rust/src/libsyntax/ast.rs
Alex Crichton a921dc4873 rustc: Remove compiler support for __log_level()
This commit removes all internal support for the previously used __log_level()
expression. The logging subsystem was previously modified to not rely on this
magical expression. This also removes the only other function to use the
module_data map in trans, decl_gc_metadata. It appears that this is an ancient
function from a GC only used long ago.

This does not remove the crate map entirely, as libgreen still uses it to hook
in to the event loop provided by libgreen.
2014-03-15 22:26:36 -07:00

1187 lines
33 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The Rust abstract syntax tree.
use codemap::{Span, Spanned, DUMMY_SP};
use abi::AbiSet;
use ast_util;
use opt_vec::OptVec;
use parse::token::{InternedString, special_idents, str_to_ident};
use parse::token;
use std::fmt;
use std::fmt::Show;
use std::option::Option;
use std::rc::Rc;
use std::vec_ng::Vec;
use serialize::{Encodable, Decodable, Encoder, Decoder};
/// A pointer abstraction. FIXME(eddyb) #10676 use Rc<T> in the future.
pub type P<T> = @T;
/// Construct a P<T> from a T value.
pub fn P<T: 'static>(value: T) -> P<T> {
@value
}
// FIXME #6993: in librustc, uses of "ident" should be replaced
// by just "Name".
// an identifier contains a Name (index into the interner
// table) and a SyntaxContext to track renaming and
// macro expansion per Flatt et al., "Macros
// That Work Together"
#[deriving(Clone, Hash, Ord, TotalEq, TotalOrd, Show)]
pub struct Ident {
name: Name,
ctxt: SyntaxContext
}
impl Ident {
/// Construct an identifier with the given name and an empty context:
pub fn new(name: Name) -> Ident { Ident {name: name, ctxt: EMPTY_CTXT}}
}
impl Eq for Ident {
fn eq(&self, other: &Ident) -> bool {
if self.ctxt == other.ctxt {
self.name == other.name
} else {
// IF YOU SEE ONE OF THESE FAILS: it means that you're comparing
// idents that have different contexts. You can't fix this without
// knowing whether the comparison should be hygienic or non-hygienic.
// if it should be non-hygienic (most things are), just compare the
// 'name' fields of the idents. Or, even better, replace the idents
// with Name's.
//
// On the other hand, if the comparison does need to be hygienic,
// one example and its non-hygienic counterpart would be:
// syntax::parse::token::mtwt_token_eq
// syntax::ext::tt::macro_parser::token_name_eq
fail!("not allowed to compare these idents: {:?}, {:?}. \
Probably related to issue \\#6993", self, other);
}
}
fn ne(&self, other: &Ident) -> bool {
! self.eq(other)
}
}
/// A SyntaxContext represents a chain of macro-expandings
/// and renamings. Each macro expansion corresponds to
/// a fresh uint
// I'm representing this syntax context as an index into
// a table, in order to work around a compiler bug
// that's causing unreleased memory to cause core dumps
// and also perhaps to save some work in destructor checks.
// the special uint '0' will be used to indicate an empty
// syntax context.
// this uint is a reference to a table stored in thread-local
// storage.
pub type SyntaxContext = u32;
pub static EMPTY_CTXT : SyntaxContext = 0;
pub static ILLEGAL_CTXT : SyntaxContext = 1;
/// A name is a part of an identifier, representing a string or gensym. It's
/// the result of interning.
pub type Name = u32;
/// A mark represents a unique id associated with a macro expansion
pub type Mrk = u32;
impl<S: Encoder> Encodable<S> for Ident {
fn encode(&self, s: &mut S) {
s.emit_str(token::get_ident(*self).get());
}
}
impl<D:Decoder> Decodable<D> for Ident {
fn decode(d: &mut D) -> Ident {
str_to_ident(d.read_str())
}
}
/// Function name (not all functions have names)
pub type FnIdent = Option<Ident>;
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Lifetime {
id: NodeId,
span: Span,
name: Name
}
// a "Path" is essentially Rust's notion of a name;
// for instance: std::cmp::Eq . It's represented
// as a sequence of identifiers, along with a bunch
// of supporting information.
