a921dc4873
This commit removes all internal support for the previously used __log_level() expression. The logging subsystem was previously modified to not rely on this magical expression. This also removes the only other function to use the module_data map in trans, decl_gc_metadata. It appears that this is an ancient function from a GC only used long ago. This does not remove the crate map entirely, as libgreen still uses it to hook in to the event loop provided by libgreen.
1187 lines
33 KiB
Rust
1187 lines
33 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
// The Rust abstract syntax tree.
|
|
|
|
use codemap::{Span, Spanned, DUMMY_SP};
|
|
use abi::AbiSet;
|
|
use ast_util;
|
|
use opt_vec::OptVec;
|
|
use parse::token::{InternedString, special_idents, str_to_ident};
|
|
use parse::token;
|
|
|
|
use std::fmt;
|
|
use std::fmt::Show;
|
|
use std::option::Option;
|
|
use std::rc::Rc;
|
|
use std::vec_ng::Vec;
|
|
use serialize::{Encodable, Decodable, Encoder, Decoder};
|
|
|
|
/// A pointer abstraction. FIXME(eddyb) #10676 use Rc<T> in the future.
|
|
pub type P<T> = @T;
|
|
|
|
/// Construct a P<T> from a T value.
|
|
pub fn P<T: 'static>(value: T) -> P<T> {
|
|
@value
|
|
}
|
|
|
|
// FIXME #6993: in librustc, uses of "ident" should be replaced
|
|
// by just "Name".
|
|
|
|
// an identifier contains a Name (index into the interner
|
|
// table) and a SyntaxContext to track renaming and
|
|
// macro expansion per Flatt et al., "Macros
|
|
// That Work Together"
|
|
#[deriving(Clone, Hash, Ord, TotalEq, TotalOrd, Show)]
|
|
pub struct Ident {
|
|
name: Name,
|
|
ctxt: SyntaxContext
|
|
}
|
|
|
|
impl Ident {
|
|
/// Construct an identifier with the given name and an empty context:
|
|
pub fn new(name: Name) -> Ident { Ident {name: name, ctxt: EMPTY_CTXT}}
|
|
}
|
|
|
|
impl Eq for Ident {
|
|
fn eq(&self, other: &Ident) -> bool {
|
|
if self.ctxt == other.ctxt {
|
|
self.name == other.name
|
|
} else {
|
|
// IF YOU SEE ONE OF THESE FAILS: it means that you're comparing
|
|
// idents that have different contexts. You can't fix this without
|
|
// knowing whether the comparison should be hygienic or non-hygienic.
|
|
// if it should be non-hygienic (most things are), just compare the
|
|
// 'name' fields of the idents. Or, even better, replace the idents
|
|
// with Name's.
|
|
//
|
|
// On the other hand, if the comparison does need to be hygienic,
|
|
// one example and its non-hygienic counterpart would be:
|
|
// syntax::parse::token::mtwt_token_eq
|
|
// syntax::ext::tt::macro_parser::token_name_eq
|
|
fail!("not allowed to compare these idents: {:?}, {:?}. \
|
|
Probably related to issue \\#6993", self, other);
|
|
}
|
|
}
|
|
fn ne(&self, other: &Ident) -> bool {
|
|
! self.eq(other)
|
|
}
|
|
}
|
|
|
|
/// A SyntaxContext represents a chain of macro-expandings
|
|
/// and renamings. Each macro expansion corresponds to
|
|
/// a fresh uint
|
|
|
|
// I'm representing this syntax context as an index into
|
|
// a table, in order to work around a compiler bug
|
|
// that's causing unreleased memory to cause core dumps
|
|
// and also perhaps to save some work in destructor checks.
|
|
// the special uint '0' will be used to indicate an empty
|
|
// syntax context.
|
|
|
|
// this uint is a reference to a table stored in thread-local
|
|
// storage.
|
|
pub type SyntaxContext = u32;
|
|
pub static EMPTY_CTXT : SyntaxContext = 0;
|
|
pub static ILLEGAL_CTXT : SyntaxContext = 1;
|
|
|
|
/// A name is a part of an identifier, representing a string or gensym. It's
|
|
/// the result of interning.
|
|
pub type Name = u32;
|
|
|
|
/// A mark represents a unique id associated with a macro expansion
|
|
pub type Mrk = u32;
|
|
|
|
impl<S: Encoder> Encodable<S> for Ident {
|
|
fn encode(&self, s: &mut S) {
|
|
s.emit_str(token::get_ident(*self).get());
|
|
}
|
|
}
|
|
|
|
impl<D:Decoder> Decodable<D> for Ident {
|
|
fn decode(d: &mut D) -> Ident {
|
|
str_to_ident(d.read_str())
|
|
}
|
|
}
|
|
|
|
/// Function name (not all functions have names)
|
|
pub type FnIdent = Option<Ident>;
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Lifetime {
|
|
id: NodeId,
|
|
span: Span,
|
|
name: Name
|
|
}
|
|
|
|
// a "Path" is essentially Rust's notion of a name;
|
|
// for instance: std::cmp::Eq . It's represented
|
|
// as a sequence of identifiers, along with a bunch
|
|
// of supporting information.
