." { return (Some(file), None) }
// The unsafety here stems from converting between &OsStr and &[u8]
// and back. This is safe to do because (1) we only look at ASCII
// contents of the encoding and (2) new &OsStr values are produced
// only from ASCII-bounded slices of existing &OsStr values.
let mut iter = os_str_as_u8_slice(file).rsplitn(1, |b| *b == b'.');
let after = iter.next();
let before = iter.next();
if before == Some(b"") {
(Some(file), None)
} else {
(before.map(|s| u8_slice_as_os_str(s)),
after.map(|s| u8_slice_as_os_str(s)))
}
}
}
////////////////////////////////////////////////////////////////////////////////
// The core iterators
////////////////////////////////////////////////////////////////////////////////
/// Component parsing works by a double-ended state machine; the cursors at the
/// front and back of the path each keep track of what parts of the path have
/// been consumed so far.
///
/// Going front to back, a path is made up of a prefix, a root component, a body
/// (of normal components), and a suffix/emptycomponent (normalized `.` or ``
/// for a path ending with the separator)
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
enum State {
Prefix = 0, // c:
Root = 1, // /
Body = 2, // foo/bar/baz
Suffix = 3, // .
Done = 4,
}
/// A single component of a path.
///
/// See the module documentation for an in-depth explanation of components and
/// their role in the API.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum Component<'a> {
/// A Windows path prefix, e.g. `C:` or `\server\share`.
///
/// Does not occur on Unix.
Prefix {
/// The prefix as an unparsed `OsStr` slice.
raw: &'a OsStr,
/// The parsed prefix data.
parsed: Prefix<'a>
},
/// An empty component. Only used on Windows for the last component of
/// verbatim paths ending with a separator (e.g. the last component of
/// `\\?\C:\windows\` but not `\\?\C:\windows` or `C:\windows`).
Empty,
/// The root directory component, appears after any prefix and before anything else
RootDir,
/// A reference to the current directory, i.e. `.`
CurDir,
/// A reference to the parent directory, i.e. `..`
ParentDir,
/// A normal component, i.e. `a` and `b` in `a/b`
Normal(&'a OsStr),
}
impl<'a> Component<'a> {
/// Extract the underlying `OsStr` slice
pub fn as_os_str(self) -> &'a OsStr {
match self {
Component::Prefix { raw, .. } => &raw,
Component::Empty => OsStr::from_str(""),
Component::RootDir => OsStr::from_str(MAIN_SEP_STR),
Component::CurDir => OsStr::from_str("."),
Component::ParentDir => OsStr::from_str(".."),
Component::Normal(path) => path,
}
}
}
/// The core iterator giving the components of a path.
///
/// See the module documentation for an in-depth explanation of components and
/// their role in the API.
#[derive(Clone)]
pub struct Components<'a> {
// The path left to parse components from
path: &'a [u8],
// The prefix as it was originally parsed, if any
prefix: Option<Prefix<'a>>,
// true if path *physically* has a root separator; for most Windows
// prefixes, it may have a "logical" rootseparator for the purposes of
// normalization, e.g. \\server\share == \\server\share\.
has_physical_root: bool,
// The iterator is double-ended, and these two states keep track of what has
// been produced from either end
front: State,
back: State,
}
/// An iterator over the components of a path, as `OsStr` slices.
#[derive(Clone)]
pub struct Iter<'a> {
inner: Components<'a>
}
impl<'a> Components<'a> {
// how long is the prefix, if any?
#[inline]
fn prefix_len(&self) -> usize {
self.prefix.as_ref().map(Prefix::len).unwrap_or(0)
}
#[inline]
fn prefix_verbatim(&self) -> bool {
self.prefix.as_ref().map(Prefix::is_verbatim).unwrap_or(false)
}
/// how much of the prefix is left from the point of view of iteration?
#[inline]
fn prefix_remaining(&self) -> usize {
if self.front == State::Prefix { self.prefix_len() }
else { 0 }
}
fn prefix_and_root(&self) -> usize {
let root = if self.front <= State::Root && self.has_physical_root { 1 } else { 0 };
self.prefix_remaining() + root
}
// is the iteration complete?
#[inline]
fn finished(&self) -> bool {
self.front == State::Done || self.back == State::Done || self.front > self.back
}
#[inline]
fn is_sep_byte(&self, b: u8) -> bool {
if self.prefix_verbatim() {
is_verbatim_sep(b)
} else {
is_sep_byte(b)
}
}
/// Extract a slice corresponding to the portion of the path remaining for iteration.
pub fn as_path(&self) -> &'a Path {
let mut comps = self.clone();
if comps.front == State::Body { comps.trim_left(); }
if comps.back == State::Body { comps.trim_right(); }
if comps.path.is_empty() && comps.front < comps.back && comps.back == State::Suffix {
Path::new(".")
} else {
unsafe { Path::from_u8_slice(comps.path) }
}
}
/// Is the *original* path rooted?
fn has_root(&self) -> bool {
if self.has_physical_root { return true }
if let Some(p) = self.prefix {
if p.has_implicit_root() { return true }
}
false
}
// parse a component from the left, saying how many bytes to consume to
// remove the component
fn parse_next_component(&self) -> (usize, Option<Component<'a>>) {
debug_assert!(self.front == State::Body);
let (extra, comp) = match self.path.iter().position(|b| self.is_sep_byte(*b)) {
None => (0, self.path),
Some(i) => (1, &self.path[.. i]),
};
(comp.len() + extra, parse_single_component(comp))
}
// parse a component from the right, saying how many bytes to consume to
// remove the component
fn parse_next_component_back(&self) -> (usize, Option<Component<'a>>) {
debug_assert!(self.back == State::Body);
let start = self.prefix_and_root();
let (extra, comp) = match self.path[start..].iter().rposition(|b| self.is_sep_byte(*b)) {
None => (0, &self.path[start ..]),
Some(i) => (1, &self.path[start + i + 1 ..]),
};
(comp.len() + extra, parse_single_component(comp))
}
// trim away repeated separators (i.e. emtpy components) on the left
fn trim_left(&mut self) {
while !self.path.is_empty() {
let (size, comp) = self.parse_next_component();
if comp.is_some() {
return;
} else {
self.path = &self.path[size ..];
}
}
}
// trim away repeated separators (i.e. emtpy components) on the right
fn trim_right(&mut self) {
while self.path.len() > self.prefix_and_root() {
let (size, comp) = self.parse_next_component_back();
if comp.is_some() {
return;
} else {
self.path = &self.path[.. self.path.len() - size];
}
}
}
/// Examine the next component without consuming it.
pub fn peek(&self) -> Option<Component<'a>> {
self.clone().next()
}
}
impl<'a> Iter<'a> {
/// Extract a slice corresponding to the portion of the path remaining for iteration.