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Path {
span: Span,
/// A `::foo` path, is relative to the crate root rather than current
/// module (like paths in an import).
global: bool,
/// The segments in the path: the things separated by `::`.
segments: Vec<PathSegment> ,
}
/// A segment of a path: an identifier, an optional lifetime, and a set of
/// types.
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct PathSegment {
/// The identifier portion of this path segment.
identifier: Ident,
/// The lifetime parameters for this path segment.
lifetimes: Vec<Lifetime>,
/// The type parameters for this path segment, if present.
types: OptVec<P<Ty>>,
}
pub type CrateNum = u32;
pub type NodeId = u32;
#[deriving(Clone, TotalEq, TotalOrd, Ord, Eq, Encodable, Decodable, Hash, Show)]
pub struct DefId {
krate: CrateNum,
node: NodeId,
}
/// Item definitions in the currently-compiled crate would have the CrateNum
/// LOCAL_CRATE in their DefId.
pub static LOCAL_CRATE: CrateNum = 0;
pub static CRATE_NODE_ID: NodeId = 0;
// When parsing and doing expansions, we initially give all AST nodes this AST
// node value. Then later, in the renumber pass, we renumber them to have
// small, positive ids.
pub static DUMMY_NODE_ID: NodeId = -1;
// The AST represents all type param bounds as types.
// typeck::collect::compute_bounds matches these against
// the "special" built-in traits (see middle::lang_items) and
// detects Copy, Send, Send, and Freeze.
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum TyParamBound {
TraitTyParamBound(TraitRef),
RegionTyParamBound
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct TyParam {
ident: Ident,
id: NodeId,
bounds: OptVec<TyParamBound>,
default: Option<P<Ty>>
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Generics {
lifetimes: Vec<Lifetime>,
ty_params: OptVec<TyParam>,
}
impl Generics {
pub fn is_parameterized(&self) -> bool {
self.lifetimes.len() + self.ty_params.len() > 0
}
pub fn is_lt_parameterized(&self) -> bool {
self.lifetimes.len() > 0
}
pub fn is_type_parameterized(&self) -> bool {
self.ty_params.len() > 0
}
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum MethodProvenance {
FromTrait(DefId),
FromImpl(DefId),
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Def {
DefFn(DefId, Purity),
DefStaticMethod(/* method */ DefId, MethodProvenance, Purity),
DefSelfTy(/* trait id */ NodeId),
DefMod(DefId),
DefForeignMod(DefId),
DefStatic(DefId, bool /* is_mutbl */),
DefArg(NodeId, BindingMode),
DefLocal(NodeId, BindingMode),
DefVariant(DefId /* enum */, DefId /* variant */, bool /* is_structure */),
DefTy(DefId),
DefTrait(DefId),
DefPrimTy(PrimTy),
DefTyParam(DefId, uint),
DefBinding(NodeId, BindingMode),
DefUse(DefId),
DefUpvar(NodeId, // id of closed over var
@Def, // closed over def
NodeId, // expr node that creates the closure
NodeId), // id for the block/body of the closure expr
/// Note that if it's a tuple struct's definition, the node id of the DefId
/// may either refer to the item definition's id or the StructDef.ctor_id.
///
/// The cases that I have encountered so far are (this is not exhaustive):
/// - If it's a ty_path referring to some tuple struct, then DefMap maps
/// it to a def whose id is the item definition's id.
/// - If it's an ExprPath referring to some tuple struct, then DefMap maps
/// it to a def whose id is the StructDef.ctor_id.