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Path {
|
|
span: Span,
|
|
/// A `::foo` path, is relative to the crate root rather than current
|
|
/// module (like paths in an import).
|
|
global: bool,
|
|
/// The segments in the path: the things separated by `::`.
|
|
segments: Vec<PathSegment> ,
|
|
}
|
|
|
|
/// A segment of a path: an identifier, an optional lifetime, and a set of
|
|
/// types.
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct PathSegment {
|
|
/// The identifier portion of this path segment.
|
|
identifier: Ident,
|
|
/// The lifetime parameters for this path segment.
|
|
lifetimes: Vec<Lifetime>,
|
|
/// The type parameters for this path segment, if present.
|
|
types: OptVec<P<Ty>>,
|
|
}
|
|
|
|
pub type CrateNum = u32;
|
|
|
|
pub type NodeId = u32;
|
|
|
|
#[deriving(Clone, TotalEq, TotalOrd, Ord, Eq, Encodable, Decodable, Hash, Show)]
|
|
pub struct DefId {
|
|
krate: CrateNum,
|
|
node: NodeId,
|
|
}
|
|
|
|
/// Item definitions in the currently-compiled crate would have the CrateNum
|
|
/// LOCAL_CRATE in their DefId.
|
|
pub static LOCAL_CRATE: CrateNum = 0;
|
|
pub static CRATE_NODE_ID: NodeId = 0;
|
|
|
|
// When parsing and doing expansions, we initially give all AST nodes this AST
|
|
// node value. Then later, in the renumber pass, we renumber them to have
|
|
// small, positive ids.
|
|
pub static DUMMY_NODE_ID: NodeId = -1;
|
|
|
|
// The AST represents all type param bounds as types.
|
|
// typeck::collect::compute_bounds matches these against
|
|
// the "special" built-in traits (see middle::lang_items) and
|
|
// detects Copy, Send, Send, and Freeze.
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum TyParamBound {
|
|
TraitTyParamBound(TraitRef),
|
|
RegionTyParamBound
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct TyParam {
|
|
ident: Ident,
|
|
id: NodeId,
|
|
bounds: OptVec<TyParamBound>,
|
|
default: Option<P<Ty>>
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Generics {
|
|
lifetimes: Vec<Lifetime>,
|
|
ty_params: OptVec<TyParam>,
|
|
}
|
|
|
|
impl Generics {
|
|
pub fn is_parameterized(&self) -> bool {
|
|
self.lifetimes.len() + self.ty_params.len() > 0
|
|
}
|
|
pub fn is_lt_parameterized(&self) -> bool {
|
|
self.lifetimes.len() > 0
|
|
}
|
|
pub fn is_type_parameterized(&self) -> bool {
|
|
self.ty_params.len() > 0
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum MethodProvenance {
|
|
FromTrait(DefId),
|
|
FromImpl(DefId),
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Def {
|
|
DefFn(DefId, Purity),
|
|
DefStaticMethod(/* method */ DefId, MethodProvenance, Purity),
|
|
DefSelfTy(/* trait id */ NodeId),
|
|
DefMod(DefId),
|
|
DefForeignMod(DefId),
|
|
DefStatic(DefId, bool /* is_mutbl */),
|
|
DefArg(NodeId, BindingMode),
|
|
DefLocal(NodeId, BindingMode),
|
|
DefVariant(DefId /* enum */, DefId /* variant */, bool /* is_structure */),
|
|
DefTy(DefId),
|
|
DefTrait(DefId),
|
|
DefPrimTy(PrimTy),
|
|
DefTyParam(DefId, uint),
|
|
DefBinding(NodeId, BindingMode),
|
|
DefUse(DefId),
|
|
DefUpvar(NodeId, // id of closed over var
|
|
@Def, // closed over def
|
|
NodeId, // expr node that creates the closure
|
|
NodeId), // id for the block/body of the closure expr
|
|
|
|
/// Note that if it's a tuple struct's definition, the node id of the DefId
|
|
/// may either refer to the item definition's id or the StructDef.ctor_id.
|
|
///
|
|
/// The cases that I have encountered so far are (this is not exhaustive):
|
|
/// - If it's a ty_path referring to some tuple struct, then DefMap maps
|
|
/// it to a def whose id is the item definition's id.
|
|
/// - If it's an ExprPath referring to some tuple struct, then DefMap maps
|
|
/// it to a def whose id is the StructDef.ctor_id.
