a7359f5b3b
This seems to fix issue #1876, and some of the superficial parts of issue #1375. The #fmt macro and the to_str functions will round, rather than truncate, floats as strings. Other issues remain, and I wrote more code here than intended, but the following should pass now. ``` fn x() { assert "3.1416" == #fmt["%.4f", 3.14159]; assert "3" == #fmt["%.0f", 3.14159]; assert "99" == #fmt["%.0f", 98.5]; assert "7.0000" == #fmt["%.4f", 6.999999999]; assert "3.141590000" == #fmt["%.9f", 3.14159]; } ```
452 lines
11 KiB
Rust
452 lines
11 KiB
Rust
#[doc = "Operations and constants for `float`"];
|
|
|
|
// Even though this module exports everything defined in it,
|
|
// because it contains re-exports, we also have to explicitly
|
|
// export locally defined things. That's a bit annoying.
|
|
export to_str_common, to_str_exact, to_str, from_str;
|
|
export add, sub, mul, div, rem, lt, le, gt, eq, eq, ne;
|
|
export is_positive, is_negative, is_nonpositive, is_nonnegative;
|
|
export is_zero, is_infinite, is_finite;
|
|
export NaN, is_NaN, infinity, neg_infinity;
|
|
export consts;
|
|
export logarithm;
|
|
export acos, asin, atan, atan2, cbrt, ceil, copysign, cos, cosh, floor;
|
|
export erf, erfc, exp, expm1, exp2, abs, abs_sub;
|
|
export mul_add, fmax, fmin, nextafter, frexp, hypot, ldexp;
|
|
export lgamma, ln, log_radix, ln1p, log10, log2, ilog_radix;
|
|
export modf, pow, round, sin, sinh, sqrt, tan, tanh, tgamma, trunc;
|
|
export signbit;
|
|
export pow_with_uint;
|
|
|
|
// export when m_float == c_double
|
|
|
|
export j0, j1, jn, y0, y1, yn;
|
|
|
|
// PORT this must match in width according to architecture
|
|
|
|
import m_float = f64;
|
|
import f64::*;
|
|
|
|
/**
|
|
* Section: String Conversions
|
|
*/
|
|
|
|
#[doc = "
|
|
Converts a float to a string
|
|
|
|
# Arguments
|
|
|
|
* num - The float value
|
|
* digits - The number of significant digits
|
|
* exact - Whether to enforce the exact number of significant digits
|
|
"]
|
|
fn to_str_common(num: float, digits: uint, exact: bool) -> str {
|
|
if is_NaN(num) { ret "NaN"; }
|
|
if num == infinity { ret "inf"; }
|
|
if num == neg_infinity { ret "-inf"; }
|
|
|
|
let mut (num, sign) = if num < 0.0 { (-num, "-") } else { (num, "") };
|
|
|
|
// truncated integer
|
|
let trunc = num as uint;
|
|
|
|
// decimal remainder
|
|
let mut frac = num - (trunc as float);
|
|
|
|
// stack of digits
|
|
let mut fractionalParts = [];
|
|
|
|
// FIXME:
|
|
// This used to return right away without rounding, as "[-]num",
|
|
// but given epsilon like in f64.rs, I don't see how the comparison
|
|
// to epsilon did much when only used there.
