rust/src/librustc_mir/dataflow/at_location.rs
2017-12-24 14:56:52 +02:00

237 lines
7.8 KiB
Rust

// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A nice wrapper to consume dataflow results at several CFG
//! locations.
use rustc::mir::{BasicBlock, Location};
use rustc_data_structures::indexed_set::{self, IdxSetBuf};
use rustc_data_structures::indexed_vec::Idx;
use dataflow::{BitDenotation, BlockSets, DataflowResults};
use dataflow::move_paths::{HasMoveData, MovePathIndex};
use std::iter;
/// A trait for "cartesian products" of multiple FlowAtLocation.
///
/// There's probably a way to auto-impl this, but I think
/// it is cleaner to have manual visitor impls.
pub trait FlowsAtLocation {
/// Reset the state bitvector to represent the entry to block `bb`.
fn reset_to_entry_of(&mut self, bb: BasicBlock);
/// Build gen + kill sets for statement at `loc`.
///
/// Note that invoking this method alone does not change the
/// `curr_state` -- you must invoke `apply_local_effect`
/// afterwards.
fn reconstruct_statement_effect(&mut self, loc: Location);
/// Build gen + kill sets for terminator for `loc`.
///
/// Note that invoking this method alone does not change the
/// `curr_state` -- you must invoke `apply_local_effect`
/// afterwards.
fn reconstruct_terminator_effect(&mut self, loc: Location);
/// Apply current gen + kill sets to `flow_state`.
///
/// (`loc` parameters can be ignored if desired by
/// client. For the terminator, the `stmt_idx` will be the number
/// of statements in the block.)
fn apply_local_effect(&mut self, loc: Location);
}
/// Represents the state of dataflow at a particular
/// CFG location, both before and after it is
/// executed.
///
/// Data flow results are typically computed only as basic block
/// boundaries. A `FlowInProgress` allows you to reconstruct the
/// effects at any point in the control-flow graph by starting with
/// the state at the start of the basic block (`reset_to_entry_of`)
/// and then replaying the effects of statements and terminators
/// (e.g. via `reconstruct_statement_effect` and
/// `reconstruct_terminator_effect`; don't forget to call
/// `apply_local_effect`).
pub struct FlowAtLocation<BD>
where
BD: BitDenotation,
{
base_results: DataflowResults<BD>,
curr_state: IdxSetBuf<BD::Idx>,
stmt_gen: IdxSetBuf<BD::Idx>,
stmt_kill: IdxSetBuf<BD::Idx>,
}
impl<BD> FlowAtLocation<BD>
where
BD: BitDenotation,
{
/// Iterate over each bit set in the current state.
pub fn each_state_bit<F>(&self, f: F)
where
F: FnMut(BD::Idx),
{
self.curr_state
.each_bit(self.base_results.operator().bits_per_block(), f)
}
/// Iterate over each `gen` bit in the current effect (invoke
/// `reconstruct_statement_effect` or
/// `reconstruct_terminator_effect` first).
pub fn each_gen_bit<F>(&self, f: F)
where
F: FnMut(BD::Idx),
{
self.stmt_gen
.each_bit(self.base_results.operator().bits_per_block(), f)
}
pub fn new(results: DataflowResults<BD>) -> Self {
let bits_per_block = results.sets().bits_per_block();
let curr_state = IdxSetBuf::new_empty(bits_per_block);
let stmt_gen = IdxSetBuf::new_empty(bits_per_block);
let stmt_kill = IdxSetBuf::new_empty(bits_per_block);
FlowAtLocation {
base_results: results,
curr_state: curr_state,
stmt_gen: stmt_gen,
stmt_kill: stmt_kill,
}
}
/// Access the underlying operator.
pub fn operator(&self) -> &BD {
self.base_results.operator()
}
pub fn contains(&self, x: &BD::Idx) -> bool {
self.curr_state.contains(x)
}
/// Returns an iterator over the elements present in the current state.
pub fn elems_incoming(&self) -> iter::Peekable<indexed_set::Elems<BD::Idx>> {
let univ = self.base_results.sets().bits_per_block();
self.curr_state.elems(univ).peekable()
}
/// Creates a clone of the current state and applies the local
/// effects to the clone (leaving the state of self intact).
/// Invokes `f` with an iterator over the resulting state.
pub fn with_elems_outgoing<F>(&self, f: F)
where
F: FnOnce(indexed_set::Elems<BD::Idx>),
{
let mut curr_state = self.curr_state.clone();
curr_state.union(&self.stmt_gen);
curr_state.subtract(&self.stmt_kill);
let univ = self.base_results.sets().bits_per_block();
f(curr_state.elems(univ));
}
}
impl<BD> FlowsAtLocation for FlowAtLocation<BD>
where BD: BitDenotation
{
fn reset_to_entry_of(&mut self, bb: BasicBlock) {
(*self.curr_state).clone_from(self.base_results.sets().on_entry_set_for(bb.index()));
}
fn reconstruct_statement_effect(&mut self, loc: Location) {
self.stmt_gen.reset_to_empty();
self.stmt_kill.reset_to_empty();
{
let mut sets = BlockSets {
on_entry: &mut self.curr_state,
gen_set: &mut self.stmt_gen,
kill_set: &mut self.stmt_kill,
};
self.base_results
.operator()
.before_statement_effect(&mut sets, loc);
}
self.apply_local_effect(loc);
let mut sets = BlockSets {
on_entry: &mut self.curr_state,
gen_set: &mut self.stmt_gen,
kill_set: &mut self.stmt_kill,
};
self.base_results
.operator()
.statement_effect(&mut sets, loc);
}
fn reconstruct_terminator_effect(&mut self, loc: Location) {
self.stmt_gen.reset_to_empty();
self.stmt_kill.reset_to_empty();
{
let mut sets = BlockSets {
on_entry: &mut self.curr_state,
gen_set: &mut self.stmt_gen,
kill_set: &mut self.stmt_kill,
};
self.base_results
.operator()
.before_terminator_effect(&mut sets, loc);
}
self.apply_local_effect(loc);
let mut sets = BlockSets {
on_entry: &mut self.curr_state,
gen_set: &mut self.stmt_gen,
kill_set: &mut self.stmt_kill,
};
self.base_results
.operator()
.terminator_effect(&mut sets, loc);
}
fn apply_local_effect(&mut self, _loc: Location) {
self.curr_state.union(&self.stmt_gen);
self.curr_state.subtract(&self.stmt_kill);
}
}
impl<'tcx, T> FlowAtLocation<T>
where
T: HasMoveData<'tcx> + BitDenotation<Idx = MovePathIndex>,
{
pub fn has_any_child_of(&self, mpi: T::Idx) -> Option<T::Idx> {
let move_data = self.operator().move_data();
let mut todo = vec![mpi];
let mut push_siblings = false; // don't look at siblings of original `mpi`.
while let Some(mpi) = todo.pop() {
if self.contains(&mpi) {
return Some(mpi);
}
let move_path = &move_data.move_paths[mpi];
if let Some(child) = move_path.first_child {
todo.push(child);
}
if push_siblings {
if let Some(sibling) = move_path.next_sibling {
todo.push(sibling);
}
} else {
// after we've processed the original `mpi`, we should
// always traverse the siblings of any of its
// children.
push_siblings = true;
}
}
return None;
}
}