rust/src/librustc_resolve/build_reduced_graph.rs

873 lines
37 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Reduced graph building
//!
//! Here we build the "reduced graph": the graph of the module tree without
//! any imports resolved.
use macros::{InvocationData, LegacyScope};
use resolve_imports::ImportDirective;
use resolve_imports::ImportDirectiveSubclass::{self, GlobImport, SingleImport};
use {Module, ModuleData, ModuleKind, NameBinding, NameBindingKind, ToNameBinding};
use {Resolver, ResolverArenas};
use Namespace::{self, TypeNS, ValueNS, MacroNS};
use {resolve_error, resolve_struct_error, ResolutionError};
use rustc::middle::cstore::LoadedMacro;
use rustc::hir::def::*;
use rustc::hir::def_id::{BUILTIN_MACROS_CRATE, CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
use rustc::ty;
use std::cell::Cell;
use std::rc::Rc;
use syntax::ast::{Name, Ident};
use syntax::attr;
use syntax::ast::{self, Block, ForeignItem, ForeignItemKind, Item, ItemKind, NodeId};
use syntax::ast::{Mutability, StmtKind, TraitItem, TraitItemKind, Variant};
use syntax::codemap::respan;
use syntax::ext::base::SyntaxExtension;
use syntax::ext::base::Determinacy::Undetermined;
use syntax::ext::hygiene::Mark;
use syntax::ext::tt::macro_rules;
use syntax::parse::token::{self, Token};
use syntax::std_inject::injected_crate_name;
use syntax::symbol::keywords;
use syntax::symbol::Symbol;
use syntax::visit::{self, Visitor};
use syntax_pos::{Span, DUMMY_SP};
impl<'a> ToNameBinding<'a> for (Module<'a>, ty::Visibility, Span, Mark) {
fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Module(self.0),
vis: self.1,
span: self.2,
expansion: self.3,
})
}
}
impl<'a> ToNameBinding<'a> for (Def, ty::Visibility, Span, Mark) {
fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Def(self.0),
vis: self.1,
span: self.2,
expansion: self.3,
})
}
}
#[derive(Default, PartialEq, Eq)]
struct LegacyMacroImports {
import_all: Option<Span>,
imports: Vec<(Name, Span)>,
reexports: Vec<(Name, Span)>,
}
impl<'a> Resolver<'a> {
/// Defines `name` in namespace `ns` of module `parent` to be `def` if it is not yet defined;
/// otherwise, reports an error.
pub fn define<T>(&mut self, parent: Module<'a>, ident: Ident, ns: Namespace, def: T)
where T: ToNameBinding<'a>,
{
let binding = def.to_name_binding(self.arenas);
if let Err(old_binding) = self.try_define(parent, ident, ns, binding) {
self.report_conflict(parent, ident, ns, old_binding, &binding);
}
}
fn block_needs_anonymous_module(&mut self, block: &Block) -> bool {
// If any statements are items, we need to create an anonymous module
block.stmts.iter().any(|statement| match statement.node {
StmtKind::Item(_) | StmtKind::Mac(_) => true,
_ => false,
})
}
fn insert_field_names(&mut self, def_id: DefId, field_names: Vec<Name>) {
if !field_names.is_empty() {
self.field_names.insert(def_id, field_names);
}
}
fn build_reduced_graph_for_use_tree(&mut self,
use_tree: &ast::UseTree,
id: NodeId,
vis: ty::Visibility,
prefix: &ast::Path,
nested: bool,
item: &Item,
expansion: Mark) {
let is_prelude = attr::contains_name(&item.attrs, "prelude_import");
let path = &use_tree.prefix;
let mut module_path: Vec<_> = prefix.segments.iter()
.chain(path.segments.iter())
.map(|seg| respan(seg.span, seg.identifier))
.collect();
match use_tree.kind {
ast::UseTreeKind::Simple(mut ident) => {
let mut source = module_path.pop().unwrap().node;
let mut type_ns_only = false;
if nested {
// Correctly handle `self`
if source.name == keywords::SelfValue.name() {
type_ns_only = true;
let last_segment = *module_path.last().unwrap();
if last_segment.node.name == keywords::CrateRoot.name() {
resolve_error(
self,
use_tree.span,
ResolutionError::
SelfImportOnlyInImportListWithNonEmptyPrefix
);
return;
}
// Replace `use foo::self;` with `use foo;`
let _ = module_path.pop();
source = last_segment.node;
if ident.name == keywords::SelfValue.name() {
ident = last_segment.node;
}
}
} else {
// Disallow `self`
if source.name == keywords::SelfValue.name() {
resolve_error(self,
use_tree.span,
ResolutionError::SelfImportsOnlyAllowedWithin);
}