|
|
// if (frac < epsilon && !exact) || digits == 0u { ret accum; }
|
|
//
|
|
// With something better, possibly weird results like this can be avoided:
|
|
// assert "3.14158999999999988262" == my_to_str_exact(3.14159, 20u);
|
|
|
|
let mut ii = digits;
|
|
let mut epsilon_prime = 1.0 / pow_with_uint(10u, ii);
|
|
|
|
// while we still need digits
|
|
// build stack of digits
|
|
while ii > 0u && (frac >= epsilon_prime || exact) {
|
|
// store the next digit
|
|
frac *= 10.0;
|
|
let digit = frac as uint;
|
|
vec::push(fractionalParts, digit);
|
|
|
|
// calculate the next frac
|
|
frac -= digit as float;
|
|
epsilon_prime *= 10.0;
|
|
ii -= 1u;
|
|
}
|
|
|
|
let mut acc;
|
|
let mut racc = "";
|
|
let mut carry = if frac * 10.0 as uint >= 5u { 1u } else { 0u };
|
|
|
|
// turn digits into string
|
|
// using stack of digits
|
|
while vec::len(fractionalParts) > 0u {
|
|
let mut adjusted_digit = carry + vec::pop(fractionalParts);
|
|
|
|
if adjusted_digit == 10u {
|
|
carry = 1u;
|
|
adjusted_digit %= 10u
|
|
} else {
|
|
carry = 0u
|
|
};
|
|
|
|
racc = uint::str(adjusted_digit) + racc;
|
|
}
|
|
|
|
// pad decimals with trailing zeroes
|
|
while str::len(racc) < digits && exact {
|
|
racc += "0"
|
|
}
|
|
|
|
// combine ints and decimals
|
|
let mut ones = uint::str(trunc + carry);
|
|
if racc == "" {
|
|
acc = sign + ones;
|
|
} else {
|
|
acc = sign + ones + "." + racc;
|
|
}
|
|
|
|
ret acc;
|
|
}
|
|
|
|
#[doc = "
|
|
Converts a float to a string with exactly the number of
|
|
provided significant digits
|
|
|
|
# Arguments
|
|
|
|
* num - The float value
|
|
* digits - The number of significant digits
|
|
"]
|
|
fn to_str_exact(num: float, digits: uint) -> str {
|
|
to_str_common(num, digits, true)
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_str_exact_do_decimal() {
|
|
let s = to_str_exact(5.0, 4u);
|
|
assert s == "5.0000";
|
|
}
|
|
|
|
|
|
#[doc = "
|
|
Converts a float to a string with a maximum number of
|
|
significant digits
|
|
|
|
# Arguments
|
|
|
|
* num - The float value
|
|
* digits - The number of significant digits
|
|
"]
|
|
fn to_str(num: float, digits: uint) -> str {
|
|
to_str_common(num, digits, false)
|
|
}
|
|
|
|
#[doc = "
|
|
Convert a string to a float
|
|
|
|
This function accepts strings such as
|
|
|
|
* '3.14'
|
|
* '+3.14', equivalent to '3.14'
|
|
* '-3.14'
|
|
* '2.5E10', or equivalently, '2.5e10'
|
|
* '2.5E-10'
|
|
* '', or, equivalently, '.' (understood as 0)
|
|
* '5.'
|
|
* '.5', or, equivalently, '0.5'
|
|
* 'inf', '-inf', 'NaN'
|
|
|
|
Leading and trailing whitespace are ignored.
|
|
|
|
# Arguments
|
|
|
|
* num - A string
|
|
|
|
# Return value
|
|
|
|
`none` if the string did not represent a valid number. Otherwise, `some(n)`
|
|
where `n` is the floating-point number represented by `[num]`.
|
|
"]
|
|
fn from_str(num: str) -> option<float> {
|
|
if num == "inf" {
|
|
ret some(infinity);
|
|
} else if num == "-inf" {
|
|
ret some(neg_infinity);
|
|
} else if num == "NaN" {
|
|
ret some(NaN);
|
|
}
|
|
|
|
let mut pos = 0u; //Current byte position in the string.
|
|
//Used to walk the string in O(n).
|
|
let len = str::len(num); //Length of the string, in bytes.
|
|
|
|
if len == 0u { ret none; }
|
|
let mut total = 0f; //Accumulated result
|
|
let mut c = 'z'; //Latest char.
|
|
|
|
//The string must start with one of the following characters.
|
|
alt str::char_at(num, 0u) {
|
|
'-' | '+' | '0' to '9' | '.' {}
|
|
_ { ret none; }
|
|
}
|
|
|
|
//Determine if first char is '-'/'+'. Set [pos] and [neg] accordingly.