pub fn as_path(&self) -> &'a Path {
self.inner.as_path()
}
}
impl<'a> Iterator for Iter<'a> {
type Item = &'a OsStr;
fn next(&mut self) -> Option<&'a OsStr> {
self.inner.next().map(Component::as_os_str)
}
}
impl<'a> DoubleEndedIterator for Iter<'a> {
fn next_back(&mut self) -> Option<&'a OsStr> {
self.inner.next_back().map(Component::as_os_str)
}
}
impl<'a> Iterator for Components<'a> {
type Item = Component<'a>;
fn next(&mut self) -> Option<Component<'a>> {
while !self.finished() {
match self.front {
State::Prefix if self.prefix_len() > 0 => {
self.front = State::Root;
debug_assert!(self.prefix_len() <= self.path.len());
let raw = &self.path[.. self.prefix_len()];
self.path = &self.path[self.prefix_len() .. ];
return Some(Component::Prefix {
raw: unsafe { u8_slice_as_os_str(raw) },
parsed: self.prefix.unwrap()
})
}
State::Prefix => {
self.front = State::Root;
}
State::Root => {
self.front = State::Body;
if self.has_physical_root {
debug_assert!(self.path.len() > 0);
self.path = &self.path[1..];
return Some(Component::RootDir)
} else if let Some(p) = self.prefix {
if p.has_implicit_root() && !p.is_verbatim() {
return Some(Component::RootDir)
}
}
}
State::Body if !self.path.is_empty() => {
let (size, comp) = self.parse_next_component();
self.path = &self.path[size ..];
if comp.is_some() { return comp }
}
State::Body => {
self.front = State::Suffix;
}
State::Suffix => {
self.front = State::Done;
if self.prefix_verbatim() {
return Some(Component::Empty)
} else {
return Some(Component::CurDir)
}
}
State::Done => unreachable!()
}
}
None
}
}
impl<'a> DoubleEndedIterator for Components<'a> {
fn next_back(&mut self) -> Option<Component<'a>> {
while !self.finished() {
match self.back {
State::Suffix => {
self.back = State::Body;
if self.prefix_verbatim() {
return Some(Component::Empty)
} else {
return Some(Component::CurDir)
}
}
State::Body if self.path.len() > self.prefix_and_root() => {
let (size, comp) = self.parse_next_component_back();
self.path = &self.path[.. self.path.len() - size];
if comp.is_some() { return comp }
}
State::Body => {
self.back = State::Root;
}
State::Root => {
self.back = State::Prefix;
if self.has_physical_root {
self.path = &self.path[.. self.path.len() - 1];
return Some(Component::RootDir)
} else if let Some(p) = self.prefix {
if p.has_implicit_root() && !p.is_verbatim() {
return Some(Component::RootDir)
}
}
}
State::Prefix if self.prefix_len() > 0 => {
self.back = State::Done;
return Some(Component::Prefix {
raw: unsafe { u8_slice_as_os_str(self.path) },
parsed: self.prefix.unwrap()
})
}
State::Prefix => {
self.back = State::Done;
return None
}
State::Done => unreachable!()
}
}
None
}
}
fn optional_path(path: &Path) -> Option<&Path> {
if path.as_u8_slice().is_empty() { None } else { Some(path) }
}
impl<'a> cmp::PartialEq for Components<'a> {
fn eq(&self, other: &Components<'a>) -> bool {
iter::order::eq(self.clone(), other.clone())
}
}
impl<'a> cmp::Eq for Components<'a> {}
impl<'a> cmp::PartialOrd for Components<'a> {
fn partial_cmp(&self, other: &Components<'a>) -> Option<cmp::Ordering> {
iter::order::partial_cmp(self.clone(), other.clone())
}
}
impl<'a> cmp::Ord for Components<'a> {
fn cmp(&self, other: &Components<'a>) -> cmp::Ordering {
iter::order::cmp(self.clone(), other.clone())
}
}
////////////////////////////////////////////////////////////////////////////////
// Basic types and traits
////////////////////////////////////////////////////////////////////////////////
/// An owned, mutable path (akin to `String`).
///
/// This type provides methods like `push` and `set_extension` that mutate the
/// path in place. It also implements `Deref` to `Path`, meaning that all
/// methods on `Path` slices are available on `PathBuf` values as well.
///
/// More details about the overall approach can be found in
/// the module documentation.
///
/// # Example
///
/// ```rust
/// use std::path::PathBuf;
///
/// let mut path = PathBuf::new("c:\\");
/// path.push("windows");
/// path.push("system32");
/// path.set_extension("dll");
/// ```
#[derive(Clone, Hash)]
pub struct PathBuf {
inner: OsString
}
impl PathBuf {
fn as_mut_vec(&mut self) -> &mut Vec<u8> {
unsafe { mem::transmute(self) }
}
/// Allocate a `PathBuf` with initial contents given by the
/// argument.
pub fn new<S: ?Sized + AsOsStr>(s: &S) -> PathBuf {
PathBuf { inner: s.as_os_str().to_os_string() }
}
/// Extend `self` with `path`.
///
/// If `path` is absolute, it replaces the current path.
///
/// On Windows:
///
/// * if `path` has a root but no prefix (e.g. `\windows`), it
/// replaces everything except for the prefix (if any) of `self`.
/// * if `path` has a prefix but no root, it replaces `self.
pub fn push<P: ?Sized>(&mut self, path: &P) where P: AsPath {
// in general, a separator is needed if the rightmost byte is not a separator
let mut need_sep = self.as_mut_vec().last().map(|c| !is_sep_byte(*c)).unwrap_or(false);
// in the special case of `C:` on Windows, do *not* add a separator
{
let comps = self.components();
if comps.prefix_len() > 0 &&
comps.prefix_len() == comps.path.len() &&
comps.prefix.unwrap().is_drive()
{
need_sep = false
}
}
let path = path.as_path();
// absolute `path` replaces `self`
if path.is_absolute() || path.prefix().is_some() {
self.as_mut_vec().truncate(0);
// `path` has a root but no prefix, e.g. `\windows` (Windows only)
} else if path.has_root() {
let prefix_len = self.components().prefix_remaining();
self.as_mut_vec().truncate(prefix_len);
// `path` is a pure relative path
} else if need_sep {
self.inner.push_os_str(OsStr::from_str(MAIN_SEP_STR));
}
self.inner.push_os_str(path.as_os_str());
}
/// Truncate `self` to `self.parent()`.
///
/// Returns `false` and does nothing if `self.parent()` is `None`.
/// Otherwise, returns `true`.
pub fn pop(&mut self) -> bool {
match self.parent().map(|p| p.as_u8_slice().len()) {
Some(len) => {
self.as_mut_vec().truncate(len);
true
}
None => false
}
}
/// Updates `self.file_name()` to `file_name`.