// Disallow `use $crate;`
if source.name == keywords::DollarCrate.name() && path.segments.len() == 1 {
let crate_root = self.resolve_crate_root(source.ctxt);
let crate_name = match crate_root.kind {
ModuleKind::Def(_, name) => name,
ModuleKind::Block(..) => unreachable!(),
};
source.name = crate_name;
if ident.name == keywords::DollarCrate.name() {
ident.name = crate_name;
}
self.session.struct_span_warn(item.span, "`$crate` may not be imported")
.note("`use $crate;` was erroneously allowed and \
will become a hard error in a future release")
.emit();
}
}
let subclass = SingleImport {
target: ident,
source,
result: self.per_ns(|_, _| Cell::new(Err(Undetermined))),
type_ns_only,
};
self.add_import_directive(
module_path, subclass, use_tree.span, id, vis, expansion,
);
}
ast::UseTreeKind::Glob => {
let subclass = GlobImport {
is_prelude,
max_vis: Cell::new(ty::Visibility::Invisible),
};
self.add_import_directive(
module_path, subclass, use_tree.span, id, vis, expansion,
);
}
ast::UseTreeKind::Nested(ref items) => {
let prefix = ast::Path {
segments: module_path.iter()
.map(|s| ast::PathSegment {
identifier: s.node,
span: s.span,
parameters: None,
})
.collect(),
span: path.span,
};
// Ensure there is at most one `self` in the list
let self_spans = items.iter().filter_map(|&(ref use_tree, _)| {
if let ast::UseTreeKind::Simple(ident) = use_tree.kind {
if ident.name == keywords::SelfValue.name() {
return Some(use_tree.span);
}
}
None
}).collect::<Vec<_>>();
if self_spans.len() > 1 {
let mut e = resolve_struct_error(self,
self_spans[0],
ResolutionError::SelfImportCanOnlyAppearOnceInTheList);
for other_span in self_spans.iter().skip(1) {
e.span_label(*other_span, "another `self` import appears here");
}
e.emit();
}
for &(ref tree, id) in items {
self.build_reduced_graph_for_use_tree(
tree, id, vis, &prefix, true, item, expansion
);
}
}
}
}
/// Constructs the reduced graph for one item.
fn build_reduced_graph_for_item(&mut self, item: &Item, expansion: Mark) {
let parent = self.current_module;
let ident = item.ident;
let sp = item.span;
let vis = self.resolve_visibility(&item.vis);
match item.node {
ItemKind::Use(ref use_tree) => {
// Just an empty prefix to start out
let prefix = ast::Path {
segments: vec![],
span: use_tree.span,
};
self.build_reduced_graph_for_use_tree(
use_tree, item.id, vis, &prefix, false, item, expansion,
);
}
ItemKind::ExternCrate(as_name) => {
self.crate_loader.process_item(item, &self.definitions);
// n.b. we don't need to look at the path option here, because cstore already did
let crate_id = self.cstore.extern_mod_stmt_cnum_untracked(item.id).unwrap();
let module =
self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
self.populate_module_if_necessary(module);
if injected_crate_name().map_or(false, |name| item.ident.name == name) {
self.injected_crate = Some(module);
}
let used = self.process_legacy_macro_imports(item, module, expansion);
let binding =
(module, ty::Visibility::Public, sp, expansion).to_name_binding(self.arenas);
let directive = self.arenas.alloc_import_directive(ImportDirective {
id: item.id,
parent,
imported_module: Cell::new(Some(module)),
subclass: ImportDirectiveSubclass::ExternCrate(as_name),
span: item.span,
module_path: Vec::new(),
vis: Cell::new(vis),
expansion,
used: Cell::new(used),
});
self.potentially_unused_imports.push(directive);
let imported_binding = self.import(binding, directive);
self.define(parent, ident, TypeNS, imported_binding);
}
ItemKind::GlobalAsm(..) => {}
ItemKind::Mod(..) if item.ident == keywords::Invalid.ident() => {} // Crate root
ItemKind::Mod(..) => {
let def_id = self.definitions.local_def_id(item.id);
let module_kind = ModuleKind::Def(Def::Mod(def_id), ident.name);
let module = self.arenas.alloc_module(ModuleData {
no_implicit_prelude: parent.no_implicit_prelude || {
attr::contains_name(&item.attrs, "no_implicit_prelude")
},
..ModuleData::new(Some(parent), module_kind, def_id, expansion, item.span)
});
self.define(parent, ident, TypeNS, (module, vis, sp, expansion));
self.module_map.insert(def_id, module);
// Descend into the module.
