2013-09-30 23:21:18 -07:00

450 lines
15 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use vec::MutableCloneableVector;
use to_str::ToStr;
use from_str::FromStr;
use option::{Option, None, Some};
pub type Port = u16;
#[deriving(Eq, TotalEq, Clone)]
pub enum IpAddr {
Ipv4Addr(u8, u8, u8, u8),
Ipv6Addr(u16, u16, u16, u16, u16, u16, u16, u16)
}
impl ToStr for IpAddr {
fn to_str(&self) -> ~str {
match *self {
Ipv4Addr(a, b, c, d) =>
format!("{}.{}.{}.{}", a, b, c, d),
// Ipv4 Compatible address
Ipv6Addr(0, 0, 0, 0, 0, 0, g, h) => {
format!("::{}.{}.{}.{}", (g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8)
}
// Ipv4-Mapped address
Ipv6Addr(0, 0, 0, 0, 0, 0xFFFF, g, h) => {
format!("::FFFF:{}.{}.{}.{}", (g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8)
}
Ipv6Addr(a, b, c, d, e, f, g, h) =>
format!("{}:{}:{}:{}:{}:{}:{}:{}", a, b, c, d, e, f, g, h)
}
}
}
#[deriving(Eq, TotalEq, Clone)]
pub struct SocketAddr {
ip: IpAddr,
port: Port,
}
impl ToStr for SocketAddr {
fn to_str(&self) -> ~str {
match self.ip {
Ipv4Addr(*) => format!("{}:{}", self.ip.to_str(), self.port),
Ipv6Addr(*) => format!("[{}]:{}", self.ip.to_str(), self.port),
}
}
}
struct Parser<'self> {
// parsing as ASCII, so can use byte array
s: &'self [u8],
pos: uint,
}
impl<'self> Parser<'self> {
fn new(s: &'self str) -> Parser<'self> {
Parser {
s: s.as_bytes(),
pos: 0,
}
}
fn is_eof(&self) -> bool {
self.pos == self.s.len()
}
// Commit only if parser returns Some
fn read_atomically<T>(&mut self, cb: &fn(&mut Parser) -> Option<T>) -> Option<T> {
let pos = self.pos;
let r = cb(self);
if r.is_none() {
self.pos = pos;
}
r
}
// Commit only if parser read till EOF
fn read_till_eof<T>(&mut self, cb: &fn(&mut Parser) -> Option<T>) -> Option<T> {
do self.read_atomically |p| {
cb(p).filtered(|_| p.is_eof())
}
}
// Return result of first successful parser
fn read_or<T>(&mut self, parsers: &[&fn(&mut Parser) -> Option<T>]) -> Option<T> {
for pf in parsers.iter() {
match self.read_atomically(|p: &mut Parser| (*pf)(p)) {
Some(r) => return Some(r),
None => {}
}
}
None
}
// Apply 3 parsers sequentially
fn read_seq_3<A, B, C>(&mut self,
pa: &fn(&mut Parser) -> Option<A>,
pb: &fn(&mut Parser) -> Option<B>,
pc: &fn(&mut Parser) -> Option<C>
) -> Option<(A, B, C)>
{
do self.read_atomically |p| {
let a = pa(p);
let b = if a.is_some() { pb(p) } else { None };
let c = if b.is_some() { pc(p) } else { None };
match (a, b, c) {
(Some(a), Some(b), Some(c)) => Some((a, b, c)),
_ => None
}
}
}
// Read next char
fn read_char(&mut self) -> Option<char> {
if self.is_eof() {
None
} else {
let r = self.s[self.pos] as char;
self.pos += 1;
Some(r)
}
}
// Return char and advance iff next char is equal to requested
fn read_given_char(&mut self, c: char) -> Option<char> {
do self.read_atomically |p| {
p.read_char().filtered(|&next| next == c)
}
}
// Read digit
fn read_digit(&mut self, radix: u8) -> Option<u8> {
fn parse_digit(c: char, radix: u8) -> Option<u8> {
let c = c as u8;
// assuming radix is either 10 or 16
if c >= '0' as u8 && c <= '9' as u8 {
Some((c - '0' as u8) as u8)
} else if radix > 10 && c >= 'a' as u8 && c < 'a' as u8 + (radix - 10) {
Some((c - 'a' as u8 + 10) as u8)
} else if radix > 10 && c >= 'A' as u8 && c < 'A' as u8 + (radix - 10) {
Some((c - 'A' as u8 + 10) as u8)
} else {
None
}
}
do self.read_atomically |p| {
p.read_char().and_then(|c| parse_digit(c, radix))
}
}
fn read_number_impl(&mut self, radix: u8, max_digits: u32, upto: u32) -> Option<u32> {
let mut r = 0u32;
let mut digit_count = 0;
loop {
match self.read_digit(radix) {
Some(d) => {
r = r * (radix as u32) + (d as u32);
digit_count += 1;
if digit_count > max_digits || r >= upto {
return None
}
}
None => {
if digit_count == 0 {