|
|
let mut neg = false; //Sign of the result
|
|
alt str::char_at(num, 0u) {
|
|
'-' {
|
|
neg = true;
|
|
pos = 1u;
|
|
}
|
|
'+' {
|
|
pos = 1u;
|
|
}
|
|
_ {}
|
|
}
|
|
|
|
//Examine the following chars until '.', 'e', 'E'
|
|
while(pos < len) {
|
|
let char_range = str::char_range_at(num, pos);
|
|
c = char_range.ch;
|
|
pos = char_range.next;
|
|
alt c {
|
|
'0' to '9' {
|
|
total = total * 10f;
|
|
total += ((c as int) - ('0' as int)) as float;
|
|
}
|
|
'.' | 'e' | 'E' {
|
|
break;
|
|
}
|
|
_ {
|
|
ret none;
|
|
}
|
|
}
|
|
}
|
|
|
|
if c == '.' {//Examine decimal part
|
|
let mut decimal = 1f;
|
|
while(pos < len) {
|
|
let char_range = str::char_range_at(num, pos);
|
|
c = char_range.ch;
|
|
pos = char_range.next;
|
|
alt c {
|
|
'0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' {
|
|
decimal /= 10f;
|
|
total += (((c as int) - ('0' as int)) as float)*decimal;
|
|
}
|
|
'e' | 'E' {
|
|
break;
|
|
}
|
|
_ {
|
|
ret none;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (c == 'e') | (c == 'E') {//Examine exponent
|
|
let mut exponent = 0u;
|
|
let mut neg_exponent = false;
|
|
if(pos < len) {
|
|
let char_range = str::char_range_at(num, pos);
|
|
c = char_range.ch;
|
|
alt c {
|
|
'+' {
|
|
pos = char_range.next;
|
|
}
|
|
'-' {
|
|
pos = char_range.next;
|
|
neg_exponent = true;
|
|
}
|
|
_ {}
|
|
}
|
|
while(pos < len) {
|
|
let char_range = str::char_range_at(num, pos);
|
|
c = char_range.ch;
|
|
alt c {
|
|
'0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' {
|
|
exponent *= 10u;
|
|
exponent += ((c as uint) - ('0' as uint));
|
|
}
|
|
_ {
|
|
break;
|
|
}
|
|
}
|
|
pos = char_range.next;
|
|
}
|
|
let multiplier = pow_with_uint(10u, exponent);
|
|
//Note: not [int::pow], otherwise, we'll quickly
|
|
//end up with a nice overflow
|
|
if neg_exponent {
|
|
total = total / multiplier;
|
|
} else {
|
|
total = total * multiplier;
|
|
}
|
|
} else {
|
|
ret none;
|
|
}
|
|
}
|
|
|
|
if(pos < len) {
|
|
ret none;
|
|
} else {
|
|
if(neg) {
|
|
total *= -1f;
|
|
}
|
|
ret some(total);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Section: Arithmetics
|
|
*/
|
|
|
|
#[doc = "
|
|
Compute the exponentiation of an integer by another integer as a float
|
|
|
|
# Arguments
|
|
|
|
* x - The base
|
|
* pow - The exponent
|
|
|
|
# Return value
|
|
|
|
`NaN` if both `x` and `pow` are `0u`, otherwise `x^pow`
|
|
"]
|
|
fn pow_with_uint(base: uint, pow: uint) -> float {
|
|
if base == 0u {
|
|
if pow == 0u {
|
|
ret NaN;
|
|
}
|
|
ret 0.;
|
|
}
|
|
let mut my_pow = pow;
|
|
let mut total = 1f;
|
|
let mut multiplier = base as float;
|
|
while (my_pow > 0u) {
|
|
if my_pow % 2u == 1u {
|
|
total = total * multiplier;
|
|
}
|
|
my_pow /= 2u;
|
|
multiplier *= multiplier;
|
|
}
|
|
ret total;
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn test_from_str() {
|
|
assert from_str("3") == some(3.);
|
|
assert from_str("3") == some(3.);
|
|
assert from_str("3.14") == some(3.14);