DefStruct(DefId),
DefTyParamBinder(NodeId), /* struct, impl or trait with ty params */
DefRegion(NodeId),
DefLabel(NodeId),
DefMethod(DefId /* method */, Option<DefId> /* trait */),
}
#[deriving(Clone, Eq, Hash, Encodable, Decodable, Show)]
pub enum DefRegion {
DefStaticRegion,
DefEarlyBoundRegion(/* index */ uint, /* lifetime decl */ NodeId),
DefLateBoundRegion(/* binder_id */ NodeId, /* depth */ uint, /* lifetime decl */ NodeId),
DefFreeRegion(/* block scope */ NodeId, /* lifetime decl */ NodeId),
}
// The set of MetaItems that define the compilation environment of the crate,
// used to drive conditional compilation
pub type CrateConfig = Vec<@MetaItem> ;
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Crate {
module: Mod,
attrs: Vec<Attribute> ,
config: CrateConfig,
span: Span,
}
pub type MetaItem = Spanned<MetaItem_>;
#[deriving(Clone, Encodable, Decodable, Hash)]
pub enum MetaItem_ {
MetaWord(InternedString),
MetaList(InternedString, Vec<@MetaItem> ),
MetaNameValue(InternedString, Lit),
}
// can't be derived because the MetaList requires an unordered comparison
impl Eq for MetaItem_ {
fn eq(&self, other: &MetaItem_) -> bool {
match *self {
MetaWord(ref ns) => match *other {
MetaWord(ref no) => (*ns) == (*no),
_ => false
},
MetaNameValue(ref ns, ref vs) => match *other {
MetaNameValue(ref no, ref vo) => {
(*ns) == (*no) && vs.node == vo.node
}
_ => false
},
MetaList(ref ns, ref miss) => match *other {
MetaList(ref no, ref miso) => {
ns == no &&
miss.iter().all(|mi| miso.iter().any(|x| x.node == mi.node))
}
_ => false
}
}
}
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Block {
view_items: Vec<ViewItem> ,
stmts: Vec<@Stmt> ,
expr: Option<@Expr>,
id: NodeId,
rules: BlockCheckMode,
span: Span,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Pat {
id: NodeId,
node: Pat_,
span: Span,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct FieldPat {
ident: Ident,
pat: @Pat,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum BindingMode {
BindByRef(Mutability),
BindByValue(Mutability),
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Pat_ {
PatWild,
PatWildMulti,
// A PatIdent may either be a new bound variable,
// or a nullary enum (in which case the second field
// is None).
// In the nullary enum case, the parser can't determine
// which it is. The resolver determines this, and
// records this pattern's NodeId in an auxiliary
// set (of "pat_idents that refer to nullary enums")
PatIdent(BindingMode, Path, Option<@Pat>),
PatEnum(Path, Option<Vec<@Pat> >), /* "none" means a * pattern where
* we don't bind the fields to names */
PatStruct(Path, Vec<FieldPat> , bool),
PatTup(Vec<@Pat> ),
PatUniq(@Pat),
PatRegion(@Pat), // reference pattern
PatLit(@Expr),
PatRange(@Expr, @Expr),
// [a, b, ..i, y, z] is represented as
// PatVec(~[a, b], Some(i), ~[y, z])
PatVec(Vec<@Pat> , Option<@Pat>, Vec<@Pat> )
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash, Show)]
pub enum Mutability {
MutMutable,
MutImmutable,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Sigil {
BorrowedSigil,
OwnedSigil,
ManagedSigil
}
impl fmt::Show for Sigil {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
BorrowedSigil => "&".fmt(f),
OwnedSigil => "~".fmt(f),
ManagedSigil => "@".fmt(f),
}
}
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum ExprVstore {
ExprVstoreUniq, // ~[1,2,3,4]
ExprVstoreSlice, // &[1,2,3,4]
ExprVstoreMutSlice, // &mut [1,2,3,4]
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum BinOp {
BiAdd,
BiSub,
BiMul,
BiDiv,
BiRem,
BiAnd,
BiOr,
BiBitXor,
BiBitAnd,
BiBitOr,
BiShl,
BiShr,
BiEq,
BiLt,
BiLe,
BiNe,
BiGe,
BiGt,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum UnOp {
UnBox,
UnUniq,
UnDeref,
UnNot,
UnNeg
}
pub type Stmt = Spanned<Stmt_>;
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Stmt_ {
// could be an item or a local (let) binding:
StmtDecl(@Decl, NodeId),
// expr without trailing semi-colon (must have unit type):
StmtExpr(@Expr, NodeId),
// expr with trailing semi-colon (may have any type):
StmtSemi(@Expr, NodeId),
// bool: is there a trailing sem-colon?