///
/// If `self.file_name()` was `None`, this is equivalent to pushing
/// `file_name`.
///
/// # Examples
///
/// ```rust
/// use std::path::{Path, PathBuf};
///
/// let mut buf = PathBuf::new("/foo/");
/// assert!(buf.file_name() == None);
/// buf.set_file_name("bar");
/// assert!(buf == PathBuf::new("/foo/bar"));
/// assert!(buf.file_name().is_some());
/// buf.set_file_name("baz.txt");
/// assert!(buf == PathBuf::new("/foo/baz.txt"));
/// ```
pub fn set_file_name<S: ?Sized>(&mut self, file_name: &S) where S: AsOsStr {
if self.file_name().is_some() && !self.pop() {
// Given that there is a file name, this is reachable only for
// Windows paths like c:file or paths like `foo`, but not `c:\` or
// `/`.
let prefix_len = self.components().prefix_remaining();
self.as_mut_vec().truncate(prefix_len);
}
self.push(file_name.as_os_str());
}
/// Updates `self.extension()` to `extension`.
///
/// If `self.file_name()` is `None`, does nothing and returns `false`.
///
/// Otherwise, returns `true`; if `self.extension()` is `None`, the extension
/// is added; otherwise it is replaced.
pub fn set_extension<S: ?Sized + AsOsStr>(&mut self, extension: &S) -> bool {
if self.file_name().is_none() { return false; }
let mut stem = match self.file_stem() {
Some(stem) => stem.to_os_string(),
None => OsString::from_str(""),
};
let extension = extension.as_os_str();
if os_str_as_u8_slice(extension).len() > 0 {
stem.push_os_str(OsStr::from_str("."));
stem.push_os_str(extension.as_os_str());
}
self.set_file_name(&stem);
true
}
/// Consume the `PathBuf`, yielding its internal `OsString` storage
pub fn into_os_string(self) -> OsString {
self.inner
}
}
impl<'a, P: ?Sized + 'a> iter::FromIterator<&'a P> for PathBuf where P: AsPath {
fn from_iter<I: Iterator<Item = &'a P>>(iter: I) -> PathBuf {
let mut buf = PathBuf::new("");
buf.extend(iter);
buf
}
}
impl<'a, P: ?Sized + 'a> iter::Extend<&'a P> for PathBuf where P: AsPath {
fn extend<I: Iterator<Item = &'a P>>(&mut self, iter: I) {
for p in iter {
self.push(p)
}
}
}
impl fmt::Debug for PathBuf {
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
fmt::Debug::fmt(&**self, formatter)
}
}
impl ops::Deref for PathBuf {
type Target = Path;
fn deref(&self) -> &Path {
unsafe { mem::transmute(&self.inner[]) }
}
}
impl Borrow<Path> for PathBuf {
fn borrow(&self) -> &Path {
self.deref()
}
}
impl ToOwned for Path {
type Owned = PathBuf;
fn to_owned(&self) -> PathBuf { self.to_path_buf() }
}
impl cmp::PartialEq for PathBuf {
fn eq(&self, other: &PathBuf) -> bool {
self.components() == other.components()
}
}
impl cmp::Eq for PathBuf {}
impl cmp::PartialOrd for PathBuf {
fn partial_cmp(&self, other: &PathBuf) -> Option<cmp::Ordering> {
self.components().partial_cmp(&other.components())
}
}
impl cmp::Ord for PathBuf {
fn cmp(&self, other: &PathBuf) -> cmp::Ordering {
self.components().cmp(&other.components())
}
}
impl AsOsStr for PathBuf {
fn as_os_str(&self) -> &OsStr {
&self.inner[]
}
}
/// A slice of a path (akin to `str`).
///
/// This type supports a number of operations for inspecting a path, including
/// breaking the path into its components (separated by `/` or `\`, depending on
/// the platform), extracting the file name, determining whether the path is
/// absolute, and so on. More details about the overall approach can be found in
/// the module documentation.
///
/// This is an *unsized* type, meaning that it must always be used with behind a
/// pointer like `&` or `Box`.
///
/// # Example
///
/// ```rust
/// use std::path::Path;
///
/// let path = Path::new("/tmp/foo/bar.txt");
/// let file = path.file_name();
/// let extension = path.extension();
/// let parent_dir = path.parent();
/// ```
///
#[derive(Hash)]
pub struct Path {
inner: OsStr
}
impl Path {
// The following (private!) function allows construction of a path from a u8
// slice, which is only safe when it is known to follow the OsStr encoding.
unsafe fn from_u8_slice(s: &[u8]) -> &Path {
mem::transmute(s)
}
// The following (private!) function reveals the byte encoding used for OsStr.
fn as_u8_slice(&self) -> &[u8] {
unsafe { mem::transmute(self) }
}
/// Directly wrap a string slice as a `Path` slice.
///
/// This is a cost-free conversion.
pub fn new<S: ?Sized + AsOsStr>(s: &S) -> &Path {
unsafe { mem::transmute(s.as_os_str()) }
}
/// Yield a `&str` slice if the `Path` is valid unicode.
///
/// This conversion may entail doing a check for UTF-8 validity.
pub fn to_str(&self) -> Option<&str> {
self.inner.to_str()
}
/// Convert a `Path` to a `Cow<str>`.
///
/// Any non-Unicode sequences are replaced with U+FFFD REPLACEMENT CHARACTER.
pub fn to_string_lossy(&self) -> Cow<str> {
self.inner.to_string_lossy()
}
/// Convert a `Path` to an owned `PathBuf`.
pub fn to_path_buf(&self) -> PathBuf {
PathBuf::new(self)
}
/// A path is *absolute* if it is independent of the current directory.
///
/// * On Unix, a path is absolute if it starts with the root, so
/// `is_absolute` and `has_root` are equivalent.
///
/// * On Windows, a path is absolute if it has a prefix and starts with the
/// root: `c:\windows` is absolute, while `c:temp` and `\temp` are not. In
/// other words, `path.is_absolute() == path.prefix().is_some() && path.has_root()`.
pub fn is_absolute(&self) -> bool {
self.has_root() &&
(cfg!(unix) || self.prefix().is_some())
}
/// A path is *relative* if it is not absolute.
pub fn is_relative(&self) -> bool {
!self.is_absolute()
}
/// Returns the *prefix* of a path, if any.
///
/// Prefixes are relevant only for Windows paths, and consist of volumes
/// like `C:`, UNC prefixes like `\\server`, and others described in more
/// detail in `std::os::windows::PathExt`.
pub fn prefix(&self) -> Option<&Path> {
let iter = self.components();
optional_path(unsafe {
Path::from_u8_slice(
&self.as_u8_slice()[.. iter.prefix_remaining()])
})
}
/// A path has a root if the body of the path begins with the directory separator.
