rust/src/rustc/middle/ty.rs

3236 lines
97 KiB
Rust

import std::{map, smallintmap};
import result::result;
import std::map::hashmap;
import driver::session;
import session::session;
import syntax::{ast, ast_map};
import syntax::ast_util;
import syntax::ast_util::{is_local, local_def, split_class_items,
new_def_hash};
import syntax::codemap::span;
import metadata::csearch;
import util::ppaux::{region_to_str, explain_region, vstore_to_str};
import middle::lint;
import middle::lint::{get_lint_level, allow};
import syntax::ast::*;
import syntax::print::pprust::*;
import util::ppaux::{ty_to_str, tys_to_str};
export tv_vid, tvi_vid, region_vid, vid;
export br_hashmap;
export is_instantiable;
export node_id_to_type;
export node_id_to_type_params;
export arg;
export args_eq;
export block_ty;
export class_items_as_fields, class_items_as_mutable_fields;
export ctxt;
export deref, deref_sty;
export index, index_sty;
export def_has_ty_params;
export expr_has_ty_params;
export expr_ty;
export expr_ty_params_and_ty;
export expr_is_lval;
export field_ty;
export fold_ty, fold_sty_to_ty, fold_region, fold_regions;
export fold_regions_and_ty, walk_regions_and_ty;
export field;
export field_idx;
export get_field;
export get_fields;
export get_element_type;
export has_dtor;
export is_binopable;
export is_pred_ty;
export lookup_class_field, lookup_class_fields;
export lookup_class_method_by_name;
export lookup_field_type;
export lookup_item_type;
export lookup_public_fields;
export method;
export method_idx;
export mk_class;
export mk_ctxt;
export mk_with_id, type_def_id;
export mt;
export node_type_table;
export pat_ty;
export sequence_element_type;
export stmt_node_id;
export sty;
export subst, subst_tps, substs_is_noop, substs_to_str, substs;
export t;
export new_ty_hash;
export enum_variants, substd_enum_variants, enum_is_univariant;
export trait_methods, store_trait_methods, impl_traits;
export enum_variant_with_id;
export ty_dtor;
export ty_param_bounds_and_ty;
export ty_bool, mk_bool, type_is_bool;
export ty_bot, mk_bot, type_is_bot;
export ty_box, mk_box, mk_imm_box, type_is_box, type_is_boxed;
export ty_opaque_closure_ptr, mk_opaque_closure_ptr;
export ty_opaque_box, mk_opaque_box;
export ty_float, mk_float, mk_mach_float, type_is_fp;
export ty_fn, fn_ty, mk_fn;
export ty_fn_proto, ty_fn_ret, ty_fn_ret_style, tys_in_fn_ty;
export ty_int, mk_int, mk_mach_int, mk_char;
export mk_i8, mk_u8, mk_i16, mk_u16, mk_i32, mk_u32, mk_i64, mk_u64;
export ty_estr, mk_estr, type_is_str;
export ty_evec, mk_evec, type_is_vec;
export ty_unboxed_vec, mk_unboxed_vec, mk_mut_unboxed_vec;
export vstore, vstore_fixed, vstore_uniq, vstore_box, vstore_slice;
export ty_nil, mk_nil, type_is_nil;
export ty_trait, mk_trait;
export ty_param, mk_param, ty_params_to_tys;
export ty_ptr, mk_ptr, mk_mut_ptr, mk_imm_ptr, mk_nil_ptr, type_is_unsafe_ptr;
export ty_rptr, mk_rptr;
export ty_rec, mk_rec;
export ty_enum, mk_enum, type_is_enum;
export ty_tup, mk_tup;
export ty_type, mk_type;
export ty_uint, mk_uint, mk_mach_uint;
export ty_uniq, mk_uniq, mk_imm_uniq, type_is_unique_box;
export ty_var, mk_var, type_is_var;
export ty_var_integral, mk_var_integral, type_is_var_integral;
export ty_self, mk_self, type_has_self;
export ty_class;
export region, bound_region, encl_region;
export re_bound, re_free, re_scope, re_static, re_var;
export br_self, br_anon, br_named, br_cap_avoid;
export get, type_has_params, type_needs_infer, type_has_regions;
export type_is_region_ptr;
export type_id;
export tbox_has_flag;
export ty_var_id;
export ty_to_def_id;
export ty_fn_args;
export ty_region;
export kind, kind_implicitly_copyable, kind_send_copy, kind_copyable;
export kind_noncopyable, kind_const;
export kind_can_be_copied, kind_can_be_sent, kind_can_be_implicitly_copied;