StmtMac(Mac, bool),
}
// FIXME (pending discussion of #1697, #2178...): local should really be
// a refinement on pat.
/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`
#[deriving(Eq, Encodable, Decodable, Hash)]
pub struct Local {
ty: P<Ty>,
pat: @Pat,
init: Option<@Expr>,
id: NodeId,
span: Span,
}
pub type Decl = Spanned<Decl_>;
#[deriving(Eq, Encodable, Decodable, Hash)]
pub enum Decl_ {
// a local (let) binding:
DeclLocal(@Local),
// an item binding:
DeclItem(@Item),
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Arm {
pats: Vec<@Pat> ,
guard: Option<@Expr>,
body: @Expr,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Field {
ident: SpannedIdent,
expr: @Expr,
span: Span,
}
pub type SpannedIdent = Spanned<Ident>;
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum BlockCheckMode {
DefaultBlock,
UnsafeBlock(UnsafeSource),
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum UnsafeSource {
CompilerGenerated,
UserProvided,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Expr {
id: NodeId,
node: Expr_,
span: Span,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Expr_ {
ExprVstore(@Expr, ExprVstore),
// First expr is the place; second expr is the value.
ExprBox(@Expr, @Expr),
ExprVec(Vec<@Expr> , Mutability),
ExprCall(@Expr, Vec<@Expr> ),
ExprMethodCall(Ident, Vec<P<Ty>> , Vec<@Expr> ),
ExprTup(Vec<@Expr> ),
ExprBinary(BinOp, @Expr, @Expr),
ExprUnary(UnOp, @Expr),
ExprLit(@Lit),
ExprCast(@Expr, P<Ty>),
ExprIf(@Expr, P<Block>, Option<@Expr>),
ExprWhile(@Expr, P<Block>),
// FIXME #6993: change to Option<Name>
ExprForLoop(@Pat, @Expr, P<Block>, Option<Ident>),
// Conditionless loop (can be exited with break, cont, or ret)
// FIXME #6993: change to Option<Name>
ExprLoop(P<Block>, Option<Ident>),
ExprMatch(@Expr, Vec<Arm> ),
ExprFnBlock(P<FnDecl>, P<Block>),
ExprProc(P<FnDecl>, P<Block>),
ExprBlock(P<Block>),
ExprAssign(@Expr, @Expr),
ExprAssignOp(BinOp, @Expr, @Expr),
ExprField(@Expr, Ident, Vec<P<Ty>> ),
ExprIndex(@Expr, @Expr),
/// Expression that looks like a "name". For example,
/// `std::vec::from_elem::<uint>` is an ExprPath that's the "name" part
/// of a function call.
ExprPath(Path),
ExprAddrOf(Mutability, @Expr),
ExprBreak(Option<Ident>),
ExprAgain(Option<Ident>),
ExprRet(Option<@Expr>),
ExprInlineAsm(InlineAsm),
ExprMac(Mac),
// A struct literal expression.
ExprStruct(Path, Vec<Field> , Option<@Expr> /* base */),
// A vector literal constructed from one repeated element.
ExprRepeat(@Expr /* element */, @Expr /* count */, Mutability),
// No-op: used solely so we can pretty-print faithfully
ExprParen(@Expr)
}
// When the main rust parser encounters a syntax-extension invocation, it
// parses the arguments to the invocation as a token-tree. This is a very
// loose structure, such that all sorts of different AST-fragments can
// be passed to syntax extensions using a uniform type.