///
/// * On Unix, a path has a root if it begins with `/`.
///
/// * On Windows, a path has a root if it:
/// * has no prefix and begins with a separator, e.g. `\\windows`
/// * has a prefix followed by a separator, e.g. `c:\windows` but not `c:windows`
/// * has any non-disk prefix, e.g. `\\server\share`
pub fn has_root(&self) -> bool {
self.components().has_root()
}
/// The path without its final component.
///
/// Does nothing, returning `None` if the path consists of just a prefix
/// and/or root directory reference.
///
/// # Examples
///
/// ```rust
/// use std::path::Path;
///
/// let path = Path::new("/foo/bar");
/// let foo = path.parent().unwrap();
/// assert!(foo == Path::new("/foo"));
/// let root = foo.parent().unwrap();
/// assert!(root == Path::new("/"));
/// assert!(root.parent() == None);
/// ```
pub fn parent(&self) -> Option<&Path> {
let mut comps = self.components();
let comp = comps.next_back();
let rest = optional_path(comps.as_path());
match (comp, comps.next_back()) {
(Some(Component::CurDir), Some(Component::RootDir)) => None,
(Some(Component::CurDir), Some(Component::Prefix { .. })) => None,
(Some(Component::Empty), Some(Component::RootDir)) => None,
(Some(Component::Empty), Some(Component::Prefix { .. })) => None,
(Some(Component::Prefix { .. }), None) => None,
(Some(Component::RootDir), Some(Component::Prefix { .. })) => None,
_ => rest
}
}
/// The final component of the path, if it is a normal file.
///
/// If the path terminates in `.`, `..`, or consists solely or a root of
/// prefix, `file` will return `None`.
pub fn file_name(&self) -> Option<&OsStr> {
self.components().next_back().and_then(|p| match p {
Component::Normal(p) => Some(p.as_os_str()),
_ => None
})
}
/// Returns a path that, when joined onto `base`, yields `self`.
pub fn relative_from<'a, P: ?Sized>(&'a self, base: &'a P) -> Option<&Path> where
P: AsPath
{
iter_after(self.components(), base.as_path().components()).map(|c| c.as_path())
}
/// Determines whether `base` is a prefix of `self`.
pub fn starts_with<P: ?Sized>(&self, base: &P) -> bool where P: AsPath {
iter_after(self.components(), base.as_path().components()).is_some()
}
/// Determines whether `base` is a suffix of `self`.
pub fn ends_with<P: ?Sized>(&self, child: &P) -> bool where P: AsPath {
iter_after(self.components().rev(), child.as_path().components().rev()).is_some()
}
/// Extract the stem (non-extension) portion of `self.file()`.
///
/// The stem is:
///
/// * None, if there is no file name;
/// * The entire file name if there is no embedded `.`;
/// * The entire file name if the file name begins with `.` and has no other `.`s within;
/// * Otherwise, the portion of the file name before the final `.`
pub fn file_stem(&self) -> Option<&OsStr> {
self.file_name().map(split_file_at_dot).and_then(|(before, after)| before.or(after))
}
/// Extract the extension of `self.file()`, if possible.
///
/// The extension is:
///
/// * None, if there is no file name;
/// * None, if there is no embedded `.`;
/// * None, if the file name begins with `.` and has no other `.`s within;
/// * Otherwise, the portion of the file name after the final `.`
pub fn extension(&self) -> Option<&OsStr> {
self.file_name().map(split_file_at_dot).and_then(|(before, after)| before.and(after))
}
/// Creates an owned `PathBuf` with `path` adjoined to `self`.
///
/// See `PathBuf::push` for more details on what it means to adjoin a path.
pub fn join<P: ?Sized>(&self, path: &P) -> PathBuf where P: AsPath {
let mut buf = self.to_path_buf();
buf.push(path);
buf
}
/// Creates an owned `PathBuf` like `self` but with the given file name.
///
/// See `PathBuf::set_file_name` for more details.
pub fn with_file_name<S: ?Sized>(&self, file_name: &S) -> PathBuf where S: AsOsStr {
let mut buf = self.to_path_buf();
buf.set_file_name(file_name);
buf
}
/// Creates an owned `PathBuf` like `self` but with the given extension.
///
/// See `PathBuf::set_extension` for more details.
pub fn with_extension<S: ?Sized>(&self, extension: &S) -> PathBuf where S: AsOsStr {
let mut buf = self.to_path_buf();
buf.set_extension(extension);
buf
}
/// Produce an iterator over the components of the path.
pub fn components(&self) -> Components {
let prefix = parse_prefix(self.as_os_str());
Components {
path: self.as_u8_slice(),
prefix: prefix,
has_physical_root: has_physical_root(self.as_u8_slice(), prefix),
front: State::Prefix,
back: if has_suffix(self.as_u8_slice(), prefix) { State::Suffix }
else { State::Body },
}
}
/// Produce an iterator over the path's components viewed as `OsStr` slices.
pub fn iter(&self) -> Iter {
Iter { inner: self.components() }
}
/// Returns an object that implements `Display` for safely printing paths
/// that may contain non-Unicode data.
pub fn display(&self) -> Display {
Display { path: self }
}
}
impl AsOsStr for Path {
fn as_os_str(&self) -> &OsStr {
&self.inner
}
}
impl fmt::Debug for Path {
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
self.inner.fmt(formatter)
}
}
/// Helper struct for safely printing paths with `format!()` and `{}`
pub struct Display<'a> {
path: &'a Path
}
impl<'a> fmt::Debug for Display<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&self.path.to_string_lossy(), f)
}
}
impl<'a> fmt::Display for Display<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.path.to_string_lossy(), f)
}
}
impl cmp::PartialEq for Path {
fn eq(&self, other: &Path) -> bool {
iter::order::eq(self.components(), other.components())
}
}
impl cmp::Eq for Path {}
impl cmp::PartialOrd for Path {
fn partial_cmp(&self, other: &Path) -> Option<cmp::Ordering> {
self.components().partial_cmp(&other.components())
}
}
impl cmp::Ord for Path {
fn cmp(&self, other: &Path) -> cmp::Ordering {
self.components().cmp(&other.components())
}
}
/// Freely convertible to a `Path`.
pub trait AsPath {
/// Convert to a `Path`.