self.current_module = module;
}
ItemKind::ForeignMod(..) => self.crate_loader.process_item(item, &self.definitions),
// These items live in the value namespace.
ItemKind::Static(_, m, _) => {
let mutbl = m == Mutability::Mutable;
let def = Def::Static(self.definitions.local_def_id(item.id), mutbl);
self.define(parent, ident, ValueNS, (def, vis, sp, expansion));
}
ItemKind::Const(..) => {
let def = Def::Const(self.definitions.local_def_id(item.id));
self.define(parent, ident, ValueNS, (def, vis, sp, expansion));
}
ItemKind::Fn(..) => {
let def = Def::Fn(self.definitions.local_def_id(item.id));
self.define(parent, ident, ValueNS, (def, vis, sp, expansion));
}
// These items live in the type namespace.
ItemKind::Ty(..) => {
let def = Def::TyAlias(self.definitions.local_def_id(item.id));
self.define(parent, ident, TypeNS, (def, vis, sp, expansion));
}
ItemKind::Enum(ref enum_definition, _) => {
let def = Def::Enum(self.definitions.local_def_id(item.id));
let module_kind = ModuleKind::Def(def, ident.name);
let module = self.new_module(parent,
module_kind,
parent.normal_ancestor_id,
expansion,
item.span);
self.define(parent, ident, TypeNS, (module, vis, sp, expansion));
for variant in &(*enum_definition).variants {
self.build_reduced_graph_for_variant(variant, module, vis, expansion);
}
}
ItemKind::TraitAlias(..) => {
let def = Def::TraitAlias(self.definitions.local_def_id(item.id));
self.define(parent, ident, TypeNS, (def, vis, sp, expansion));
}
// These items live in both the type and value namespaces.
ItemKind::Struct(ref struct_def, _) => {
// Define a name in the type namespace.
let def_id = self.definitions.local_def_id(item.id);
let def = Def::Struct(def_id);
self.define(parent, ident, TypeNS, (def, vis, sp, expansion));
let mut ctor_vis = vis;
let has_non_exhaustive = attr::contains_name(&item.attrs, "non_exhaustive");
// If the structure is marked as non_exhaustive then lower the visibility
// to within the crate.
if has_non_exhaustive && vis == ty::Visibility::Public {
ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX));
}
// Record field names for error reporting.
let field_names = struct_def.fields().iter().filter_map(|field| {
let field_vis = self.resolve_visibility(&field.vis);
if ctor_vis.is_at_least(field_vis, &*self) {
ctor_vis = field_vis;
}
field.ident.map(|ident| ident.name)
}).collect();
let item_def_id = self.definitions.local_def_id(item.id);
self.insert_field_names(item_def_id, field_names);
// If this is a tuple or unit struct, define a name
// in the value namespace as well.
if !struct_def.is_struct() {
let ctor_def = Def::StructCtor(self.definitions.local_def_id(struct_def.id()),
CtorKind::from_ast(struct_def));
self.define(parent, ident, ValueNS, (ctor_def, ctor_vis, sp, expansion));
self.struct_constructors.insert(def.def_id(), (ctor_def, ctor_vis));
}
}
ItemKind::Union(ref vdata, _) => {
let def = Def::Union(self.definitions.local_def_id(item.id));
self.define(parent, ident, TypeNS, (def, vis, sp, expansion));
// Record field names for error reporting.
let field_names = vdata.fields().iter().filter_map(|field| {
self.resolve_visibility(&field.vis);
field.ident.map(|ident| ident.name)
}).collect();
let item_def_id = self.definitions.local_def_id(item.id);
self.insert_field_names(item_def_id, field_names);
}
ItemKind::AutoImpl(..) | ItemKind::Impl(..) => {}
ItemKind::Trait(..) => {
let def_id = self.definitions.local_def_id(item.id);
// Add all the items within to a new module.