|
|
DefStruct(DefId),
|
|
DefTyParamBinder(NodeId), /* struct, impl or trait with ty params */
|
|
DefRegion(NodeId),
|
|
DefLabel(NodeId),
|
|
DefMethod(DefId /* method */, Option<DefId> /* trait */),
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Hash, Encodable, Decodable, Show)]
|
|
pub enum DefRegion {
|
|
DefStaticRegion,
|
|
DefEarlyBoundRegion(/* index */ uint, /* lifetime decl */ NodeId),
|
|
DefLateBoundRegion(/* binder_id */ NodeId, /* depth */ uint, /* lifetime decl */ NodeId),
|
|
DefFreeRegion(/* block scope */ NodeId, /* lifetime decl */ NodeId),
|
|
}
|
|
|
|
// The set of MetaItems that define the compilation environment of the crate,
|
|
// used to drive conditional compilation
|
|
pub type CrateConfig = Vec<@MetaItem> ;
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Crate {
|
|
module: Mod,
|
|
attrs: Vec<Attribute> ,
|
|
config: CrateConfig,
|
|
span: Span,
|
|
}
|
|
|
|
pub type MetaItem = Spanned<MetaItem_>;
|
|
|
|
#[deriving(Clone, Encodable, Decodable, Hash)]
|
|
pub enum MetaItem_ {
|
|
MetaWord(InternedString),
|
|
MetaList(InternedString, Vec<@MetaItem> ),
|
|
MetaNameValue(InternedString, Lit),
|
|
}
|
|
|
|
// can't be derived because the MetaList requires an unordered comparison
|
|
impl Eq for MetaItem_ {
|
|
fn eq(&self, other: &MetaItem_) -> bool {
|
|
match *self {
|
|
MetaWord(ref ns) => match *other {
|
|
MetaWord(ref no) => (*ns) == (*no),
|
|
_ => false
|
|
},
|
|
MetaNameValue(ref ns, ref vs) => match *other {
|
|
MetaNameValue(ref no, ref vo) => {
|
|
(*ns) == (*no) && vs.node == vo.node
|
|
}
|
|
_ => false
|
|
},
|
|
MetaList(ref ns, ref miss) => match *other {
|
|
MetaList(ref no, ref miso) => {
|
|
ns == no &&
|
|
miss.iter().all(|mi| miso.iter().any(|x| x.node == mi.node))
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Block {
|
|
view_items: Vec<ViewItem> ,
|
|
stmts: Vec<@Stmt> ,
|
|
expr: Option<@Expr>,
|
|
id: NodeId,
|
|
rules: BlockCheckMode,
|
|
span: Span,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Pat {
|
|
id: NodeId,
|
|
node: Pat_,
|
|
span: Span,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct FieldPat {
|
|
ident: Ident,
|
|
pat: @Pat,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum BindingMode {
|
|
BindByRef(Mutability),
|
|
BindByValue(Mutability),
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Pat_ {
|
|
PatWild,
|
|
PatWildMulti,
|
|
// A PatIdent may either be a new bound variable,
|
|
// or a nullary enum (in which case the second field
|
|
// is None).
|
|
// In the nullary enum case, the parser can't determine
|
|
// which it is. The resolver determines this, and
|
|
// records this pattern's NodeId in an auxiliary
|
|
// set (of "pat_idents that refer to nullary enums")
|
|
PatIdent(BindingMode, Path, Option<@Pat>),
|
|
PatEnum(Path, Option<Vec<@Pat> >), /* "none" means a * pattern where
|
|
* we don't bind the fields to names */
|
|
PatStruct(Path, Vec<FieldPat> , bool),
|
|
PatTup(Vec<@Pat> ),
|
|
PatUniq(@Pat),
|
|
PatRegion(@Pat), // reference pattern
|
|
PatLit(@Expr),
|
|
PatRange(@Expr, @Expr),
|
|
// [a, b, ..i, y, z] is represented as
|
|
// PatVec(~[a, b], Some(i), ~[y, z])
|
|
PatVec(Vec<@Pat> , Option<@Pat>, Vec<@Pat> )
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash, Show)]
|
|
pub enum Mutability {
|
|
MutMutable,
|
|
MutImmutable,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Sigil {
|
|
BorrowedSigil,
|
|
OwnedSigil,
|
|
ManagedSigil
|
|
}
|
|
|
|
impl fmt::Show for Sigil {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match *self {
|
|
BorrowedSigil => "&".fmt(f),
|
|
OwnedSigil => "~".fmt(f),
|
|
ManagedSigil => "@".fmt(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum ExprVstore {
|
|
ExprVstoreUniq, // ~[1,2,3,4]
|
|
ExprVstoreSlice, // &[1,2,3,4]
|
|
ExprVstoreMutSlice, // &mut [1,2,3,4]
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum BinOp {
|
|
BiAdd,
|
|
BiSub,
|
|
BiMul,
|
|
BiDiv,
|
|
BiRem,
|
|
BiAnd,
|
|
BiOr,
|
|
BiBitXor,
|
|
BiBitAnd,
|
|
BiBitOr,
|
|
BiShl,
|
|
BiShr,
|
|
BiEq,
|
|
BiLt,
|
|
BiLe,
|
|
BiNe,
|
|
BiGe,
|
|
BiGt,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum UnOp {
|
|
UnBox,
|
|
UnUniq,
|
|
UnDeref,
|
|
UnNot,
|
|
UnNeg
|
|
}
|
|
|
|
pub type Stmt = Spanned<Stmt_>;
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Stmt_ {
|
|
// could be an item or a local (let) binding:
|
|
StmtDecl(@Decl, NodeId),
|
|
|
|
// expr without trailing semi-colon (must have unit type):
|
|
StmtExpr(@Expr, NodeId),
|
|
|
|
// expr with trailing semi-colon (may have any type):
|
|
StmtSemi(@Expr, NodeId),
|
|
|
|
// bool: is there a trailing sem-colon?