export kind_is_safe_for_default_mode;
export kind_is_owned;
export proto_kind, kind_lteq, type_kind;
export operators;
export type_err, terr_vstore_kind;
export type_err_to_str;
export type_needs_drop;
export type_is_empty;
export type_is_integral;
export type_is_numeric;
export type_is_pod;
export type_is_scalar;
export type_is_immediate;
export type_is_sequence;
export type_is_signed;
export type_is_structural;
export type_is_copyable;
export type_is_slice;
export type_is_unique;
export type_is_c_like_enum;
export type_structurally_contains;
export type_structurally_contains_uniques;
export type_autoderef, deref, deref_sty;
export type_param;
export type_needs_unwind_cleanup;
export canon_mode;
export resolved_mode;
export arg_mode;
export unify_mode;
export set_default_mode;
export variant_info;
export walk_ty, maybe_walk_ty;
export occurs_check;
export closure_kind;
export ck_block;
export ck_box;
export ck_uniq;
export param_bound, param_bounds, bound_copy, bound_owned;
export bound_send, bound_trait;
export param_bounds_to_kind;
export default_arg_mode_for_ty;
export item_path;
export item_path_str;
export ast_ty_to_ty_cache_entry;
export atttce_unresolved, atttce_resolved;
export mach_sty;
export ty_sort_str;
export normalize_ty;
export to_str;
export borrow, serialize_borrow, deserialize_borrow;
export bound_const;
export terr_no_integral_type, terr_ty_param_size, terr_self_substs;
export terr_in_field, terr_record_fields, terr_vstores_differ, terr_arg_count;
export terr_sorts, terr_vec, terr_str, terr_record_size, terr_tuple_size;
export terr_regions_differ, terr_mutability, terr_purity_mismatch;
export terr_proto_mismatch;
export terr_ret_style_mismatch;
export purity_to_str;
export param_tys_in_type;
export eval_repeat_count;
// Data types
// Note: after typeck, you should use resolved_mode() to convert this mode
// into an rmode, which will take into account the results of mode inference.
type arg = {mode: ast::mode, ty: t};
type field = {ident: ast::ident, mt: mt};
type param_bounds = @~[param_bound];
type method = {ident: ast::ident,
tps: @~[param_bounds],
fty: fn_ty,
self_ty: ast::self_ty_,
purity: ast::purity,
vis: ast::visibility};
type mt = {ty: t, mutbl: ast::mutability};
enum vstore {
vstore_fixed(uint),
vstore_uniq,
vstore_box,
vstore_slice(region)
}
type field_ty = {
ident: ident,
id: def_id,
vis: ast::visibility,
mutability: ast::class_mutability
};
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
type creader_cache = hashmap<{cnum: int, pos: uint, len: uint}, t>;
type intern_key = {struct: sty, o_def_id: option<ast::def_id>};
enum ast_ty_to_ty_cache_entry {
atttce_unresolved, /* not resolved yet */
atttce_resolved(t) /* resolved to a type, irrespective of region */
}
// N.B.: Borrows from inlined content are not accurately deserialized. This
// is because we don't need the details in trans, we only care if there is an
// entry in the table or not.
type borrow = {
region: ty::region,
mutbl: ast::mutability
};
type ctxt =
@{diag: syntax::diagnostic::span_handler,
interner: hashmap<intern_key, t_box>,
mut next_id: uint,
vecs_implicitly_copyable: bool,
cstore: metadata::cstore::cstore,
sess: session::session,
def_map: resolve3::DefMap,
region_map: middle::region::region_map,
region_paramd_items: middle::region::region_paramd_items,
// Stores the types for various nodes in the AST. Note that this table
// is not guaranteed to be populated until after typeck. See
// typeck::check::fn_ctxt for details.
node_types: node_type_table,
// Stores the type parameters which were substituted to obtain the type
// of this node. This only applies to nodes that refer to entities
// parameterized by type parameters, such as generic fns, types, or
// other items.