let module_kind = ModuleKind::Def(Def::Trait(def_id), ident.name);
let module = self.new_module(parent,
module_kind,
parent.normal_ancestor_id,
expansion,
item.span);
self.define(parent, ident, TypeNS, (module, vis, sp, expansion));
self.current_module = module;
}
ItemKind::MacroDef(..) | ItemKind::Mac(_) => unreachable!(),
}
}
// Constructs the reduced graph for one variant. Variants exist in the
// type and value namespaces.
fn build_reduced_graph_for_variant(&mut self,
variant: &Variant,
parent: Module<'a>,
vis: ty::Visibility,
expansion: Mark) {
let ident = variant.node.name;
let def_id = self.definitions.local_def_id(variant.node.data.id());
// Define a name in the type namespace.
let def = Def::Variant(def_id);
self.define(parent, ident, TypeNS, (def, vis, variant.span, expansion));
// Define a constructor name in the value namespace.
// Braced variants, unlike structs, generate unusable names in
// value namespace, they are reserved for possible future use.
let ctor_kind = CtorKind::from_ast(&variant.node.data);
let ctor_def = Def::VariantCtor(def_id, ctor_kind);
self.define(parent, ident, ValueNS, (ctor_def, vis, variant.span, expansion));
}
/// Constructs the reduced graph for one foreign item.
fn build_reduced_graph_for_foreign_item(&mut self, item: &ForeignItem, expansion: Mark) {
let (def, ns) = match item.node {
ForeignItemKind::Fn(..) => {
(Def::Fn(self.definitions.local_def_id(item.id)), ValueNS)
}
ForeignItemKind::Static(_, m) => {
(Def::Static(self.definitions.local_def_id(item.id), m), ValueNS)
}
ForeignItemKind::Ty => {
(Def::TyForeign(self.definitions.local_def_id(item.id)), TypeNS)
}
};
let parent = self.current_module;
let vis = self.resolve_visibility(&item.vis);
self.define(parent, item.ident, ns, (def, vis, item.span, expansion));
}
fn build_reduced_graph_for_block(&mut self, block: &Block, expansion: Mark) {
let parent = self.current_module;
if self.block_needs_anonymous_module(block) {
let module = self.new_module(parent,
ModuleKind::Block(block.id),
parent.normal_ancestor_id,
expansion,
block.span);
self.block_map.insert(block.id, module);
self.current_module = module; // Descend into the block.
}
}
/// Builds the reduced graph for a single item in an external crate.
fn build_reduced_graph_for_external_crate_def(&mut self, parent: Module<'a>, child: Export) {
let Export { ident, def, vis, span, .. } = child;
let def_id = def.def_id();
let expansion = Mark::root(); // FIXME(jseyfried) intercrate hygiene
match def {
Def::Mod(..) | Def::Enum(..) => {
let module = self.new_module(parent,
ModuleKind::Def(def, ident.name),
def_id,
expansion,
span);
self.define(parent, ident, TypeNS, (module, vis, DUMMY_SP, expansion));
}
Def::Variant(..) | Def::TyAlias(..) | Def::TyForeign(..) => {
self.define(parent, ident, TypeNS, (def, vis, DUMMY_SP, expansion));
}
Def::Fn(..) | Def::Static(..) | Def::Const(..) | Def::VariantCtor(..) => {
self.define(parent, ident, ValueNS, (def, vis, DUMMY_SP, expansion));
}
Def::StructCtor(..) => {
self.define(parent, ident, ValueNS, (def, vis, DUMMY_SP, expansion));
if let Some(struct_def_id) =
self.cstore.def_key(def_id).parent
.map(|index| DefId { krate: def_id.krate, index: index }) {
self.struct_constructors.insert(struct_def_id, (def, vis));
}
}
Def::Trait(..) => {
let module_kind = ModuleKind::Def(def, ident.name);
let module = self.new_module(parent,
module_kind,
parent.normal_ancestor_id,
expansion,
span);
self.define(parent, ident, TypeNS, (module, vis, DUMMY_SP, expansion));
for child in self.cstore.item_children_untracked(def_id, self.session) {
let ns = if let Def::AssociatedTy(..) = child.def { TypeNS } else { ValueNS };
self.define(module, child.ident, ns,
(child.def, ty::Visibility::Public, DUMMY_SP, expansion));
if self.cstore.associated_item_cloned_untracked(child.def.def_id())
.method_has_self_argument {
self.has_self.insert(child.def.def_id());
}
}
module.populated.set(true);
}
Def::Struct(..) | Def::Union(..) => {
self.define(parent, ident, TypeNS, (def, vis, DUMMY_SP, expansion));
// Record field names for error reporting.