//
// If the syntax extension is an MBE macro, it will attempt to match its
// LHS "matchers" against the provided token tree, and if it finds a
// match, will transcribe the RHS token tree, splicing in any captured
// macro_parser::matched_nonterminals into the TTNonterminals it finds.
//
// The RHS of an MBE macro is the only place a TTNonterminal or TTSeq
// makes any real sense. You could write them elsewhere but nothing
// else knows what to do with them, so you'll probably get a syntax
// error.
//
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
#[doc="For macro invocations; parsing is delegated to the macro"]
pub enum TokenTree {
// a single token
TTTok(Span, ::parse::token::Token),
// a delimited sequence (the delimiters appear as the first
// and last elements of the vector)
TTDelim(@Vec<TokenTree> ),
// These only make sense for right-hand-sides of MBE macros:
// a kleene-style repetition sequence with a span, a TTForest,
// an optional separator, and a boolean where true indicates
// zero or more (..), and false indicates one or more (+).
TTSeq(Span, @Vec<TokenTree> , Option<::parse::token::Token>, bool),
// a syntactic variable that will be filled in by macro expansion.
TTNonterminal(Span, Ident)
}
//
// Matchers are nodes defined-by and recognized-by the main rust parser and
// language, but they're only ever found inside syntax-extension invocations;
// indeed, the only thing that ever _activates_ the rules in the rust parser
// for parsing a matcher is a matcher looking for the 'matchers' nonterminal
// itself. Matchers represent a small sub-language for pattern-matching
// token-trees, and are thus primarily used by the macro-defining extension
// itself.
//
// MatchTok
// --------
//
// A matcher that matches a single token, denoted by the token itself. So
// long as there's no $ involved.
//
//
// MatchSeq
// --------
//
// A matcher that matches a sequence of sub-matchers, denoted various
// possible ways:
//
// $(M)* zero or more Ms
// $(M)+ one or more Ms
// $(M),+ one or more comma-separated Ms
// $(A B C);* zero or more semi-separated 'A B C' seqs
//
//
// MatchNonterminal
// -----------------
//
// A matcher that matches one of a few interesting named rust
// nonterminals, such as types, expressions, items, or raw token-trees. A
// black-box matcher on expr, for example, binds an expr to a given ident,
// and that ident can re-occur as an interpolation in the RHS of a
// macro-by-example rule. For example:
//
// $foo:expr => 1 + $foo // interpolate an expr
// $foo:tt => $foo // interpolate a token-tree
// $foo:tt => bar! $foo // only other valid interpolation
// // is in arg position for another
// // macro
//
// As a final, horrifying aside, note that macro-by-example's input is
// also matched by one of these matchers. Holy self-referential! It is matched
// by a MatchSeq, specifically this one:
//
// $( $lhs:matchers => $rhs:tt );+
//
// If you understand that, you have closed to loop and understand the whole
// macro system. Congratulations.
//
pub type Matcher = Spanned<Matcher_>;
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Matcher_ {
// match one token
MatchTok(::parse::token::Token),
// match repetitions of a sequence: body, separator, zero ok?,
// lo, hi position-in-match-array used:
MatchSeq(Vec<Matcher> , Option<::parse::token::Token>, bool, uint, uint),
// parse a Rust NT: name to bind, name of NT, position in match array:
MatchNonterminal(Ident, Ident, uint)
}
pub type Mac = Spanned<Mac_>;
// represents a macro invocation. The Path indicates which macro
// is being invoked, and the vector of token-trees contains the source
// of the macro invocation.
// There's only one flavor, now, so this could presumably be simplified.