node_type_substs: hashmap<node_id, ~[t]>,
items: ast_map::map,
intrinsic_defs: hashmap<ast::ident, (ast::def_id, t)>,
freevars: freevars::freevar_map,
tcache: type_cache,
rcache: creader_cache,
ccache: constness_cache,
short_names_cache: hashmap<t, @~str>,
needs_drop_cache: hashmap<t, bool>,
needs_unwind_cleanup_cache: hashmap<t, bool>,
kind_cache: hashmap<t, kind>,
ast_ty_to_ty_cache: hashmap<@ast::ty, ast_ty_to_ty_cache_entry>,
enum_var_cache: hashmap<def_id, @~[variant_info]>,
trait_method_cache: hashmap<def_id, @~[method]>,
ty_param_bounds: hashmap<ast::node_id, param_bounds>,
inferred_modes: hashmap<ast::node_id, ast::mode>,
// maps the id of borrowed expr to scope of borrowed ptr
borrowings: hashmap<ast::node_id, borrow>,
normalized_cache: hashmap<t, t>};
enum tbox_flag {
has_params = 1,
has_self = 2,
needs_infer = 4,
has_regions = 8,
// a meta-flag: subst may be required if the type has parameters, a self
// type, or references bound regions
needs_subst = 1 | 2 | 8
}
type t_box = @{struct: sty,
id: uint,
flags: uint,
o_def_id: option<ast::def_id>};
// To reduce refcounting cost, we're representing types as unsafe pointers
// throughout the compiler. These are simply casted t_box values. Use ty::get
// to cast them back to a box. (Without the cast, compiler performance suffers
// ~15%.) This does mean that a t value relies on the ctxt to keep its box
// alive, and using ty::get is unsafe when the ctxt is no longer alive.
enum t_opaque {}
type t = *t_opaque;
pure fn get(t: t) -> t_box unsafe {
let t2 = unsafe::reinterpret_cast::<t, t_box>(t);
let t3 = t2;
unsafe::forget(t2);
t3
}
pure fn tbox_has_flag(tb: t_box, flag: tbox_flag) -> bool {
(tb.flags & (flag as uint)) != 0u
}
pure fn type_has_params(t: t) -> bool { tbox_has_flag(get(t), has_params) }
pure fn type_has_self(t: t) -> bool { tbox_has_flag(get(t), has_self) }
pure fn type_needs_infer(t: t) -> bool { tbox_has_flag(get(t), needs_infer) }
pure fn type_has_regions(t: t) -> bool { tbox_has_flag(get(t), has_regions) }
pure fn type_def_id(t: t) -> option<ast::def_id> { get(t).o_def_id }
pure fn type_id(t: t) -> uint { get(t).id }
enum closure_kind {
ck_block,
ck_box,
ck_uniq,
}
/// Innards of a function type:
///
/// - `purity` is the function's effect (pure, impure, unsafe).
/// - `proto` is the protocol (fn@, fn~, etc).
/// - `bound` is the parameter bounds on the function's upvars.
/// - `inputs` is the list of arguments and their modes.
/// - `output` is the return type.
/// - `ret_style` indicates whether the function returns a value or fails.
type fn_ty = {purity: ast::purity,
proto: ast::proto,
bounds: @~[param_bound],
inputs: ~[arg],
output: t,
ret_style: ret_style};
type param_ty = {idx: uint, def_id: def_id};
/// Representation of regions:
enum region {
/// Bound regions are found (primarily) in function types. They indicate
/// region parameters that have yet to be replaced with actual regions
/// (analogous to type parameters, except that due to the monomorphic
/// nature of our type system, bound type parameters are always replaced
/// with fresh type variables whenever an item is referenced, so type
/// parameters only appear "free" in types. Regions in contrast can
/// appear free or bound.). When a function is called, all bound regions
/// tied to that function's node-id are replaced with fresh region
/// variables whose value is then inferred.
re_bound(bound_region),
/// When checking a function body, the types of all arguments and so forth
/// that refer to bound region parameters are modified to refer to free
/// region parameters.
re_free(node_id, bound_region),
/// A concrete region naming some expression within the current function.
re_scope(node_id),
/// Static data that has an "infinite" lifetime.
re_static,
/// A region variable. Should not exist after typeck.