let field_names = self.cstore.struct_field_names_untracked(def_id);
self.insert_field_names(def_id, field_names);
}
Def::Macro(..) => {
self.define(parent, ident, MacroNS, (def, vis, DUMMY_SP, expansion));
}
_ => bug!("unexpected definition: {:?}", def)
}
}
pub fn get_module(&mut self, def_id: DefId) -> Module<'a> {
if def_id.krate == LOCAL_CRATE {
return self.module_map[&def_id]
}
let macros_only = self.cstore.dep_kind_untracked(def_id.krate).macros_only();
if let Some(&module) = self.extern_module_map.get(&(def_id, macros_only)) {
return module;
}
let (name, parent) = if def_id.index == CRATE_DEF_INDEX {
(self.cstore.crate_name_untracked(def_id.krate).as_str(), None)
} else {
let def_key = self.cstore.def_key(def_id);
(def_key.disambiguated_data.data.get_opt_name().unwrap(),
Some(self.get_module(DefId { index: def_key.parent.unwrap(), ..def_id })))
};
let kind = ModuleKind::Def(Def::Mod(def_id), Symbol::intern(&name));
let module =
self.arenas.alloc_module(ModuleData::new(parent, kind, def_id, Mark::root(), DUMMY_SP));
self.extern_module_map.insert((def_id, macros_only), module);
module
}
pub fn macro_def_scope(&mut self, expansion: Mark) -> Module<'a> {
let def_id = self.macro_defs[&expansion];
if let Some(id) = self.definitions.as_local_node_id(def_id) {
self.local_macro_def_scopes[&id]
} else if def_id.krate == BUILTIN_MACROS_CRATE {
self.injected_crate.unwrap_or(self.graph_root)
} else {
let module_def_id = ty::DefIdTree::parent(&*self, def_id).unwrap();
self.get_module(module_def_id)
}
}
pub fn get_macro(&mut self, def: Def) -> Rc<SyntaxExtension> {
let def_id = match def {
Def::Macro(def_id, ..) => def_id,
_ => panic!("Expected Def::Macro(..)"),
};
if let Some(ext) = self.macro_map.get(&def_id) {
return ext.clone();
}
let macro_def = match self.cstore.load_macro_untracked(def_id, &self.session) {
LoadedMacro::MacroDef(macro_def) => macro_def,
LoadedMacro::ProcMacro(ext) => return ext,
};
let ext = Rc::new(macro_rules::compile(&self.session.parse_sess,
&self.session.features,
&macro_def));
self.macro_map.insert(def_id, ext.clone());
ext
}
/// Ensures that the reduced graph rooted at the given external module
/// is built, building it if it is not.
pub fn populate_module_if_necessary(&mut self, module: Module<'a>) {
if module.populated.get() { return }
let def_id = module.def_id().unwrap();
for child in self.cstore.item_children_untracked(def_id, self.session) {
self.build_reduced_graph_for_external_crate_def(module, child);
}
module.populated.set(true)
}
fn legacy_import_macro(&mut self,
name: Name,
binding: &'a NameBinding<'a>,
span: Span,
allow_shadowing: bool) {
if self.global_macros.insert(name, binding).is_some() && !allow_shadowing {
let msg = format!("`{}` is already in scope", name);
let note =
"macro-expanded `#[macro_use]`s may not shadow existing macros (see RFC 1560)";
self.session.struct_span_err(span, &msg).note(note).emit();
}
}
// This returns true if we should consider the underlying `extern crate` to be used.
fn process_legacy_macro_imports(&mut self, item: &Item, module: Module<'a>, expansion: Mark)
-> bool {
let allow_shadowing = expansion == Mark::root();
let legacy_imports = self.legacy_macro_imports(&item.attrs);
let mut used = legacy_imports != LegacyMacroImports::default();
// `#[macro_use]` and `#[macro_reexport]` are only allowed at the crate root.