fn as_path(&self) -> &Path;
}
impl<T: AsOsStr + ?Sized> AsPath for T {
fn as_path(&self) -> &Path { Path::new(self.as_os_str()) }
}
#[cfg(test)]
mod tests {
use super::*;
use ffi::OsStr;
use core::prelude::*;
use string::{ToString, String};
use vec::Vec;
macro_rules! t(
($path:expr, iter: $iter:expr) => (
{
let path = Path::new($path);
// Forward iteration
let comps = path.iter()
.map(|p| p.to_string_lossy().into_owned())
.collect::<Vec<String>>();
let exp: &[&str] = &$iter;
let exps = exp.iter().map(|s| s.to_string()).collect::<Vec<String>>();
assert!(comps == exps, "iter: Expected {:?}, found {:?}",
exps, comps);
// Reverse iteration
let comps = Path::new($path).iter().rev()
.map(|p| p.to_string_lossy().into_owned())
.collect::<Vec<String>>();
let exps = exps.into_iter().rev().collect::<Vec<String>>();
assert!(comps == exps, "iter().rev(): Expected {:?}, found {:?}",
exps, comps);
}
);
($path:expr, has_root: $has_root:expr, is_absolute: $is_absolute:expr) => (
{
let path = Path::new($path);
let act_root = path.has_root();
assert!(act_root == $has_root, "has_root: Expected {:?}, found {:?}",
$has_root, act_root);
let act_abs = path.is_absolute();
assert!(act_abs == $is_absolute, "is_absolute: Expected {:?}, found {:?}",
$is_absolute, act_abs);
}
);
($path:expr, parent: $parent:expr, file_name: $file:expr) => (
{
let path = Path::new($path);
let parent = path.parent().map(|p| p.to_str().unwrap());
let exp_parent: Option<&str> = $parent;
assert!(parent == exp_parent, "parent: Expected {:?}, found {:?}",
exp_parent, parent);
let file = path.file_name().map(|p| p.to_str().unwrap());
let exp_file: Option<&str> = $file;
assert!(file == exp_file, "file_name: Expected {:?}, found {:?}",
exp_file, file);
}
);
($path:expr, file_stem: $file_stem:expr, extension: $extension:expr) => (
{
let path = Path::new($path);
let stem = path.file_stem().map(|p| p.to_str().unwrap());
let exp_stem: Option<&str> = $file_stem;
assert!(stem == exp_stem, "file_stem: Expected {:?}, found {:?}",
exp_stem, stem);
let ext = path.extension().map(|p| p.to_str().unwrap());
let exp_ext: Option<&str> = $extension;
assert!(ext == exp_ext, "extension: Expected {:?}, found {:?}",
exp_ext, ext);
}
);
($path:expr, iter: $iter:expr,
has_root: $has_root:expr, is_absolute: $is_absolute:expr,
parent: $parent:expr, file_name: $file:expr,
file_stem: $file_stem:expr, extension: $extension:expr) => (
{
t!($path, iter: $iter);
t!($path, has_root: $has_root, is_absolute: $is_absolute);
t!($path, parent: $parent, file_name: $file);
t!($path, file_stem: $file_stem, extension: $extension);
}
);
);
#[test]
#[cfg(unix)]
pub fn test_decompositions_unix() {
t!("",
iter: [],
has_root: false,
is_absolute: false,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("foo",
iter: ["foo"],
has_root: false,
is_absolute: false,
parent: None,
file_name: Some("foo"),
file_stem: Some("foo"),
extension: None
);
t!("/",
iter: ["/", "."],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("/foo",
iter: ["/", "foo"],
has_root: true,
is_absolute: true,
parent: Some("/"),
file_name: Some("foo"),
file_stem: Some("foo"),
extension: None
);
t!("foo/",
iter: ["foo", "."],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("/foo/",
iter: ["/", "foo", "."],
has_root: true,
is_absolute: true,
parent: Some("/foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/bar",
iter: ["foo", "bar"],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("/foo/bar",
iter: ["/", "foo", "bar"],
has_root: true,
is_absolute: true,
parent: Some("/foo"),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("///foo///",
iter: ["/", "foo", "."],
has_root: true,
is_absolute: true,
parent: Some("///foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("///foo///bar",
iter: ["/", "foo", "bar"],
has_root: true,
is_absolute: true,
parent: Some("///foo"),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("./.",
iter: [".", "."],
has_root: false,
is_absolute: false,
parent: Some("."),
file_name: None,
file_stem: None,
extension: None
);
t!("./.",
iter: [".", "."],
has_root: false,
is_absolute: false,
parent: Some("."),
file_name: None,
file_stem: None,
extension: None
);
t!("/..",
iter: ["/", ".."],
has_root: true,
is_absolute: true,
parent: Some("/"),
file_name: None,
file_stem: None,
extension: None
);
t!("../",
iter: ["..", "."],
has_root: false,
is_absolute: false,
parent: Some(".."),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/.",
iter: ["foo", "."],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/..",
iter: ["foo", ".."],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/./",
iter: ["foo", ".", "."],
has_root: false,
is_absolute: false,
parent: Some("foo/."),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/./bar",
iter: ["foo", ".", "bar"],
has_root: false,
is_absolute: false,
parent: Some("foo/."),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("foo/../",
iter: ["foo", "..", "."],
has_root: false,
is_absolute: false,
parent: Some("foo/.."),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/../bar",
iter: ["foo", "..", "bar"],
has_root: false,
is_absolute: false,
parent: Some("foo/.."),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("./a",
iter: [".", "a"],
has_root: false,
is_absolute: false,
parent: Some("."),
file_name: Some("a"),
file_stem: Some("a"),
extension: None
);
t!(".",
iter: ["."],
has_root: false,
is_absolute: false,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("./",
iter: [".", "."],
has_root: false,
is_absolute: false,
parent: Some("."),
file_name: None,
file_stem: None,
extension: None