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Mac_ {
MacInvocTT(Path, Vec<TokenTree> , SyntaxContext), // new macro-invocation
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum StrStyle {
CookedStr,
RawStr(uint)
}
pub type Lit = Spanned<Lit_>;
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Lit_ {
LitStr(InternedString, StrStyle),
LitBinary(Rc<Vec<u8> >),
LitChar(u32),
LitInt(i64, IntTy),
LitUint(u64, UintTy),
LitIntUnsuffixed(i64),
LitFloat(InternedString, FloatTy),
LitFloatUnsuffixed(InternedString),
LitNil,
LitBool(bool),
}
// NB: If you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct MutTy {
ty: P<Ty>,
mutbl: Mutability,
}
#[deriving(Eq, Encodable, Decodable, Hash)]
pub struct TypeField {
ident: Ident,
mt: MutTy,
span: Span,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct TypeMethod {
ident: Ident,
attrs: Vec<Attribute> ,
purity: Purity,
decl: P<FnDecl>,
generics: Generics,
explicit_self: ExplicitSelf,
id: NodeId,
span: Span,
}
// A trait method is either required (meaning it doesn't have an
// implementation, just a signature) or provided (meaning it has a default
// implementation).
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum TraitMethod {
Required(TypeMethod),
Provided(@Method),
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum IntTy {
TyI,
TyI8,
TyI16,
TyI32,
TyI64,
}
impl fmt::Show for IntTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f.buf, "{}", ast_util::int_ty_to_str(*self))
}
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum UintTy {
TyU,
TyU8,
TyU16,
TyU32,
TyU64,
}
impl fmt::Show for UintTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f.buf, "{}", ast_util::uint_ty_to_str(*self))
}
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum FloatTy {
TyF32,
TyF64,
}
impl fmt::Show for FloatTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f.buf, "{}", ast_util::float_ty_to_str(*self))
}
}
// NB Eq method appears below.
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Ty {
id: NodeId,
node: Ty_,
span: Span,
}
// Not represented directly in the AST, referred to by name through a ty_path.
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum PrimTy {
TyInt(IntTy),
TyUint(UintTy),
TyFloat(FloatTy),
TyStr,
TyBool,
TyChar
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Onceness {
Once,
Many
}
impl fmt::Show for Onceness {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Once => "once".fmt(f),
Many => "many".fmt(f),
}
}
}
#[deriving(Eq, Encodable, Decodable, Hash)]
pub struct ClosureTy {
sigil: Sigil,
region: Option<Lifetime>,
lifetimes: Vec<Lifetime>,
purity: Purity,
onceness: Onceness,
decl: P<FnDecl>,
// Optional optvec distinguishes between "fn()" and "fn:()" so we can
// implement issue #7264. None means "fn()", which means infer a default
// bound based on pointer sigil during typeck. Some(Empty) means "fn:()",
// which means use no bounds (e.g., not even Owned on a ~fn()).
bounds: Option<OptVec<TyParamBound>>,
}
#[deriving(Eq, Encodable, Decodable, Hash)]
pub struct BareFnTy {
purity: Purity,
abis: AbiSet,
lifetimes: Vec<Lifetime>,
decl: P<FnDecl>
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Ty_ {
TyNil,
TyBot, /* bottom type */
TyBox(P<Ty>),
TyUniq(P<Ty>),
TyVec(P<Ty>),
TyFixedLengthVec(P<Ty>, @Expr),
TyPtr(MutTy),
TyRptr(Option<Lifetime>, MutTy),
TyClosure(@ClosureTy),
TyBareFn(@BareFnTy),
TyTup(Vec<P<Ty>> ),
TyPath(Path, Option<OptVec<TyParamBound>>, NodeId), // for #7264; see above
TyTypeof(@Expr),
// TyInfer means the type should be inferred instead of it having been
// specified. This can appear anywhere in a type.