|
|
assert from_str("+3.14") == some(3.14);
|
|
assert from_str("-3.14") == some(-3.14);
|
|
assert from_str("2.5E10") == some(25000000000.);
|
|
assert from_str("2.5e10") == some(25000000000.);
|
|
assert from_str("25000000000.E-10") == some(2.5);
|
|
assert from_str(".") == some(0.);
|
|
assert from_str(".e1") == some(0.);
|
|
assert from_str(".e-1") == some(0.);
|
|
assert from_str("5.") == some(5.);
|
|
assert from_str(".5") == some(0.5);
|
|
assert from_str("0.5") == some(0.5);
|
|
assert from_str("0.5") == some(0.5);
|
|
assert from_str("0.5") == some(0.5);
|
|
assert from_str("-.5") == some(-0.5);
|
|
assert from_str("-.5") == some(-0.5);
|
|
assert from_str("-5") == some(-5.);
|
|
assert from_str("-0") == some(-0.);
|
|
assert from_str("0") == some(0.);
|
|
assert from_str("inf") == some(infinity);
|
|
assert from_str("-inf") == some(neg_infinity);
|
|
// note: NaN != NaN, hence this slightly complex test
|
|
alt from_str("NaN") {
|
|
some(f) { assert is_NaN(f); }
|
|
none { fail; }
|
|
}
|
|
|
|
assert from_str("") == none;
|
|
assert from_str("x") == none;
|
|
assert from_str(" ") == none;
|
|
assert from_str(" ") == none;
|
|
assert from_str("e") == none;
|
|
assert from_str("E") == none;
|
|
assert from_str("E1") == none;
|
|
assert from_str("1e1e1") == none;
|
|
assert from_str("1e1.1") == none;
|
|
assert from_str("1e1-1") == none;
|
|
}
|
|
|
|
#[test]
|
|
fn test_positive() {
|
|
assert(is_positive(infinity));
|
|
assert(is_positive(1.));
|
|
assert(is_positive(0.));
|
|
assert(!is_positive(-1.));
|
|
assert(!is_positive(neg_infinity));
|
|
assert(!is_positive(1./neg_infinity));
|
|
assert(!is_positive(NaN));
|
|
}
|
|
|
|
#[test]
|
|
fn test_negative() {
|
|
assert(!is_negative(infinity));
|
|
assert(!is_negative(1.));
|
|
assert(!is_negative(0.));
|
|
assert(is_negative(-1.));
|
|
assert(is_negative(neg_infinity));
|
|
assert(is_negative(1./neg_infinity));
|
|
assert(!is_negative(NaN));
|
|
}
|
|
|
|
#[test]
|
|
fn test_nonpositive() {
|
|
assert(!is_nonpositive(infinity));
|
|
assert(!is_nonpositive(1.));
|
|
assert(!is_nonpositive(0.));
|
|
assert(is_nonpositive(-1.));
|
|
assert(is_nonpositive(neg_infinity));
|
|
assert(is_nonpositive(1./neg_infinity));
|
|
assert(!is_nonpositive(NaN));
|
|
}
|
|
|
|
#[test]
|
|
fn test_nonnegative() {
|
|
assert(is_nonnegative(infinity));
|
|
assert(is_nonnegative(1.));
|
|
assert(is_nonnegative(0.));
|
|
assert(!is_nonnegative(-1.));
|
|
assert(!is_nonnegative(neg_infinity));
|
|
assert(!is_nonnegative(1./neg_infinity));
|
|
assert(!is_nonnegative(NaN));
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_str_inf() {
|
|
assert to_str(infinity, 10u) == "inf";
|
|
assert to_str(-infinity, 10u) == "-inf";
|
|
}
|
|
|
|
//
|
|
// Local Variables:
|
|
// mode: rust
|
|
// fill-column: 78;
|
|
// indent-tabs-mode: nil
|
|
// c-basic-offset: 4
|
|
// buffer-file-coding-system: utf-8-unix
|
|
// End:
|
|
//
|
|
|
|
|
|
|
|
|
|
|