|
|
StmtMac(Mac, bool),
|
|
}
|
|
|
|
// FIXME (pending discussion of #1697, #2178...): local should really be
|
|
// a refinement on pat.
|
|
/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`
|
|
#[deriving(Eq, Encodable, Decodable, Hash)]
|
|
pub struct Local {
|
|
ty: P<Ty>,
|
|
pat: @Pat,
|
|
init: Option<@Expr>,
|
|
id: NodeId,
|
|
span: Span,
|
|
}
|
|
|
|
pub type Decl = Spanned<Decl_>;
|
|
|
|
#[deriving(Eq, Encodable, Decodable, Hash)]
|
|
pub enum Decl_ {
|
|
// a local (let) binding:
|
|
DeclLocal(@Local),
|
|
// an item binding:
|
|
DeclItem(@Item),
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Arm {
|
|
pats: Vec<@Pat> ,
|
|
guard: Option<@Expr>,
|
|
body: @Expr,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Field {
|
|
ident: SpannedIdent,
|
|
expr: @Expr,
|
|
span: Span,
|
|
}
|
|
|
|
pub type SpannedIdent = Spanned<Ident>;
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum BlockCheckMode {
|
|
DefaultBlock,
|
|
UnsafeBlock(UnsafeSource),
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum UnsafeSource {
|
|
CompilerGenerated,
|
|
UserProvided,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Expr {
|
|
id: NodeId,
|
|
node: Expr_,
|
|
span: Span,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Expr_ {
|
|
ExprVstore(@Expr, ExprVstore),
|
|
// First expr is the place; second expr is the value.
|
|
ExprBox(@Expr, @Expr),
|
|
ExprVec(Vec<@Expr> , Mutability),
|
|
ExprCall(@Expr, Vec<@Expr> ),
|
|
ExprMethodCall(Ident, Vec<P<Ty>> , Vec<@Expr> ),
|
|
ExprTup(Vec<@Expr> ),
|
|
ExprBinary(BinOp, @Expr, @Expr),
|
|
ExprUnary(UnOp, @Expr),
|
|
ExprLit(@Lit),
|
|
ExprCast(@Expr, P<Ty>),
|
|
ExprIf(@Expr, P<Block>, Option<@Expr>),
|
|
ExprWhile(@Expr, P<Block>),
|
|
// FIXME #6993: change to Option<Name>
|
|
ExprForLoop(@Pat, @Expr, P<Block>, Option<Ident>),
|
|
// Conditionless loop (can be exited with break, cont, or ret)
|
|
// FIXME #6993: change to Option<Name>
|
|
ExprLoop(P<Block>, Option<Ident>),
|
|
ExprMatch(@Expr, Vec<Arm> ),
|
|
ExprFnBlock(P<FnDecl>, P<Block>),
|
|
ExprProc(P<FnDecl>, P<Block>),
|
|
ExprBlock(P<Block>),
|
|
|
|
ExprAssign(@Expr, @Expr),
|
|
ExprAssignOp(BinOp, @Expr, @Expr),
|
|
ExprField(@Expr, Ident, Vec<P<Ty>> ),
|
|
ExprIndex(@Expr, @Expr),
|
|
|
|
/// Expression that looks like a "name". For example,
|
|
/// `std::vec::from_elem::<uint>` is an ExprPath that's the "name" part
|
|
/// of a function call.
|
|
ExprPath(Path),
|
|
|
|
ExprAddrOf(Mutability, @Expr),
|
|
ExprBreak(Option<Ident>),
|
|
ExprAgain(Option<Ident>),
|
|
ExprRet(Option<@Expr>),
|
|
|
|
ExprInlineAsm(InlineAsm),
|
|
|
|
ExprMac(Mac),
|
|
|
|
// A struct literal expression.
|
|
ExprStruct(Path, Vec<Field> , Option<@Expr> /* base */),
|
|
|
|
// A vector literal constructed from one repeated element.
|
|
ExprRepeat(@Expr /* element */, @Expr /* count */, Mutability),
|
|
|
|
// No-op: used solely so we can pretty-print faithfully
|
|
ExprParen(@Expr)
|
|
}
|
|
|
|
// When the main rust parser encounters a syntax-extension invocation, it
|
|
// parses the arguments to the invocation as a token-tree. This is a very
|
|
// loose structure, such that all sorts of different AST-fragments can
|
|
// be passed to syntax extensions using a uniform type.
|
|
//
|
|
// If the syntax extension is an MBE macro, it will attempt to match its
|
|
// LHS "matchers" against the provided token tree, and if it finds a
|
|
// match, will transcribe the RHS token tree, splicing in any captured
|
|
// macro_parser::matched_nonterminals into the TTNonterminals it finds.