if self.current_module.parent.is_some() && used {
span_err!(self.session, item.span, E0468,
"an `extern crate` loading macros must be at the crate root");
} else if !self.use_extern_macros && !used &&
self.cstore.dep_kind_untracked(module.def_id().unwrap().krate)
.macros_only() {
let msg = "proc macro crates and `#[no_link]` crates have no effect without \
`#[macro_use]`";
self.session.span_warn(item.span, msg);
used = true; // Avoid the normal unused extern crate warning
}
let (graph_root, arenas) = (self.graph_root, self.arenas);
let macro_use_directive = |span| arenas.alloc_import_directive(ImportDirective {
id: item.id,
parent: graph_root,
imported_module: Cell::new(Some(module)),
subclass: ImportDirectiveSubclass::MacroUse,
span,
module_path: Vec::new(),
vis: Cell::new(ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))),
expansion,
used: Cell::new(false),
});
if let Some(span) = legacy_imports.import_all {
let directive = macro_use_directive(span);
self.potentially_unused_imports.push(directive);
module.for_each_child(|ident, ns, binding| if ns == MacroNS {
let imported_binding = self.import(binding, directive);
self.legacy_import_macro(ident.name, imported_binding, span, allow_shadowing);
});
} else {
for (name, span) in legacy_imports.imports {
let ident = Ident::with_empty_ctxt(name);
let result = self.resolve_ident_in_module(module, ident, MacroNS,
false, false, span);
if let Ok(binding) = result {
let directive = macro_use_directive(span);
self.potentially_unused_imports.push(directive);
let imported_binding = self.import(binding, directive);
self.legacy_import_macro(name, imported_binding, span, allow_shadowing);
} else {
span_err!(self.session, span, E0469, "imported macro not found");
}
}
}
for (name, span) in legacy_imports.reexports {
self.cstore.export_macros_untracked(module.def_id().unwrap().krate);
let ident = Ident::with_empty_ctxt(name);
let result = self.resolve_ident_in_module(module, ident, MacroNS, false, false, span);
if let Ok(binding) = result {
let (def, vis) = (binding.def(), binding.vis);
self.macro_exports.push(Export { ident, def, vis, span, is_import: true });
} else {
span_err!(self.session, span, E0470, "reexported macro not found");
}
}
used
}
// does this attribute list contain "macro_use"?
fn contains_macro_use(&mut self, attrs: &[ast::Attribute]) -> bool {
for attr in attrs {
if attr.check_name("macro_escape") {
let msg = "macro_escape is a deprecated synonym for macro_use";
let mut err = self.session.struct_span_warn(attr.span, msg);
if let ast::AttrStyle::Inner = attr.style {
err.help("consider an outer attribute, #[macro_use] mod ...").emit();
} else {
err.emit();
}
} else if !attr.check_name("macro_use") {
continue;
}
if !attr.is_word() {
self.session.span_err(attr.span, "arguments to macro_use are not allowed here");
}
return true;
}
false
}
fn legacy_macro_imports(&mut self, attrs: &[ast::Attribute]) -> LegacyMacroImports {
let mut imports = LegacyMacroImports::default();
for attr in attrs {
if attr.check_name("macro_use") {
match attr.meta_item_list() {
Some(names) => for attr in names {
if let Some(word) = attr.word() {
imports.imports.push((word.name(), attr.span()));
} else {
span_err!(self.session, attr.span(), E0466, "bad macro import");
}
},
None => imports.import_all = Some(attr.span),
}
} else if attr.check_name("macro_reexport") {
let bad_macro_reexport = |this: &mut Self, span| {
span_err!(this.session, span, E0467, "bad macro reexport");
};
if let Some(names) = attr.meta_item_list() {
for attr in names {
if let Some(word) = attr.word() {
imports.reexports.push((word.name(), attr.span()));
} else {
bad_macro_reexport(self, attr.span());