TyInfer,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum AsmDialect {
AsmAtt,
AsmIntel
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct InlineAsm {
asm: InternedString,
asm_str_style: StrStyle,
clobbers: InternedString,
inputs: Vec<(InternedString, @Expr)> ,
outputs: Vec<(InternedString, @Expr)> ,
volatile: bool,
alignstack: bool,
dialect: AsmDialect
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Arg {
ty: P<Ty>,
pat: @Pat,
id: NodeId,
}
impl Arg {
pub fn new_self(span: Span, mutability: Mutability) -> Arg {
let path = ast_util::ident_to_path(span, special_idents::self_);
Arg {
// HACK(eddyb) fake type for the self argument.
ty: P(Ty {
id: DUMMY_NODE_ID,
node: TyInfer,
span: DUMMY_SP,
}),
pat: @Pat {
id: DUMMY_NODE_ID,
node: PatIdent(BindByValue(mutability), path, None),
span: span
},
id: DUMMY_NODE_ID
}
}
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct FnDecl {
inputs: Vec<Arg> ,
output: P<Ty>,
cf: RetStyle,
variadic: bool
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Purity {
UnsafeFn, // declared with "unsafe fn"
ImpureFn, // declared with "fn"
ExternFn, // declared with "extern fn"
}
impl fmt::Show for Purity {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ImpureFn => "impure".fmt(f),
UnsafeFn => "unsafe".fmt(f),
ExternFn => "extern".fmt(f),
}
}
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum RetStyle {
NoReturn, // functions with return type _|_ that always
// raise an error or exit (i.e. never return to the caller)
Return, // everything else
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum ExplicitSelf_ {
SelfStatic, // no self
SelfValue, // `self`
SelfRegion(Option<Lifetime>, Mutability), // `&'lt self`, `&'lt mut self`
SelfUniq // `~self`
}
pub type ExplicitSelf = Spanned<ExplicitSelf_>;
#[deriving(Eq, Encodable, Decodable, Hash)]
pub struct Method {
ident: Ident,
attrs: Vec<Attribute> ,
generics: Generics,
explicit_self: ExplicitSelf,
purity: Purity,
decl: P<FnDecl>,
body: P<Block>,
id: NodeId,
span: Span,
vis: Visibility,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Mod {
view_items: Vec<ViewItem> ,
items: Vec<@Item> ,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct ForeignMod {
abis: AbiSet,
view_items: Vec<ViewItem> ,
items: Vec<@ForeignItem> ,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct VariantArg {
ty: P<Ty>,
id: NodeId,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum VariantKind {
TupleVariantKind(Vec<VariantArg> ),
StructVariantKind(@StructDef),
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct EnumDef {
variants: Vec<P<Variant>> ,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Variant_ {
name: Ident,
attrs: Vec<Attribute> ,
kind: VariantKind,
id: NodeId,
disr_expr: Option<@Expr>,
vis: Visibility,
}
pub type Variant = Spanned<Variant_>;
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct PathListIdent_ {
name: Ident,
id: NodeId,
}
pub type PathListIdent = Spanned<PathListIdent_>;
pub type ViewPath = Spanned<ViewPath_>;
#[deriving(Eq, Encodable, Decodable, Hash)]
pub enum ViewPath_ {
// quux = foo::bar::baz
//
// or just
//
// foo::bar::baz (with 'baz =' implicitly on the left)
ViewPathSimple(Ident, Path, NodeId),
// foo::bar::*
ViewPathGlob(Path, NodeId),
// foo::bar::{a,b,c}
ViewPathList(Path, Vec<PathListIdent> , NodeId)
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct ViewItem {
node: ViewItem_,
attrs: Vec<Attribute> ,
vis: Visibility,
span: Span,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum ViewItem_ {
// ident: name used to refer to this crate in the code
// optional (InternedString,StrStyle): if present, this is a location
// (containing arbitrary characters) from which to fetch the crate sources
// For example, extern crate whatever = "github.com/mozilla/rust"
ViewItemExternCrate(Ident, Option<(InternedString,StrStyle)>, NodeId),
ViewItemUse(Vec<@ViewPath> ),
}
// Meta-data associated with an item
pub type Attribute = Spanned<Attribute_>;
// Distinguishes between Attributes that decorate items and Attributes that
// are contained as statements within items. These two cases need to be
// distinguished for pretty-printing.