return None
} else {
return Some(r)
}
}
};
}
}
// Read number, failing if max_digits of number value exceeded
fn read_number(&mut self, radix: u8, max_digits: u32, upto: u32) -> Option<u32> {
do self.read_atomically |p| {
p.read_number_impl(radix, max_digits, upto)
}
}
fn read_ipv4_addr_impl(&mut self) -> Option<IpAddr> {
let mut bs = [0u8, ..4];
let mut i = 0;
while i < 4 {
if i != 0 && self.read_given_char('.').is_none() {
return None;
}
let octet = self.read_number(10, 3, 0x100).map(|&n| n as u8);
match octet {
Some(d) => bs[i] = d,
None => return None,
};
i += 1;
}
Some(Ipv4Addr(bs[0], bs[1], bs[2], bs[3]))
}
// Read IPv4 address
fn read_ipv4_addr(&mut self) -> Option<IpAddr> {
do self.read_atomically |p| {
p.read_ipv4_addr_impl()
}
}
fn read_ipv6_addr_impl(&mut self) -> Option<IpAddr> {
fn ipv6_addr_from_head_tail(head: &[u16], tail: &[u16]) -> IpAddr {
assert!(head.len() + tail.len() <= 8);
let mut gs = [0u16, ..8];
gs.copy_from(head);
gs.mut_slice(8 - tail.len(), 8).copy_from(tail);
Ipv6Addr(gs[0], gs[1], gs[2], gs[3], gs[4], gs[5], gs[6], gs[7])
}
fn read_groups(p: &mut Parser, groups: &mut [u16, ..8], limit: uint) -> (uint, bool) {
let mut i = 0;
while i < limit {
if i < limit - 1 {
let ipv4 = do p.read_atomically |p| {
if i == 0 || p.read_given_char(':').is_some() {
p.read_ipv4_addr()
} else {
None
}
};
match ipv4 {
Some(Ipv4Addr(a, b, c, d)) => {
groups[i + 0] = (a as u16 << 8) | (b as u16);
groups[i + 1] = (c as u16 << 8) | (d as u16);
return (i + 2, true);
}
_ => {}
}
}
let group = do p.read_atomically |p| {
if i == 0 || p.read_given_char(':').is_some() {
p.read_number(16, 4, 0x10000).map(|&n| n as u16)
} else {
None
}
};
match group {
Some(g) => groups[i] = g,
None => return (i, false)
}
i += 1;
}
(i, false)
}
let mut head = [0u16, ..8];
let (head_size, head_ipv4) = read_groups(self, &mut head, 8);
if head_size == 8 {
return Some(Ipv6Addr(
head[0], head[1], head[2], head[3],
head[4], head[5], head[6], head[7]))
}
// IPv4 part is not allowed before `::`
if head_ipv4 {
return None
}
// read `::` if previous code parsed less than 8 groups
if !self.read_given_char(':').is_some() || !self.read_given_char(':').is_some() {
return None;
}
let mut tail = [0u16, ..8];
let (tail_size, _) = read_groups(self, &mut tail, 8 - head_size);
Some(ipv6_addr_from_head_tail(head.slice(0, head_size), tail.slice(0, tail_size)))
}
fn read_ipv6_addr(&mut self) -> Option<IpAddr> {
do self.read_atomically |p| {
p.read_ipv6_addr_impl()
}
}
fn read_ip_addr(&mut self) -> Option<IpAddr> {
let ipv4_addr = |p: &mut Parser| p.read_ipv4_addr();
let ipv6_addr = |p: &mut Parser| p.read_ipv6_addr();
self.read_or([ipv4_addr, ipv6_addr])
}
fn read_socket_addr(&mut self) -> Option<SocketAddr> {
let ip_addr = |p: &mut Parser| {
let ipv4_p = |p: &mut Parser| p.read_ip_addr();
let ipv6_p = |p: &mut Parser| {
let open_br = |p: &mut Parser| p.read_given_char('[');
let ip_addr = |p: &mut Parser| p.read_ipv6_addr();
let clos_br = |p: &mut Parser| p.read_given_char(']');
p.read_seq_3::<char, IpAddr, char>(open_br, ip_addr, clos_br)
.map(|&t| match t { (_, ip, _) => ip })
};
p.read_or([ipv4_p, ipv6_p])
};
let colon = |p: &mut Parser| p.read_given_char(':');
let port = |p: &mut Parser| p.read_number(10, 5, 0x10000).map(|&n| n as u16);
// host, colon, port
self.read_seq_3::<IpAddr, char, u16>(ip_addr, colon, port)
.map(|&t| match t { (ip, _, port) => SocketAddr { ip: ip, port: port } })
}
}
impl FromStr for IpAddr {
fn from_str(s: &str) -> Option<IpAddr> {
do Parser::new(s).read_till_eof |p| {
p.read_ip_addr()
}
}
}
impl FromStr for SocketAddr {
fn from_str(s: &str) -> Option<SocketAddr> {
do Parser::new(s).read_till_eof |p| {
p.read_socket_addr()
}
}
}
#[cfg(test)]
