170 lines
6.2 KiB
Rust
170 lines
6.2 KiB
Rust
pub use self::FileMatch::*;
|
|
|
|
use std::env;
|
|
use std::fs;
|
|
use std::path::{Path, PathBuf};
|
|
|
|
use crate::search_paths::{PathKind, SearchPath, SearchPathFile};
|
|
use rustc_fs_util::fix_windows_verbatim_for_gcc;
|
|
use tracing::debug;
|
|
|
|
#[derive(Copy, Clone)]
|
|
pub enum FileMatch {
|
|
FileMatches,
|
|
FileDoesntMatch,
|
|
}
|
|
|
|
// A module for searching for libraries
|
|
|
|
#[derive(Clone)]
|
|
pub struct FileSearch<'a> {
|
|
sysroot: &'a Path,
|
|
triple: &'a str,
|
|
search_paths: &'a [SearchPath],
|
|
tlib_path: &'a SearchPath,
|
|
kind: PathKind,
|
|
}
|
|
|
|
impl<'a> FileSearch<'a> {
|
|
pub fn search_paths(&self) -> impl Iterator<Item = &'a SearchPath> {
|
|
let kind = self.kind;
|
|
self.search_paths
|
|
.iter()
|
|
.filter(move |sp| sp.kind.matches(kind))
|
|
.chain(std::iter::once(self.tlib_path))
|
|
}
|
|
|
|
pub fn get_lib_path(&self) -> PathBuf {
|
|
make_target_lib_path(self.sysroot, self.triple)
|
|
}
|
|
|
|
pub fn get_self_contained_lib_path(&self) -> PathBuf {
|
|
self.get_lib_path().join("self-contained")
|
|
}
|
|
|
|
pub fn search<F>(&self, mut pick: F)
|
|
where
|
|
F: FnMut(&SearchPathFile, PathKind) -> FileMatch,
|
|
{
|
|
for search_path in self.search_paths() {
|
|
debug!("searching {}", search_path.dir.display());
|
|
fn is_rlib(spf: &SearchPathFile) -> bool {
|
|
if let Some(f) = &spf.file_name_str { f.ends_with(".rlib") } else { false }
|
|
}
|
|
// Reading metadata out of rlibs is faster, and if we find both
|
|
// an rlib and a dylib we only read one of the files of
|
|
// metadata, so in the name of speed, bring all rlib files to
|
|
// the front of the search list.
|
|
let files1 = search_path.files.iter().filter(|spf| is_rlib(&spf));
|
|
let files2 = search_path.files.iter().filter(|spf| !is_rlib(&spf));
|
|
for spf in files1.chain(files2) {
|
|
debug!("testing {}", spf.path.display());
|
|
let maybe_picked = pick(spf, search_path.kind);
|
|
match maybe_picked {
|
|
FileMatches => {
|
|
debug!("picked {}", spf.path.display());
|
|
}
|
|
FileDoesntMatch => {
|
|
debug!("rejected {}", spf.path.display());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn new(
|
|
sysroot: &'a Path,
|
|
triple: &'a str,
|
|
search_paths: &'a [SearchPath],
|
|
tlib_path: &'a SearchPath,
|
|
kind: PathKind,
|
|
) -> FileSearch<'a> {
|
|
debug!("using sysroot = {}, triple = {}", sysroot.display(), triple);
|
|
FileSearch { sysroot, triple, search_paths, tlib_path, kind }
|
|
}
|
|
|
|
// Returns just the directories within the search paths.
|
|
pub fn search_path_dirs(&self) -> Vec<PathBuf> {
|
|
self.search_paths().map(|sp| sp.dir.to_path_buf()).collect()
|
|
}
|
|
|
|
// Returns a list of directories where target-specific tool binaries are located.
|
|
pub fn get_tools_search_paths(&self, self_contained: bool) -> Vec<PathBuf> {
|
|
let rustlib_path = rustc_target::target_rustlib_path(self.sysroot, &self.triple);
|
|
let p = std::array::IntoIter::new([
|
|
Path::new(&self.sysroot),
|
|
Path::new(&rustlib_path),
|
|
Path::new("bin"),
|
|
])
|
|
.collect::<PathBuf>();
|
|
if self_contained { vec![p.clone(), p.join("self-contained")] } else { vec![p] }
|
|
}
|
|
}
|
|
|
|
pub fn make_target_lib_path(sysroot: &Path, target_triple: &str) -> PathBuf {
|
|
let rustlib_path = rustc_target::target_rustlib_path(sysroot, target_triple);
|
|
std::array::IntoIter::new([sysroot, Path::new(&rustlib_path), Path::new("lib")])
|
|
.collect::<PathBuf>()
|
|
}
|
|
|
|
// This function checks if sysroot is found using env::args().next(), and if it
|
|
// is not found, uses env::current_exe() to imply sysroot.
|
|
pub fn get_or_default_sysroot() -> PathBuf {
|
|
// Follow symlinks. If the resolved path is relative, make it absolute.
|
|
fn canonicalize(path: PathBuf) -> PathBuf {
|
|
let path = fs::canonicalize(&path).unwrap_or(path);
|
|
// See comments on this target function, but the gist is that
|
|
// gcc chokes on verbatim paths which fs::canonicalize generates
|
|
// so we try to avoid those kinds of paths.
|
|
fix_windows_verbatim_for_gcc(&path)
|
|
}
|
|
|
|
// Use env::current_exe() to get the path of the executable following
|
|
// symlinks/canonicalizing components.
|
|
fn from_current_exe() -> PathBuf {
|
|
match env::current_exe() {
|
|
Ok(exe) => {
|
|
let mut p = canonicalize(exe);
|
|
p.pop();
|
|
p.pop();
|
|
p
|
|
}
|
|
Err(e) => panic!("failed to get current_exe: {}", e),
|
|
}
|
|
}
|
|
|
|
// Use env::args().next() to get the path of the executable without
|
|
// following symlinks/canonicalizing any component. This makes the rustc
|
|
// binary able to locate Rust libraries in systems using content-addressable
|
|
// storage (CAS).
|
|
fn from_env_args_next() -> Option<PathBuf> {
|
|
match env::args_os().next() {
|
|
Some(first_arg) => {
|
|
let mut p = PathBuf::from(first_arg);
|
|
|
|
// Check if sysroot is found using env::args().next() only if the rustc in argv[0]
|
|
// is a symlink (see #79253). We might want to change/remove it to conform with
|
|
// https://www.gnu.org/prep/standards/standards.html#Finding-Program-Files in the
|
|
// future.
|
|
if fs::read_link(&p).is_err() {
|
|
// Path is not a symbolic link or does not exist.
|
|
return None;
|
|
}
|
|
|
|
// Pop off `bin/rustc`, obtaining the suspected sysroot.
|
|
p.pop();
|
|
p.pop();
|
|
// Look for the target rustlib directory in the suspected sysroot.
|
|
let mut rustlib_path = rustc_target::target_rustlib_path(&p, "dummy");
|
|
rustlib_path.pop(); // pop off the dummy target.
|
|
if rustlib_path.exists() { Some(p) } else { None }
|
|
}
|
|
None => None,
|
|
}
|
|
}
|
|
|
|
// Check if sysroot is found using env::args().next(), and if is not found,
|
|
// use env::current_exe() to imply sysroot.
|
|
from_env_args_next().unwrap_or_else(from_current_exe)
|
|
}
|