);
t!("a/b",
iter: ["a", "b"],
has_root: false,
is_absolute: false,
parent: Some("a"),
file_name: Some("b"),
file_stem: Some("b"),
extension: None
);
t!("a//b",
iter: ["a", "b"],
has_root: false,
is_absolute: false,
parent: Some("a"),
file_name: Some("b"),
file_stem: Some("b"),
extension: None
);
t!("a/./b",
iter: ["a", ".", "b"],
has_root: false,
is_absolute: false,
parent: Some("a/."),
file_name: Some("b"),
file_stem: Some("b"),
extension: None
);
t!("a/b/c",
iter: ["a", "b", "c"],
has_root: false,
is_absolute: false,
parent: Some("a/b"),
file_name: Some("c"),
file_stem: Some("c"),
extension: None
);
}
#[test]
#[cfg(windows)]
pub fn test_decompositions_windows() {
t!("",
iter: [],
has_root: false,
is_absolute: false,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("foo",
iter: ["foo"],
has_root: false,
is_absolute: false,
parent: None,
file_name: Some("foo"),
file_stem: Some("foo"),
extension: None
);
t!("/",
iter: ["\\", "."],
has_root: true,
is_absolute: false,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\",
iter: ["\\", "."],
has_root: true,
is_absolute: false,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("c:",
iter: ["c:", "."],
has_root: false,
is_absolute: false,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("c:\\",
iter: ["c:", "\\", "."],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("c:\\",
iter: ["c:", "\\", "."],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("c:/",
iter: ["c:", "\\", "."],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("/foo",
iter: ["\\", "foo"],
has_root: true,
is_absolute: false,
parent: Some("/"),
file_name: Some("foo"),
file_stem: Some("foo"),
extension: None
);
t!("foo/",
iter: ["foo", "."],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("/foo/",
iter: ["\\", "foo", "."],
has_root: true,
is_absolute: false,
parent: Some("/foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/bar",
iter: ["foo", "bar"],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("/foo/bar",
iter: ["\\", "foo", "bar"],
has_root: true,
is_absolute: false,
parent: Some("/foo"),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("///foo///",
iter: ["\\", "foo", "."],
has_root: true,
is_absolute: false,
parent: Some("///foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("///foo///bar",
iter: ["\\", "foo", "bar"],
has_root: true,
is_absolute: false,
parent: Some("///foo"),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("./.",
iter: [".", "."],
has_root: false,
is_absolute: false,
parent: Some("."),
file_name: None,
file_stem: None,
extension: None
);
t!("./.",
iter: [".", "."],
has_root: false,
is_absolute: false,
parent: Some("."),
file_name: None,
file_stem: None,
extension: None
);
t!("/..",
iter: ["\\", ".."],
has_root: true,
is_absolute: false,
parent: Some("/"),
file_name: None,
file_stem: None,
extension: None
);
t!("../",
iter: ["..", "."],
has_root: false,
is_absolute: false,
parent: Some(".."),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/.",
iter: ["foo", "."],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/..",
iter: ["foo", ".."],
has_root: false,
is_absolute: false,
parent: Some("foo"),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/./",
iter: ["foo", ".", "."],
has_root: false,
is_absolute: false,
parent: Some("foo/."),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/./bar",
iter: ["foo", ".", "bar"],
has_root: false,
is_absolute: false,
parent: Some("foo/."),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("foo/../",
iter: ["foo", "..", "."],
has_root: false,
is_absolute: false,
parent: Some("foo/.."),
file_name: None,
file_stem: None,
extension: None
);
t!("foo/../bar",
iter: ["foo", "..", "bar"],
has_root: false,
is_absolute: false,
parent: Some("foo/.."),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("./a",
iter: [".", "a"],
has_root: false,
is_absolute: false,
parent: Some("."),
file_name: Some("a"),
file_stem: Some("a"),
extension: None
);
t!(".",
iter: ["."],
has_root: false,
is_absolute: false,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("./",
iter: [".", "."],
has_root: false,
is_absolute: false,
parent: Some("."),
file_name: None,
file_stem: None,
extension: None
);
t!("a/b",
iter: ["a", "b"],
has_root: false,
is_absolute: false,
parent: Some("a"),
file_name: Some("b"),
file_stem: Some("b"),
extension: None
);
t!("a//b",
iter: ["a", "b"],
has_root: false,
is_absolute: false,
parent: Some("a"),
file_name: Some("b"),
file_stem: Some("b"),
extension: None
);
t!("a/./b",
iter: ["a", ".", "b"],
has_root: false,
is_absolute: false,
parent: Some("a/."),
file_name: Some("b"),
file_stem: Some("b"),
extension: None
);
t!("a/b/c",
iter: ["a", "b", "c"],
has_root: false,
is_absolute: false,
parent: Some("a/b"),
file_name: Some("c"),
file_stem: Some("c"),
extension: None);
t!("a\\b\\c",
iter: ["a", "b", "c"],
has_root: false,
is_absolute: false,
parent: Some("a\\b"),
file_name: Some("c"),
file_stem: Some("c"),
extension: None
);
t!("\\a",
iter: ["\\", "a"],
has_root: true,
is_absolute: false,
parent: Some("\\"),
file_name: Some("a"),
file_stem: Some("a"),
extension: None
);
t!("c:\\foo.txt",
iter: ["c:", "\\", "foo.txt"],
has_root: true,
is_absolute: true,
parent: Some("c:\\"),
file_name: Some("foo.txt"),
file_stem: Some("foo"),
extension: Some("txt")
);
t!("\\\\server\\share\\foo.txt",
iter: ["\\\\server\\share", "\\", "foo.txt"],
has_root: true,
is_absolute: true,
parent: Some("\\\\server\\share\\"),
file_name: Some("foo.txt"),
file_stem: Some("foo"),
extension: Some("txt")
);
t!("\\\\server\\share",