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum AttrStyle {
AttrOuter,
AttrInner,
}
// doc-comments are promoted to attributes that have is_sugared_doc = true
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Attribute_ {
style: AttrStyle,
value: @MetaItem,
is_sugared_doc: bool,
}
/*
TraitRef's appear in impls.
resolve maps each TraitRef's ref_id to its defining trait; that's all
that the ref_id is for. The impl_id maps to the "self type" of this impl.
If this impl is an ItemImpl, the impl_id is redundant (it could be the
same as the impl's node id).
*/
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct TraitRef {
path: Path,
ref_id: NodeId,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Visibility {
Public,
Private,
Inherited,
}
impl Visibility {
pub fn inherit_from(&self, parent_visibility: Visibility) -> Visibility {
match self {
&Inherited => parent_visibility,
&Public | &Private => *self
}
}
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct StructField_ {
kind: StructFieldKind,
id: NodeId,
ty: P<Ty>,
attrs: Vec<Attribute> ,
}
pub type StructField = Spanned<StructField_>;
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum StructFieldKind {
NamedField(Ident, Visibility),
UnnamedField // element of a tuple-like struct
}
#[deriving(Eq, Encodable, Decodable, Hash)]
pub struct StructDef {
fields: Vec<StructField> , /* fields, not including ctor */
/* ID of the constructor. This is only used for tuple- or enum-like
* structs. */
ctor_id: Option<NodeId>
}
/*
FIXME (#3300): Should allow items to be anonymous. Right now
we just use dummy names for anon items.
*/
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct Item {
ident: Ident,
attrs: Vec<Attribute> ,
id: NodeId,
node: Item_,
vis: Visibility,
span: Span,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub enum Item_ {
ItemStatic(P<Ty>, Mutability, @Expr),
ItemFn(P<FnDecl>, Purity, AbiSet, Generics, P<Block>),
ItemMod(Mod),
ItemForeignMod(ForeignMod),
ItemTy(P<Ty>, Generics),
ItemEnum(EnumDef, Generics),
ItemStruct(@StructDef, Generics),
ItemTrait(Generics, Vec<TraitRef> , Vec<TraitMethod> ),
ItemImpl(Generics,
Option<TraitRef>, // (optional) trait this impl implements
P<Ty>, // self
Vec<@Method> ),
// a macro invocation (which includes macro definition)
ItemMac(Mac),
}
#[deriving(Eq, Encodable, Decodable, Hash)]
pub struct ForeignItem {
ident: Ident,
attrs: Vec<Attribute> ,
node: ForeignItem_,
id: NodeId,
span: Span,
vis: Visibility,
}
#[deriving(Eq, Encodable, Decodable, Hash)]
pub enum ForeignItem_ {
ForeignItemFn(P<FnDecl>, Generics),
ForeignItemStatic(P<Ty>, /* is_mutbl */ bool),
}
// The data we save and restore about an inlined item or method. This is not
// part of the AST that we parse from a file, but it becomes part of the tree
// that we trans.
#[deriving(Eq, Encodable, Decodable, Hash)]
pub enum InlinedItem {
IIItem(@Item),
IIMethod(DefId /* impl id */, bool /* is provided */, @Method),
IIForeign(@ForeignItem),
}
#[cfg(test)]
mod test {
use serialize::json;
use serialize;
use codemap::*;
use super::*;
use std::vec_ng::Vec;
fn is_freeze<T: Freeze>() {}
// Assert that the AST remains Freeze (#10693).
#[test]
fn ast_is_freeze() {
is_freeze::<Item>();
}
// are ASTs encodable?
#[test]
fn check_asts_encodable() {
let e = Crate {
module: Mod {view_items: Vec::new(), items: Vec::new()},
attrs: Vec::new(),
config: Vec::new(),
span: Span {
lo: BytePos(10),
hi: BytePos(20),
expn_info: None,
},
};
// doesn't matter which encoder we use....
let _f = &e as &serialize::Encodable<json::Encoder>;
}
}