mod test {
use super::*;
use from_str::FromStr;
use option::{Option, Some, None};
#[test]
fn test_from_str_ipv4() {
assert_eq!(Some(Ipv4Addr(127, 0, 0, 1)), FromStr::from_str("127.0.0.1"));
assert_eq!(Some(Ipv4Addr(255, 255, 255, 255)), FromStr::from_str("255.255.255.255"));
assert_eq!(Some(Ipv4Addr(0, 0, 0, 0)), FromStr::from_str("0.0.0.0"));
// out of range
let none: Option<IpAddr> = FromStr::from_str("256.0.0.1");
assert_eq!(None, none);
// too short
let none: Option<IpAddr> = FromStr::from_str("255.0.0");
assert_eq!(None, none);
// too long
let none: Option<IpAddr> = FromStr::from_str("255.0.0.1.2");
assert_eq!(None, none);
// no number between dots
let none: Option<IpAddr> = FromStr::from_str("255.0..1");
assert_eq!(None, none);
}
#[test]
fn test_from_str_ipv6() {
assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 0)), FromStr::from_str("0:0:0:0:0:0:0:0"));
assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 1)), FromStr::from_str("0:0:0:0:0:0:0:1"));
assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 1)), FromStr::from_str("::1"));
assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 0)), FromStr::from_str("::"));
assert_eq!(Some(Ipv6Addr(0x2a02, 0x6b8, 0, 0, 0, 0, 0x11, 0x11)),
FromStr::from_str("2a02:6b8::11:11"));
// too long group
let none: Option<IpAddr> = FromStr::from_str("::00000");
assert_eq!(None, none);
// too short
let none: Option<IpAddr> = FromStr::from_str("1:2:3:4:5:6:7");
assert_eq!(None, none);
// too long
let none: Option<IpAddr> = FromStr::from_str("1:2:3:4:5:6:7:8:9");
assert_eq!(None, none);
// triple colon
let none: Option<IpAddr> = FromStr::from_str("1:2:::6:7:8");
assert_eq!(None, none);
// two double colons
let none: Option<IpAddr> = FromStr::from_str("1:2::6::8");
assert_eq!(None, none);
}
#[test]
fn test_from_str_ipv4_in_ipv6() {
assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0, 49152, 545)),
FromStr::from_str("::192.0.2.33"));
assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0xFFFF, 49152, 545)),
FromStr::from_str("::FFFF:192.0.2.33"));
assert_eq!(Some(Ipv6Addr(0x64, 0xff9b, 0, 0, 0, 0, 49152, 545)),
FromStr::from_str("64:ff9b::192.0.2.33"));
assert_eq!(Some(Ipv6Addr(0x2001, 0xdb8, 0x122, 0xc000, 0x2, 0x2100, 49152, 545)),
FromStr::from_str("2001:db8:122:c000:2:2100:192.0.2.33"));
// colon after v4
let none: Option<IpAddr> = FromStr::from_str("::127.0.0.1:");
assert_eq!(None, none);
// not enought groups
let none: Option<IpAddr> = FromStr::from_str("1.2.3.4.5:127.0.0.1");
assert_eq!(None, none);
// too many groups
let none: Option<IpAddr> =
FromStr::from_str("1.2.3.4.5:6:7:127.0.0.1");
assert_eq!(None, none);
}
#[test]
fn test_from_str_socket_addr() {
assert_eq!(Some(SocketAddr { ip: Ipv4Addr(77, 88, 21, 11), port: 80 }),
FromStr::from_str("77.88.21.11:80"));
assert_eq!(Some(SocketAddr { ip: Ipv6Addr(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), port: 53 }),
FromStr::from_str("[2a02:6b8:0:1::1]:53"));
assert_eq!(Some(SocketAddr { ip: Ipv6Addr(0, 0, 0, 0, 0, 0, 0x7F00, 1), port: 22 }),
FromStr::from_str("[::127.0.0.1]:22"));
// without port
let none: Option<SocketAddr> = FromStr::from_str("127.0.0.1");
assert_eq!(None, none);
// without port
let none: Option<SocketAddr> = FromStr::from_str("127.0.0.1:");
assert_eq!(None, none);
// wrong brackets around v4
let none: Option<SocketAddr> = FromStr::from_str("[127.0.0.1]:22");
assert_eq!(None, none);
// port out of range
let none: Option<SocketAddr> = FromStr::from_str("127.0.0.1:123456");
assert_eq!(None, none);
}
#[test]
fn ipv6_addr_to_str() {
let a1 = Ipv6Addr(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x280);
assert!(a1.to_str() == ~"::ffff:192.0.2.128" || a1.to_str() == ~"::FFFF:192.0.2.128");
}
}