iter: ["\\\\server\\share", "\\", "."],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\server",
iter: ["\\", "server"],
has_root: true,
is_absolute: false,
parent: Some("\\"),
file_name: Some("server"),
file_stem: Some("server"),
extension: None
);
t!("\\\\?\\bar\\foo.txt",
iter: ["\\\\?\\bar", "\\", "foo.txt"],
has_root: true,
is_absolute: true,
parent: Some("\\\\?\\bar\\"),
file_name: Some("foo.txt"),
file_stem: Some("foo"),
extension: Some("txt")
);
t!("\\\\?\\bar",
iter: ["\\\\?\\bar"],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\?\\",
iter: ["\\\\?\\"],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\?\\UNC\\server\\share\\foo.txt",
iter: ["\\\\?\\UNC\\server\\share", "\\", "foo.txt"],
has_root: true,
is_absolute: true,
parent: Some("\\\\?\\UNC\\server\\share\\"),
file_name: Some("foo.txt"),
file_stem: Some("foo"),
extension: Some("txt")
);
t!("\\\\?\\UNC\\server",
iter: ["\\\\?\\UNC\\server"],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\?\\UNC\\",
iter: ["\\\\?\\UNC\\"],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\?\\C:\\foo.txt",
iter: ["\\\\?\\C:", "\\", "foo.txt"],
has_root: true,
is_absolute: true,
parent: Some("\\\\?\\C:\\"),
file_name: Some("foo.txt"),
file_stem: Some("foo"),
extension: Some("txt")
);
t!("\\\\?\\C:\\",
iter: ["\\\\?\\C:", "\\", ""],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\?\\C:",
iter: ["\\\\?\\C:"],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\?\\foo/bar",
iter: ["\\\\?\\foo/bar"],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\?\\C:/foo",
iter: ["\\\\?\\C:/foo"],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\.\\foo\\bar",
iter: ["\\\\.\\foo", "\\", "bar"],
has_root: true,
is_absolute: true,
parent: Some("\\\\.\\foo\\"),
file_name: Some("bar"),
file_stem: Some("bar"),
extension: None
);
t!("\\\\.\\foo",
iter: ["\\\\.\\foo", "\\", "."],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\.\\foo/bar",
iter: ["\\\\.\\foo/bar", "\\", "."],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\.\\foo\\bar/baz",
iter: ["\\\\.\\foo", "\\", "bar", "baz"],
has_root: true,
is_absolute: true,
parent: Some("\\\\.\\foo\\bar"),
file_name: Some("baz"),
file_stem: Some("baz"),
extension: None
);
t!("\\\\.\\",
iter: ["\\\\.\\", "\\", "."],
has_root: true,
is_absolute: true,
parent: None,
file_name: None,
file_stem: None,
extension: None
);
t!("\\\\?\\a\\b\\",
iter: ["\\\\?\\a", "\\", "b", ""],
has_root: true,
is_absolute: true,
parent: Some("\\\\?\\a\\b"),
file_name: None,
file_stem: None,
extension: None
);
}
#[test]
pub fn test_stem_ext() {
t!("foo",
file_stem: Some("foo"),
extension: None
);
t!("foo.",
file_stem: Some("foo"),
extension: Some("")
);
t!(".foo",
file_stem: Some(".foo"),
extension: None
);
t!("foo.txt",
file_stem: Some("foo"),
extension: Some("txt")
);
t!("foo.bar.txt",
file_stem: Some("foo.bar"),
extension: Some("txt")
);
t!("foo.bar.",
file_stem: Some("foo.bar"),
extension: Some("")
);
t!(".",
file_stem: None,
extension: None
);
t!("..",
file_stem: None,
extension: None
);
t!("",
file_stem: None,
extension: None
);
}
#[test]
pub fn test_push() {
macro_rules! tp(
($path:expr, $push:expr, $expected:expr) => ( {
let mut actual = PathBuf::new($path);
actual.push($push);
assert!(actual.to_str() == Some($expected),
"pushing {:?} onto {:?}: Expected {:?}, got {:?}",
$push, $path, $expected, actual.to_str().unwrap());
});
);
if cfg!(unix) {
tp!("", "foo", "foo");
tp!("foo", "bar", "foo/bar");
tp!("foo/", "bar", "foo/bar");
tp!("foo//", "bar", "foo//bar");
tp!("foo/.", "bar", "foo/./bar");
tp!("foo./.", "bar", "foo././bar");
tp!("foo", "", "foo/");
tp!("foo", ".", "foo/.");
tp!("foo", "..", "foo/..");
tp!("foo", "/", "/");
tp!("/foo/bar", "/", "/");
tp!("/foo/bar", "/baz", "/baz");
tp!("/foo/bar", "./baz", "/foo/bar/./baz");
} else {
tp!("", "foo", "foo");
tp!("foo", "bar", r"foo\bar");
tp!("foo/", "bar", r"foo/bar");
tp!(r"foo\", "bar", r"foo\bar");
tp!("foo//", "bar", r"foo//bar");
tp!(r"foo\\", "bar", r"foo\\bar");
tp!("foo/.", "bar", r"foo/.\bar");
tp!("foo./.", "bar", r"foo./.\bar");
tp!(r"foo\.", "bar", r"foo\.\bar");
tp!(r"foo.\.", "bar", r"foo.\.\bar");
tp!("foo", "", "foo\\");
tp!("foo", ".", r"foo\.");
tp!("foo", "..", r"foo\..");
tp!("foo", "/", "/");
tp!("foo", r"\", r"\");
tp!("/foo/bar", "/", "/");
tp!(r"\foo\bar", r"\", r"\");
tp!("/foo/bar", "/baz", "/baz");
tp!("/foo/bar", r"\baz", r"\baz");
tp!("/foo/bar", "./baz", r"/foo/bar\./baz");
tp!("/foo/bar", r".\baz", r"/foo/bar\.\baz");
tp!("c:\\", "windows", "c:\\windows");
tp!("c:", "windows", "c:windows");
tp!("a\\b\\c", "d", "a\\b\\c\\d");
tp!("\\a\\b\\c", "d", "\\a\\b\\c\\d");
tp!("a\\b", "c\\d", "a\\b\\c\\d");
tp!("a\\b", "\\c\\d", "\\c\\d");
tp!("a\\b", ".", "a\\b\\.");
tp!("a\\b", "..\\c", "a\\b\\..\\c");
tp!("a\\b", "C:a.txt", "C:a.txt");
tp!("a\\b", "C:\\a.txt", "C:\\a.txt");
tp!("C:\\a", "C:\\b.txt", "C:\\b.txt");
tp!("C:\\a\\b\\c", "C:d", "C:d");
tp!("C:a\\b\\c", "C:d", "C:d");
tp!("C:", r"a\b\c", r"C:a\b\c");
tp!("C:", r"..\a", r"C:..\a");
tp!("\\\\server\\share\\foo", "bar", "\\\\server\\share\\foo\\bar");
tp!("\\\\server\\share\\foo", "C:baz", "C:baz");
tp!("\\\\?\\C:\\a\\b", "C:c\\d", "C:c\\d");
tp!("\\\\?\\C:a\\b", "C:c\\d", "C:c\\d");
tp!("\\\\?\\C:\\a\\b", "C:\\c\\d", "C:\\c\\d");
tp!("\\\\?\\foo\\bar", "baz", "\\\\?\\foo\\bar\\baz");
tp!("\\\\?\\UNC\\server\\share\\foo", "bar", "\\\\?\\UNC\\server\\share\\foo\\bar");
tp!("\\\\?\\UNC\\server\\share", "C:\\a", "C:\\a");
tp!("\\\\?\\UNC\\server\\share", "C:a", "C:a");
// Note: modified from old path API
tp!("\\\\?\\UNC\\server", "foo", "\\\\?\\UNC\\server\\foo");