}
}
} else {
bad_macro_reexport(self, attr.span());
}
}
}
imports
}
}
pub struct BuildReducedGraphVisitor<'a, 'b: 'a> {
pub resolver: &'a mut Resolver<'b>,
pub legacy_scope: LegacyScope<'b>,
pub expansion: Mark,
}
impl<'a, 'b> BuildReducedGraphVisitor<'a, 'b> {
fn visit_invoc(&mut self, id: ast::NodeId) -> &'b InvocationData<'b> {
let mark = id.placeholder_to_mark();
self.resolver.current_module.unresolved_invocations.borrow_mut().insert(mark);
let invocation = self.resolver.invocations[&mark];
invocation.module.set(self.resolver.current_module);
invocation.legacy_scope.set(self.legacy_scope);
invocation
}
}
macro_rules! method {
($visit:ident: $ty:ty, $invoc:path, $walk:ident) => {
fn $visit(&mut self, node: &'a $ty) {
if let $invoc(..) = node.node {
self.visit_invoc(node.id);
} else {
visit::$walk(self, node);
}
}
}
}
impl<'a, 'b> Visitor<'a> for BuildReducedGraphVisitor<'a, 'b> {
method!(visit_impl_item: ast::ImplItem, ast::ImplItemKind::Macro, walk_impl_item);
method!(visit_expr: ast::Expr, ast::ExprKind::Mac, walk_expr);
method!(visit_pat: ast::Pat, ast::PatKind::Mac, walk_pat);
method!(visit_ty: ast::Ty, ast::TyKind::Mac, walk_ty);
fn visit_item(&mut self, item: &'a Item) {
let macro_use = match item.node {
ItemKind::MacroDef(..) => {
self.resolver.define_macro(item, self.expansion, &mut self.legacy_scope);
return
}
ItemKind::Mac(..) => {
self.legacy_scope = LegacyScope::Expansion(self.visit_invoc(item.id));
return
}
ItemKind::Mod(..) => self.resolver.contains_macro_use(&item.attrs),
_ => false,
};
let (parent, legacy_scope) = (self.resolver.current_module, self.legacy_scope);
self.resolver.build_reduced_graph_for_item(item, self.expansion);
visit::walk_item(self, item);
self.resolver.current_module = parent;
if !macro_use {
self.legacy_scope = legacy_scope;
}
}
fn visit_stmt(&mut self, stmt: &'a ast::Stmt) {
if let ast::StmtKind::Mac(..) = stmt.node {
self.legacy_scope = LegacyScope::Expansion(self.visit_invoc(stmt.id));
} else {
visit::walk_stmt(self, stmt);
}
}
fn visit_foreign_item(&mut self, foreign_item: &'a ForeignItem) {
self.resolver.build_reduced_graph_for_foreign_item(foreign_item, self.expansion);
visit::walk_foreign_item(self, foreign_item);
}
fn visit_block(&mut self, block: &'a Block) {
let (parent, legacy_scope) = (self.resolver.current_module, self.legacy_scope);
self.resolver.build_reduced_graph_for_block(block, self.expansion);
visit::walk_block(self, block);
self.resolver.current_module = parent;
self.legacy_scope = legacy_scope;
}
fn visit_trait_item(&mut self, item: &'a TraitItem) {
let parent = self.resolver.current_module;
if let TraitItemKind::Macro(_) = item.node {
self.visit_invoc(item.id);
return
}
// Add the item to the trait info.
let item_def_id = self.resolver.definitions.local_def_id(item.id);
let (def, ns) = match item.node {
TraitItemKind::Const(..) => (Def::AssociatedConst(item_def_id), ValueNS),
TraitItemKind::Method(ref sig, _) => {
if sig.decl.has_self() {
self.resolver.has_self.insert(item_def_id);
}
(Def::Method(item_def_id), ValueNS)
}
TraitItemKind::Type(..) => (Def::AssociatedTy(item_def_id), TypeNS),
TraitItemKind::Macro(_) => bug!(), // handled above
};
let vis = ty::Visibility::Public;
self.resolver.define(parent, item.ident, ns, (def, vis, item.span, self.expansion));
self.resolver.current_module = parent.parent.unwrap(); // nearest normal ancestor
visit::walk_trait_item(self, item);
self.resolver.current_module = parent;
}
fn visit_token(&mut self, t: Token) {
if let Token::Interpolated(nt) = t {
match nt.0 {
token::NtExpr(ref expr) => {
if let ast::ExprKind::Mac(..) = expr.node {
self.visit_invoc(expr.id);
}
}
_ => {}
}
}
}
}