|
|
//
|
|
// The RHS of an MBE macro is the only place a TTNonterminal or TTSeq
|
|
// makes any real sense. You could write them elsewhere but nothing
|
|
// else knows what to do with them, so you'll probably get a syntax
|
|
// error.
|
|
//
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
#[doc="For macro invocations; parsing is delegated to the macro"]
|
|
pub enum TokenTree {
|
|
// a single token
|
|
TTTok(Span, ::parse::token::Token),
|
|
// a delimited sequence (the delimiters appear as the first
|
|
// and last elements of the vector)
|
|
TTDelim(@Vec<TokenTree> ),
|
|
|
|
// These only make sense for right-hand-sides of MBE macros:
|
|
|
|
// a kleene-style repetition sequence with a span, a TTForest,
|
|
// an optional separator, and a boolean where true indicates
|
|
// zero or more (..), and false indicates one or more (+).
|
|
TTSeq(Span, @Vec<TokenTree> , Option<::parse::token::Token>, bool),
|
|
|
|
// a syntactic variable that will be filled in by macro expansion.
|
|
TTNonterminal(Span, Ident)
|
|
}
|
|
|
|
//
|
|
// Matchers are nodes defined-by and recognized-by the main rust parser and
|
|
// language, but they're only ever found inside syntax-extension invocations;
|
|
// indeed, the only thing that ever _activates_ the rules in the rust parser
|
|
// for parsing a matcher is a matcher looking for the 'matchers' nonterminal
|
|
// itself. Matchers represent a small sub-language for pattern-matching
|
|
// token-trees, and are thus primarily used by the macro-defining extension
|
|
// itself.
|
|
//
|
|
// MatchTok
|
|
// --------
|
|
//
|
|
// A matcher that matches a single token, denoted by the token itself. So
|
|
// long as there's no $ involved.
|
|
//
|
|
//
|
|
// MatchSeq
|
|
// --------
|
|
//
|
|
// A matcher that matches a sequence of sub-matchers, denoted various
|
|
// possible ways:
|
|
//
|
|
// $(M)* zero or more Ms
|
|
// $(M)+ one or more Ms
|
|
// $(M),+ one or more comma-separated Ms
|
|
// $(A B C);* zero or more semi-separated 'A B C' seqs
|
|
//
|
|
//
|
|
// MatchNonterminal
|
|
// -----------------
|
|
//
|
|
// A matcher that matches one of a few interesting named rust
|
|
// nonterminals, such as types, expressions, items, or raw token-trees. A
|
|
// black-box matcher on expr, for example, binds an expr to a given ident,
|
|
// and that ident can re-occur as an interpolation in the RHS of a
|
|
// macro-by-example rule. For example:
|
|
//
|
|
// $foo:expr => 1 + $foo // interpolate an expr
|
|
// $foo:tt => $foo // interpolate a token-tree
|
|
// $foo:tt => bar! $foo // only other valid interpolation
|
|
// // is in arg position for another
|
|
// // macro
|
|
//
|
|
// As a final, horrifying aside, note that macro-by-example's input is
|
|
// also matched by one of these matchers. Holy self-referential! It is matched
|
|
// by a MatchSeq, specifically this one:
|
|
//
|
|
// $( $lhs:matchers => $rhs:tt );+
|
|
//
|
|
// If you understand that, you have closed to loop and understand the whole
|
|
// macro system. Congratulations.
|
|
//
|
|
pub type Matcher = Spanned<Matcher_>;
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Matcher_ {
|
|
// match one token
|
|
MatchTok(::parse::token::Token),
|
|
// match repetitions of a sequence: body, separator, zero ok?,
|
|
// lo, hi position-in-match-array used:
|
|
MatchSeq(Vec<Matcher> , Option<::parse::token::Token>, bool, uint, uint),
|
|
// parse a Rust NT: name to bind, name of NT, position in match array:
|
|
MatchNonterminal(Ident, Ident, uint)
|
|
}
|
|
|
|
pub type Mac = Spanned<Mac_>;
|
|
|
|
// represents a macro invocation. The Path indicates which macro
|
|
// is being invoked, and the vector of token-trees contains the source
|
|
// of the macro invocation.
|
|
// There's only one flavor, now, so this could presumably be simplified.
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Mac_ {
|
|
MacInvocTT(Path, Vec<TokenTree> , SyntaxContext), // new macro-invocation
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum StrStyle {
|
|
CookedStr,
|
|
RawStr(uint)
|
|
}
|
|
|
|
pub type Lit = Spanned<Lit_>;
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Lit_ {
|
|
LitStr(InternedString, StrStyle),
|
|
LitBinary(Rc<Vec<u8> >),
|
|
LitChar(u32),
|
|
LitInt(i64, IntTy),
|
|
LitUint(u64, UintTy),
|
|
LitIntUnsuffixed(i64),
|
|
LitFloat(InternedString, FloatTy),
|
|
LitFloatUnsuffixed(InternedString),
|
|
LitNil,
|
|
LitBool(bool),
|
|
}
|
|
|
|
// NB: If you change this, you'll probably want to change the corresponding
|
|
// type structure in middle/ty.rs as well.