re_var(region_vid),
}
enum bound_region {
/// The self region for classes, impls (&T in a type defn or &self/T)
br_self,
/// Anonymous region parameter for a given fn (&T)
br_anon,
/// Named region parameters for functions (a in &a/T)
br_named(ast::ident),
/// Handles capture-avoiding substitution in a rather subtle case. If you
/// have a closure whose argument types are being inferred based on the
/// expected type, and the expected type includes bound regions, then we
/// will wrap those bound regions in a br_cap_avoid() with the id of the
/// fn expression. This ensures that the names are not "captured" by the
/// enclosing scope, which may define the same names. For an example of
/// where this comes up, see src/test/compile-fail/regions-ret-borrowed.rs
/// and regions-ret-borrowed-1.rs.
br_cap_avoid(ast::node_id, @bound_region),
}
type opt_region = option<region>;
/// The type substs represents the kinds of things that can be substituted to
/// convert a polytype into a monotype. Note however that substituting bound
/// regions other than `self` is done through a different mechanism.
///
/// `tps` represents the type parameters in scope. They are indexed according
/// to the order in which they were declared.
///
/// `self_r` indicates the region parameter `self` that is present on nominal
/// types (enums, classes) declared as having a region parameter. `self_r`
/// should always be none for types that are not region-parameterized and
/// some(_) for types that are. The only bound region parameter that should
/// appear within a region-parameterized type is `self`.
///
/// `self_ty` is the type to which `self` should be remapped, if any. The
/// `self` type is rather funny in that it can only appear on traits and
/// is always substituted away to the implementing type for a trait.
type substs = {
self_r: opt_region,
self_ty: option<ty::t>,
tps: ~[t]
};
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in libsyntax/ast.rs as well.
enum sty {
ty_nil,
ty_bot,
ty_bool,
ty_int(ast::int_ty),
ty_uint(ast::uint_ty),
ty_float(ast::float_ty),
ty_estr(vstore),
ty_enum(def_id, substs),
ty_box(mt),
ty_uniq(mt),
ty_evec(mt, vstore),
ty_ptr(mt),
ty_rptr(region, mt),
ty_rec(~[field]),
ty_fn(fn_ty),
ty_trait(def_id, substs),
ty_class(def_id, substs),
ty_tup(~[t]),
ty_var(tv_vid), // type variable during typechecking
ty_var_integral(tvi_vid), // type variable during typechecking, for
// integral types only
ty_param(param_ty), // type parameter
ty_self, // special, implicit `self` type parameter
// "Fake" types, used for trans purposes
ty_type, // type_desc*
ty_opaque_box, // used by monomorphizer to represent any @ box
ty_opaque_closure_ptr(closure_kind), // ptr to env for fn, fn@, fn~
ty_unboxed_vec(mt),
}
enum terr_vstore_kind {
terr_vec, terr_str
}
// Data structures used in type unification
enum type_err {
terr_mismatch,
terr_ret_style_mismatch(ast::ret_style, ast::ret_style),
terr_purity_mismatch(purity, purity),
terr_mutability,
terr_proto_mismatch(ast::proto, ast::proto),
terr_box_mutability,
terr_ptr_mutability,
terr_ref_mutability,
terr_vec_mutability,
terr_tuple_size(uint, uint),
terr_ty_param_size(uint, uint),
terr_record_size(uint, uint),
terr_record_mutability,
terr_record_fields(ast::ident, ast::ident),
terr_arg_count,
terr_mode_mismatch(mode, mode),
terr_regions_differ(region, region),
terr_vstores_differ(terr_vstore_kind, vstore, vstore),
terr_in_field(@type_err, ast::ident),
terr_sorts(t, t),
terr_self_substs,
terr_no_integral_type,
}
enum param_bound {
bound_copy,
bound_owned,
bound_send,
bound_const,
bound_trait(t),
}
enum tv_vid = uint;
enum tvi_vid = uint;
enum region_vid = uint;
trait vid {