tp!("C:\\a", "\\\\?\\UNC\\server\\share", "\\\\?\\UNC\\server\\share");
tp!("\\\\.\\foo\\bar", "baz", "\\\\.\\foo\\bar\\baz");
tp!("\\\\.\\foo\\bar", "C:a", "C:a");
// again, not sure about the following, but I'm assuming \\.\ should be verbatim
tp!("\\\\.\\foo", "..\\bar", "\\\\.\\foo\\..\\bar");
tp!("\\\\?\\C:", "foo", "\\\\?\\C:\\foo"); // this is a weird one
}
}
#[test]
pub fn test_pop() {
macro_rules! tp(
($path:expr, $expected:expr, $output:expr) => ( {
let mut actual = PathBuf::new($path);
let output = actual.pop();
assert!(actual.to_str() == Some($expected) && output == $output,
"popping from {:?}: Expected {:?}/{:?}, got {:?}/{:?}",
$path, $expected, $output,
actual.to_str().unwrap(), output);
});
);
tp!("", "", false);
tp!("/", "/", false);
tp!("foo", "foo", false);
tp!(".", ".", false);
tp!("/foo", "/", true);
tp!("/foo/bar", "/foo", true);
tp!("foo/bar", "foo", true);
tp!("foo/.", "foo", true);
tp!("foo//bar", "foo", true);
if cfg!(windows) {
tp!("a\\b\\c", "a\\b", true);
tp!("\\a", "\\", true);
tp!("\\", "\\", false);
tp!("C:\\a\\b", "C:\\a", true);
tp!("C:\\a", "C:\\", true);
tp!("C:\\", "C:\\", false);
tp!("C:a\\b", "C:a", true);
tp!("C:a", "C:", true);
tp!("C:", "C:", false);
tp!("\\\\server\\share\\a\\b", "\\\\server\\share\\a", true);
tp!("\\\\server\\share\\a", "\\\\server\\share\\", true);
tp!("\\\\server\\share", "\\\\server\\share", false);
tp!("\\\\?\\a\\b\\c", "\\\\?\\a\\b", true);
tp!("\\\\?\\a\\b", "\\\\?\\a\\", true);
tp!("\\\\?\\a", "\\\\?\\a", false);
tp!("\\\\?\\C:\\a\\b", "\\\\?\\C:\\a", true);
tp!("\\\\?\\C:\\a", "\\\\?\\C:\\", true);
tp!("\\\\?\\C:\\", "\\\\?\\C:\\", false);
tp!("\\\\?\\UNC\\server\\share\\a\\b", "\\\\?\\UNC\\server\\share\\a", true);
tp!("\\\\?\\UNC\\server\\share\\a", "\\\\?\\UNC\\server\\share\\", true);
tp!("\\\\?\\UNC\\server\\share", "\\\\?\\UNC\\server\\share", false);
tp!("\\\\.\\a\\b\\c", "\\\\.\\a\\b", true);
tp!("\\\\.\\a\\b", "\\\\.\\a\\", true);
tp!("\\\\.\\a", "\\\\.\\a", false);
tp!("\\\\?\\a\\b\\", "\\\\?\\a\\b", true);
}
}
#[test]
pub fn test_set_file_name() {
macro_rules! tfn(
($path:expr, $file:expr, $expected:expr) => ( {
let mut p = PathBuf::new($path);
p.set_file_name($file);
assert!(p.to_str() == Some($expected),
"setting file name of {:?} to {:?}: Expected {:?}, got {:?}",
$path, $file, $expected,
p.to_str().unwrap());
});
);
tfn!("foo", "foo", "foo");
tfn!("foo", "bar", "bar");
tfn!("foo", "", "");
tfn!("", "foo", "foo");
if cfg!(unix) {
tfn!(".", "foo", "./foo");
tfn!("foo/", "bar", "foo/bar");
tfn!("foo/.", "bar", "foo/./bar");
tfn!("..", "foo", "../foo");
tfn!("foo/..", "bar", "foo/../bar");
tfn!("/", "foo", "/foo");
} else {
tfn!(".", "foo", r".\foo");
tfn!(r"foo\", "bar", r"foo\bar");
tfn!(r"foo\.", "bar", r"foo\.\bar");
tfn!("..", "foo", r"..\foo");
tfn!(r"foo\..", "bar", r"foo\..\bar");
tfn!(r"\", "foo", r"\foo");
}
}
#[test]
pub fn test_set_extension() {
macro_rules! tfe(
($path:expr, $ext:expr, $expected:expr, $output:expr) => ( {
let mut p = PathBuf::new($path);
let output = p.set_extension($ext);
assert!(p.to_str() == Some($expected) && output == $output,
"setting extension of {:?} to {:?}: Expected {:?}/{:?}, got {:?}/{:?}",
$path, $ext, $expected, $output,
p.to_str().unwrap(), output);
});
);
tfe!("foo", "txt", "foo.txt", true);
tfe!("foo.bar", "txt", "foo.txt", true);
tfe!("foo.bar.baz", "txt", "foo.bar.txt", true);
tfe!(".test", "txt", ".test.txt", true);
tfe!("foo.txt", "", "foo", true);
tfe!("foo", "", "foo", true);
tfe!("", "foo", "", false);
tfe!(".", "foo", ".", false);
tfe!("foo/", "bar", "foo/", false);
tfe!("foo/.", "bar", "foo/.", false);
tfe!("..", "foo", "..", false);
tfe!("foo/..", "bar", "foo/..", false);
tfe!("/", "foo", "/", false);
}
#[test]
pub fn test_compare() {
macro_rules! tc(
($path1:expr, $path2:expr, eq: $eq:expr,
starts_with: $starts_with:expr, ends_with: $ends_with:expr,
relative_from: $relative_from:expr) => ({
let path1 = Path::new($path1);
let path2 = Path::new($path2);
let eq = path1 == path2;
assert!(eq == $eq, "{:?} == {:?}, expected {:?}, got {:?}",
$path1, $path2, $eq, eq);
let starts_with = path1.starts_with(path2);
assert!(starts_with == $starts_with,
"{:?}.starts_with({:?}), expected {:?}, got {:?}", $path1, $path2,
$starts_with, starts_with);
let ends_with = path1.ends_with(path2);
assert!(ends_with == $ends_with,
"{:?}.ends_with({:?}), expected {:?}, got {:?}", $path1, $path2,
$ends_with, ends_with);
let relative_from = path1.relative_from(path2).map(|p| p.to_str().unwrap());
let exp: Option<&str> = $relative_from;
assert!(relative_from == exp,
"{:?}.relative_from({:?}), expected {:?}, got {:?}", $path1, $path2,
exp, relative_from);
});
);
tc!("", "",
eq: true,
starts_with: true,
ends_with: true,
relative_from: Some("")
);
tc!("foo", "",
eq: false,
starts_with: true,
ends_with: true,
relative_from: Some("foo")
);
tc!("", "foo",
eq: false,
starts_with: false,
ends_with: false,
relative_from: None
);
tc!("foo", "foo",
eq: true,
starts_with: true,
ends_with: true,
relative_from: Some("")
);
tc!("foo/", "foo",
eq: false,
starts_with: true,
ends_with: false,
relative_from: Some(".")
);
tc!("foo/bar", "foo",
eq: false,
starts_with: true,
ends_with: false,
relative_from: Some("bar")
);
tc!("foo/bar/baz", "foo/bar",
eq: false,
starts_with: true,
ends_with: false,
relative_from: Some("baz")
);
tc!("foo/bar", "foo/bar/baz",
eq: false,
starts_with: false,
ends_with: false,
relative_from: None
);
tc!("./foo/bar/", ".",
eq: false,
starts_with: true,
ends_with: true,
relative_from: Some("foo/bar/")
);
}
}