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct MutTy {
|
|
ty: P<Ty>,
|
|
mutbl: Mutability,
|
|
}
|
|
|
|
#[deriving(Eq, Encodable, Decodable, Hash)]
|
|
pub struct TypeField {
|
|
ident: Ident,
|
|
mt: MutTy,
|
|
span: Span,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct TypeMethod {
|
|
ident: Ident,
|
|
attrs: Vec<Attribute> ,
|
|
purity: Purity,
|
|
decl: P<FnDecl>,
|
|
generics: Generics,
|
|
explicit_self: ExplicitSelf,
|
|
id: NodeId,
|
|
span: Span,
|
|
}
|
|
|
|
// A trait method is either required (meaning it doesn't have an
|
|
// implementation, just a signature) or provided (meaning it has a default
|
|
// implementation).
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum TraitMethod {
|
|
Required(TypeMethod),
|
|
Provided(@Method),
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum IntTy {
|
|
TyI,
|
|
TyI8,
|
|
TyI16,
|
|
TyI32,
|
|
TyI64,
|
|
}
|
|
|
|
impl fmt::Show for IntTy {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f.buf, "{}", ast_util::int_ty_to_str(*self))
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum UintTy {
|
|
TyU,
|
|
TyU8,
|
|
TyU16,
|
|
TyU32,
|
|
TyU64,
|
|
}
|
|
|
|
impl fmt::Show for UintTy {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f.buf, "{}", ast_util::uint_ty_to_str(*self))
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum FloatTy {
|
|
TyF32,
|
|
TyF64,
|
|
}
|
|
|
|
impl fmt::Show for FloatTy {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f.buf, "{}", ast_util::float_ty_to_str(*self))
|
|
}
|
|
}
|
|
|
|
// NB Eq method appears below.
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Ty {
|
|
id: NodeId,
|
|
node: Ty_,
|
|
span: Span,
|
|
}
|
|
|
|
// Not represented directly in the AST, referred to by name through a ty_path.
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum PrimTy {
|
|
TyInt(IntTy),
|
|
TyUint(UintTy),
|
|
TyFloat(FloatTy),
|
|
TyStr,
|
|
TyBool,
|
|
TyChar
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Onceness {
|
|
Once,
|
|
Many
|
|
}
|
|
|
|
impl fmt::Show for Onceness {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match *self {
|
|
Once => "once".fmt(f),
|
|
Many => "many".fmt(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Eq, Encodable, Decodable, Hash)]
|
|
pub struct ClosureTy {
|
|
sigil: Sigil,
|
|
region: Option<Lifetime>,
|
|
lifetimes: Vec<Lifetime>,
|
|
purity: Purity,
|
|
onceness: Onceness,
|
|
decl: P<FnDecl>,
|
|
// Optional optvec distinguishes between "fn()" and "fn:()" so we can
|
|
// implement issue #7264. None means "fn()", which means infer a default
|
|
// bound based on pointer sigil during typeck. Some(Empty) means "fn:()",
|
|
// which means use no bounds (e.g., not even Owned on a ~fn()).
|
|
bounds: Option<OptVec<TyParamBound>>,
|
|
}
|
|
|
|
#[deriving(Eq, Encodable, Decodable, Hash)]
|
|
pub struct BareFnTy {
|
|
purity: Purity,
|
|
abis: AbiSet,
|
|
lifetimes: Vec<Lifetime>,
|
|
decl: P<FnDecl>
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Ty_ {
|
|
TyNil,
|
|
TyBot, /* bottom type */
|
|
TyBox(P<Ty>),
|
|
TyUniq(P<Ty>),
|
|
TyVec(P<Ty>),
|
|
TyFixedLengthVec(P<Ty>, @Expr),
|
|
TyPtr(MutTy),
|
|
TyRptr(Option<Lifetime>, MutTy),
|
|
TyClosure(@ClosureTy),
|
|
TyBareFn(@BareFnTy),
|
|
TyTup(Vec<P<Ty>> ),
|
|
TyPath(Path, Option<OptVec<TyParamBound>>, NodeId), // for #7264; see above
|
|
TyTypeof(@Expr),
|
|
// TyInfer means the type should be inferred instead of it having been
|
|
// specified. This can appear anywhere in a type.
|
|
TyInfer,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum AsmDialect {
|
|
AsmAtt,
|
|
AsmIntel
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct InlineAsm {
|
|
asm: InternedString,
|
|
asm_str_style: StrStyle,
|
|
clobbers: InternedString,
|
|
inputs: Vec<(InternedString, @Expr)> ,
|
|
outputs: Vec<(InternedString, @Expr)> ,
|
|
volatile: bool,
|
|
alignstack: bool,
|
|
dialect: AsmDialect
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Arg {
|
|
ty: P<Ty>,
|
|
pat: @Pat,
|
|
id: NodeId,
|
|
}
|
|
|
|
impl Arg {
|
|
pub fn new_self(span: Span, mutability: Mutability) -> Arg {
|
|
let path = ast_util::ident_to_path(span, special_idents::self_);
|
|
Arg {
|
|
// HACK(eddyb) fake type for the self argument.
