257 lines
8.7 KiB
Rust
257 lines
8.7 KiB
Rust
use crate::utils::span_lint_and_sugg;
|
|
use if_chain::if_chain;
|
|
use rustc::hir::def::{CtorKind, Def};
|
|
use rustc::hir::intravisit::{walk_item, walk_path, walk_ty, NestedVisitorMap, Visitor};
|
|
use rustc::hir::*;
|
|
use rustc::lint::{in_external_macro, LateContext, LateLintPass, LintArray, LintContext, LintPass};
|
|
use rustc::ty;
|
|
use rustc::{declare_tool_lint, lint_array};
|
|
use rustc_errors::Applicability;
|
|
use syntax_pos::symbol::keywords::SelfUpper;
|
|
|
|
/// **What it does:** Checks for unnecessary repetition of structure name when a
|
|
/// replacement with `Self` is applicable.
|
|
///
|
|
/// **Why is this bad?** Unnecessary repetition. Mixed use of `Self` and struct
|
|
/// name
|
|
/// feels inconsistent.
|
|
///
|
|
/// **Known problems:**
|
|
/// - False positive when using associated types (#2843)
|
|
/// - False positives in some situations when using generics (#3410)
|
|
///
|
|
/// **Example:**
|
|
/// ```rust
|
|
/// struct Foo {}
|
|
/// impl Foo {
|
|
/// fn new() -> Foo {
|
|
/// Foo {}
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
/// could be
|
|
/// ```rust
|
|
/// struct Foo {}
|
|
/// impl Foo {
|
|
/// fn new() -> Self {
|
|
/// Self {}
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
declare_clippy_lint! {
|
|
pub USE_SELF,
|
|
pedantic,
|
|
"Unnecessary structure name repetition whereas `Self` is applicable"
|
|
}
|
|
|
|
#[derive(Copy, Clone, Default)]
|
|
pub struct UseSelf;
|
|
|
|
impl LintPass for UseSelf {
|
|
fn get_lints(&self) -> LintArray {
|
|
lint_array!(USE_SELF)
|
|
}
|
|
}
|
|
|
|
const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
|
|
|
|
fn span_use_self_lint(cx: &LateContext<'_, '_>, path: &Path) {
|
|
// path segments only include actual path, no methods or fields
|
|
let last_path_span = path.segments.last().expect(SEGMENTS_MSG).ident.span;
|
|
// only take path up to the end of last_path_span
|
|
let span = path.span.with_hi(last_path_span.hi());
|
|
|
|
span_lint_and_sugg(
|
|
cx,
|
|
USE_SELF,
|
|
span,
|
|
"unnecessary structure name repetition",
|
|
"use the applicable keyword",
|
|
"Self".to_owned(),
|
|
Applicability::MachineApplicable,
|
|
);
|
|
}
|
|
|
|
struct TraitImplTyVisitor<'a, 'tcx: 'a> {
|
|
item_type: ty::Ty<'tcx>,
|
|
cx: &'a LateContext<'a, 'tcx>,
|
|
trait_type_walker: ty::walk::TypeWalker<'tcx>,
|
|
impl_type_walker: ty::walk::TypeWalker<'tcx>,
|
|
}
|
|
|
|
impl<'a, 'tcx> Visitor<'tcx> for TraitImplTyVisitor<'a, 'tcx> {
|
|
fn visit_ty(&mut self, t: &'tcx Ty) {
|
|
let trait_ty = self.trait_type_walker.next();
|
|
let impl_ty = self.impl_type_walker.next();
|
|
|
|
if let TyKind::Path(QPath::Resolved(_, path)) = &t.node {
|
|
// The implementation and trait types don't match which means that
|
|
// the concrete type was specified by the implementation
|
|
if impl_ty != trait_ty {
|
|
if let Some(impl_ty) = impl_ty {
|
|
if self.item_type == impl_ty {
|
|
let is_self_ty = if let def::Def::SelfTy(..) = path.def {
|
|
true
|
|
} else {
|
|
false
|
|
};
|
|
|
|
if !is_self_ty {
|
|
span_use_self_lint(self.cx, path);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
walk_ty(self, t)
|
|
}
|
|
|
|
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
|
|
NestedVisitorMap::None
|
|
}
|
|
}
|
|
|
|
fn check_trait_method_impl_decl<'a, 'tcx: 'a>(
|
|
cx: &'a LateContext<'a, 'tcx>,
|
|
item_type: ty::Ty<'tcx>,
|
|
impl_item: &ImplItem,
|
|
impl_decl: &'tcx FnDecl,
|
|
impl_trait_ref: &ty::TraitRef<'_>,
|
|
) {
|
|
let trait_method = cx
|
|
.tcx
|
|
.associated_items(impl_trait_ref.def_id)
|
|
.find(|assoc_item| {
|
|
assoc_item.kind == ty::AssociatedKind::Method
|
|
&& cx
|
|
.tcx
|
|
.hygienic_eq(impl_item.ident, assoc_item.ident, impl_trait_ref.def_id)
|
|
})
|
|
.expect("impl method matches a trait method");
|
|
|
|
let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id);
|
|
let trait_method_sig = cx.tcx.erase_late_bound_regions(&trait_method_sig);
|
|
|
|
let impl_method_def_id = cx.tcx.hir().local_def_id(impl_item.id);
|
|
let impl_method_sig = cx.tcx.fn_sig(impl_method_def_id);
|
|
let impl_method_sig = cx.tcx.erase_late_bound_regions(&impl_method_sig);
|
|
|
|
let output_ty = if let FunctionRetTy::Return(ty) = &impl_decl.output {
|
|
Some(&**ty)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
// `impl_decl_ty` (of type `hir::Ty`) represents the type declared in the signature.