|
|
ty: P(Ty {
|
|
id: DUMMY_NODE_ID,
|
|
node: TyInfer,
|
|
span: DUMMY_SP,
|
|
}),
|
|
pat: @Pat {
|
|
id: DUMMY_NODE_ID,
|
|
node: PatIdent(BindByValue(mutability), path, None),
|
|
span: span
|
|
},
|
|
id: DUMMY_NODE_ID
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct FnDecl {
|
|
inputs: Vec<Arg> ,
|
|
output: P<Ty>,
|
|
cf: RetStyle,
|
|
variadic: bool
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Purity {
|
|
UnsafeFn, // declared with "unsafe fn"
|
|
ImpureFn, // declared with "fn"
|
|
ExternFn, // declared with "extern fn"
|
|
}
|
|
|
|
impl fmt::Show for Purity {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match *self {
|
|
ImpureFn => "impure".fmt(f),
|
|
UnsafeFn => "unsafe".fmt(f),
|
|
ExternFn => "extern".fmt(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum RetStyle {
|
|
NoReturn, // functions with return type _|_ that always
|
|
// raise an error or exit (i.e. never return to the caller)
|
|
Return, // everything else
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum ExplicitSelf_ {
|
|
SelfStatic, // no self
|
|
SelfValue, // `self`
|
|
SelfRegion(Option<Lifetime>, Mutability), // `&'lt self`, `&'lt mut self`
|
|
SelfUniq // `~self`
|
|
}
|
|
|
|
pub type ExplicitSelf = Spanned<ExplicitSelf_>;
|
|
|
|
#[deriving(Eq, Encodable, Decodable, Hash)]
|
|
pub struct Method {
|
|
ident: Ident,
|
|
attrs: Vec<Attribute> ,
|
|
generics: Generics,
|
|
explicit_self: ExplicitSelf,
|
|
purity: Purity,
|
|
decl: P<FnDecl>,
|
|
body: P<Block>,
|
|
id: NodeId,
|
|
span: Span,
|
|
vis: Visibility,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Mod {
|
|
view_items: Vec<ViewItem> ,
|
|
items: Vec<@Item> ,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct ForeignMod {
|
|
abis: AbiSet,
|
|
view_items: Vec<ViewItem> ,
|
|
items: Vec<@ForeignItem> ,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct VariantArg {
|
|
ty: P<Ty>,
|
|
id: NodeId,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum VariantKind {
|
|
TupleVariantKind(Vec<VariantArg> ),
|
|
StructVariantKind(@StructDef),
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct EnumDef {
|
|
variants: Vec<P<Variant>> ,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Variant_ {
|
|
name: Ident,
|
|
attrs: Vec<Attribute> ,
|
|
kind: VariantKind,
|
|
id: NodeId,
|
|
disr_expr: Option<@Expr>,
|
|
vis: Visibility,
|
|
}
|
|
|
|
pub type Variant = Spanned<Variant_>;
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct PathListIdent_ {
|
|
name: Ident,
|
|
id: NodeId,
|
|
}
|
|
|
|
pub type PathListIdent = Spanned<PathListIdent_>;
|
|
|
|
pub type ViewPath = Spanned<ViewPath_>;
|
|
|
|
#[deriving(Eq, Encodable, Decodable, Hash)]
|
|
pub enum ViewPath_ {
|
|
|
|
// quux = foo::bar::baz
|
|
//
|
|
// or just
|
|
//
|
|
// foo::bar::baz (with 'baz =' implicitly on the left)
|
|
ViewPathSimple(Ident, Path, NodeId),
|
|
|
|
// foo::bar::*
|
|
ViewPathGlob(Path, NodeId),
|
|
|
|
// foo::bar::{a,b,c}
|
|
ViewPathList(Path, Vec<PathListIdent> , NodeId)
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct ViewItem {
|
|
node: ViewItem_,
|
|
attrs: Vec<Attribute> ,
|
|
vis: Visibility,
|
|
span: Span,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum ViewItem_ {
|
|
// ident: name used to refer to this crate in the code
|
|
// optional (InternedString,StrStyle): if present, this is a location
|
|
// (containing arbitrary characters) from which to fetch the crate sources
|
|
// For example, extern crate whatever = "github.com/mozilla/rust"
|
|
ViewItemExternCrate(Ident, Option<(InternedString,StrStyle)>, NodeId),
|
|
ViewItemUse(Vec<@ViewPath> ),
|
|
}
|
|
|
|
// Meta-data associated with an item
|
|
pub type Attribute = Spanned<Attribute_>;
|
|
|
|
// Distinguishes between Attributes that decorate items and Attributes that
|
|
// are contained as statements within items. These two cases need to be
|
|
// distinguished for pretty-printing.
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum AttrStyle {
|
|
AttrOuter,
|
|
AttrInner,
|
|
}
|
|
|
|
// doc-comments are promoted to attributes that have is_sugared_doc = true
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Attribute_ {
|
|
style: AttrStyle,
|
|
value: @MetaItem,
|
|
is_sugared_doc: bool,
|
|
}
|
|
|
|
/*
|
|
TraitRef's appear in impls.
|
|
resolve maps each TraitRef's ref_id to its defining trait; that's all
|
|
that the ref_id is for. The impl_id maps to the "self type" of this impl.
|
|
If this impl is an ItemImpl, the impl_id is redundant (it could be the
|
|
same as the impl's node id).
|
|
*/
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct TraitRef {
|
|
path: Path,
|
|
ref_id: NodeId,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Visibility {
|
|
Public,
|
|
Private,
|
|
Inherited,
|
|
}
|
|
|
|
impl Visibility {
|
|
pub fn inherit_from(&self, parent_visibility: Visibility) -> Visibility {
|
|
match self {
|
|
&Inherited => parent_visibility,
|
|
&Public | &Private => *self
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct StructField_ {
|
|
kind: StructFieldKind,
|
|
id: NodeId,
|
|
ty: P<Ty>,
|
|
attrs: Vec<Attribute> ,
|
|
}
|
|
|
|
pub type StructField = Spanned<StructField_>;
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum StructFieldKind {
|
|
NamedField(Ident, Visibility),
|
|
UnnamedField // element of a tuple-like struct
|
|
}
|
|
|
|
#[deriving(Eq, Encodable, Decodable, Hash)]
|
|
pub struct StructDef {
|
|
fields: Vec<StructField> , /* fields, not including ctor */
|
|
/* ID of the constructor. This is only used for tuple- or enum-like
|
|
* structs. */
|
|
ctor_id: Option<NodeId>
|
|
}
|
|
|
|
/*
|
|
FIXME (#3300): Should allow items to be anonymous. Right now
|
|
we just use dummy names for anon items.
|
|
*/
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct Item {
|
|
ident: Ident,
|
|
attrs: Vec<Attribute> ,
|
|
id: NodeId,
|
|
node: Item_,
|
|
vis: Visibility,
|
|
span: Span,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub enum Item_ {
|
|
ItemStatic(P<Ty>, Mutability, @Expr),
|
|
ItemFn(P<FnDecl>, Purity, AbiSet, Generics, P<Block>),
|
|
ItemMod(Mod),
|
|
ItemForeignMod(ForeignMod),
|
|
ItemTy(P<Ty>, Generics),
|
|
ItemEnum(EnumDef, Generics),
|
|
ItemStruct(@StructDef, Generics),
|
|
ItemTrait(Generics, Vec<TraitRef> , Vec<TraitMethod> ),
|
|
ItemImpl(Generics,
|
|
Option<TraitRef>, // (optional) trait this impl implements
|
|
P<Ty>, // self
|
|
Vec<@Method> ),
|
|
// a macro invocation (which includes macro definition)
|
|
ItemMac(Mac),
|
|
}
|
|
|
|
#[deriving(Eq, Encodable, Decodable, Hash)]
|
|
pub struct ForeignItem {
|
|
ident: Ident,
|
|
attrs: Vec<Attribute> ,
|
|
node: ForeignItem_,
|
|
id: NodeId,
|
|
span: Span,
|
|
vis: Visibility,
|
|
}
|
|
|
|
#[deriving(Eq, Encodable, Decodable, Hash)]
|
|
pub enum ForeignItem_ {
|
|
ForeignItemFn(P<FnDecl>, Generics),
|
|
ForeignItemStatic(P<Ty>, /* is_mutbl */ bool),
|
|
}
|
|
|
|
// The data we save and restore about an inlined item or method. This is not
|
|
// part of the AST that we parse from a file, but it becomes part of the tree
|
|
// that we trans.
|
|
#[deriving(Eq, Encodable, Decodable, Hash)]
|
|
pub enum InlinedItem {
|
|
IIItem(@Item),
|
|
IIMethod(DefId /* impl id */, bool /* is provided */, @Method),
|
|
IIForeign(@ForeignItem),
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use serialize::json;
|
|
use serialize;
|
|
use codemap::*;
|
|
use super::*;
|
|
|
|
use std::vec_ng::Vec;
|
|
|
|
fn is_freeze<T: Freeze>() {}
|
|
|
|
// Assert that the AST remains Freeze (#10693).
|
|
#[test]
|
|
fn ast_is_freeze() {
|
|
is_freeze::<Item>();
|
|
}
|
|
|
|
// are ASTs encodable?
|
|
#[test]
|
|
fn check_asts_encodable() {
|
|
let e = Crate {
|
|
module: Mod {view_items: Vec::new(), items: Vec::new()},
|
|
attrs: Vec::new(),
|
|
config: Vec::new(),
|
|
span: Span {
|
|
lo: BytePos(10),
|
|
hi: BytePos(20),
|
|
expn_info: None,
|
|
},
|
|
};
|
|
// doesn't matter which encoder we use....
|
|
let _f = &e as &serialize::Encodable<json::Encoder>;
|
|
}
|
|
}
|