|
|
// `impl_ty` (of type `ty:TyS`) is the concrete type that the compiler has determined for
|
|
// that declaration. We use `impl_decl_ty` to see if the type was declared as `Self`
|
|
// and use `impl_ty` to check its concrete type.
|
|
for (impl_decl_ty, (impl_ty, trait_ty)) in impl_decl.inputs.iter().chain(output_ty).zip(
|
|
impl_method_sig
|
|
.inputs_and_output
|
|
.iter()
|
|
.zip(trait_method_sig.inputs_and_output),
|
|
) {
|
|
let mut visitor = TraitImplTyVisitor {
|
|
cx,
|
|
item_type,
|
|
trait_type_walker: trait_ty.walk(),
|
|
impl_type_walker: impl_ty.walk(),
|
|
};
|
|
|
|
visitor.visit_ty(&impl_decl_ty);
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UseSelf {
|
|
fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) {
|
|
if in_external_macro(cx.sess(), item.span) {
|
|
return;
|
|
}
|
|
if_chain! {
|
|
if let ItemKind::Impl(.., ref item_type, ref refs) = item.node;
|
|
if let TyKind::Path(QPath::Resolved(_, ref item_path)) = item_type.node;
|
|
then {
|
|
let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
|
|
let should_check = if let Some(ref params) = *parameters {
|
|
!params.parenthesized && !params.args.iter().any(|arg| match arg {
|
|
GenericArg::Lifetime(_) => true,
|
|
GenericArg::Type(_) => false,
|
|
})
|
|
} else {
|
|
true
|
|
};
|
|
|
|
if should_check {
|
|
let visitor = &mut UseSelfVisitor {
|
|
item_path,
|
|
cx,
|
|
};
|
|
let impl_def_id = cx.tcx.hir().local_def_id(item.id);
|
|
let impl_trait_ref = cx.tcx.impl_trait_ref(impl_def_id);
|
|
|
|
if let Some(impl_trait_ref) = impl_trait_ref {
|
|
for impl_item_ref in refs {
|
|
let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
|
|
if let ImplItemKind::Method(MethodSig{ decl: impl_decl, .. }, impl_body_id)
|
|
= &impl_item.node {
|
|
let item_type = cx.tcx.type_of(impl_def_id);
|
|
check_trait_method_impl_decl(cx, item_type, impl_item, impl_decl, &impl_trait_ref);
|
|
|
|
let body = cx.tcx.hir().body(*impl_body_id);
|
|
visitor.visit_body(body);
|
|
} else {
|
|
visitor.visit_impl_item(impl_item);
|
|
}
|
|
}
|
|
} else {
|
|
for impl_item_ref in refs {
|
|
let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
|
|
visitor.visit_impl_item(impl_item);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct UseSelfVisitor<'a, 'tcx: 'a> {
|
|
item_path: &'a Path,
|
|
cx: &'a LateContext<'a, 'tcx>,
|
|
}
|
|
|
|
impl<'a, 'tcx> Visitor<'tcx> for UseSelfVisitor<'a, 'tcx> {
|
|
fn visit_path(&mut self, path: &'tcx Path, _id: HirId) {
|
|
if path.segments.last().expect(SEGMENTS_MSG).ident.name != SelfUpper.name() {
|
|
if self.item_path.def == path.def {
|
|
span_use_self_lint(self.cx, path);
|
|
} else if let Def::StructCtor(ctor_did, CtorKind::Fn) = path.def {
|
|
if self.item_path.def.opt_def_id() == self.cx.tcx.parent_def_id(ctor_did) {
|
|
span_use_self_lint(self.cx, path);
|
|
}
|
|
}
|
|
}
|
|
walk_path(self, path);
|
|
}
|
|
|
|
fn visit_item(&mut self, item: &'tcx Item) {
|
|
match item.node {
|
|
ItemKind::Use(..)
|
|
| ItemKind::Static(..)
|
|
| ItemKind::Enum(..)
|
|
| ItemKind::Struct(..)
|
|
| ItemKind::Union(..)
|
|
| ItemKind::Impl(..) => {
|
|
// Don't check statements that shadow `Self` or where `Self` can't be used
|
|
},
|
|
_ => walk_item(self, item),
|
|
}
|
|
}
|
|
|
|
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
|
|
NestedVisitorMap::All(&self.cx.tcx.hir())
|
|
}
|
|
}
|