pure fn to_uint() -> uint;
pure fn to_str() -> ~str;
}
impl of vid for tv_vid {
pure fn to_uint() -> uint { *self }
pure fn to_str() -> ~str { fmt!{"<V%u>", self.to_uint()} }
}
impl of vid for tvi_vid {
pure fn to_uint() -> uint { *self }
pure fn to_str() -> ~str { fmt!{"<VI%u>", self.to_uint()} }
}
impl of vid for region_vid {
pure fn to_uint() -> uint { *self }
pure fn to_str() -> ~str { fmt!{"<R%u>", self.to_uint()} }
}
trait purity_to_str {
pure fn to_str() -> ~str;
}
impl of purity_to_str for purity {
pure fn to_str() -> ~str {
purity_to_str(self)
}
}
fn param_bounds_to_kind(bounds: param_bounds) -> kind {
let mut kind = kind_noncopyable();
for vec::each(*bounds) |bound| {
match bound {
bound_copy => {
kind = raise_kind(kind, kind_implicitly_copyable());
}
bound_owned => {
kind = raise_kind(kind, kind_owned());
}
bound_send => {
kind = raise_kind(kind, kind_send_only() | kind_owned());
}
bound_const => {
kind = raise_kind(kind, kind_const());
}
bound_trait(_) => ()
}
}
kind
}
type ty_param_bounds_and_ty = {bounds: @~[param_bounds],
rp: bool,
ty: t};
type type_cache = hashmap<ast::def_id, ty_param_bounds_and_ty>;
type constness_cache = hashmap<ast::def_id, const_eval::constness>;
type node_type_table = @smallintmap::smallintmap<t>;
fn mk_rcache() -> creader_cache {
type val = {cnum: int, pos: uint, len: uint};
pure fn hash_cache_entry(k: &val) -> uint {
(k.cnum as uint) + k.pos + k.len
}
pure fn eq_cache_entries(a: &val, b: &val) -> bool {
a.cnum == b.cnum && a.pos == b.pos && a.len == b.len
}
return map::hashmap(hash_cache_entry, eq_cache_entries);
}
fn new_ty_hash<V: copy>() -> map::hashmap<t, V> {
map::hashmap(|t: &t| type_id(*t),
|a: &t, b: &t| type_id(*a) == type_id(*b))
}
fn mk_ctxt(s: session::session,
dm: resolve3::DefMap,
amap: ast_map::map,
freevars: freevars::freevar_map,
region_map: middle::region::region_map,
region_paramd_items: middle::region::region_paramd_items) -> ctxt {
pure fn hash_intern_key(k: &intern_key) -> uint {
hash_type_structure(k.struct) +
option::map_default(k.o_def_id, 0u, |d| ast_util::hash_def(&d))
}
let interner = map::hashmap(hash_intern_key, sys::shape_eq);
let vecs_implicitly_copyable =
get_lint_level(s.lint_settings.default_settings,
lint::vecs_implicitly_copyable) == allow;
@{diag: s.diagnostic(),
interner: interner,
mut next_id: 0u,
vecs_implicitly_copyable: vecs_implicitly_copyable,
cstore: s.cstore,
sess: s,
def_map: dm,
region_map: region_map,
region_paramd_items: region_paramd_items,
node_types: @smallintmap::mk(),
node_type_substs: map::int_hash(),
items: amap,
intrinsic_defs: map::box_str_hash(),
freevars: freevars,
tcache: ast_util::new_def_hash(),
rcache: mk_rcache(),
ccache: ast_util::new_def_hash(),
short_names_cache: new_ty_hash(),
needs_drop_cache: new_ty_hash(),
needs_unwind_cleanup_cache: new_ty_hash(),
kind_cache: new_ty_hash(),
ast_ty_to_ty_cache: map::hashmap(
ast_util::hash_ty, ast_util::eq_ty),
enum_var_cache: new_def_hash(),
trait_method_cache: new_def_hash(),
ty_param_bounds: map::int_hash(),
inferred_modes: map::int_hash(),
borrowings: map::int_hash(),
normalized_cache: new_ty_hash()}
}
// Type constructors
fn mk_t(cx: ctxt, st: sty) -> t { mk_t_with_id(cx, st, none) }
// Interns a type/name combination, stores the resulting box in cx.interner,
// and returns the box as cast to an unsafe ptr (see comments for t above).
fn mk_t_with_id(cx: ctxt, st: sty, o_def_id: option<ast::def_id>) -> t {
let key = {struct: st, o_def_id: o_def_id};
match cx.interner.find(key) {
some(t) => unsafe { return unsafe::reinterpret_cast(t); },
_ => ()
}
let mut flags = 0u;
fn rflags(r: region) -> uint {
(has_regions as uint) | {
match r {
ty::re_var(_) => needs_infer as uint,
_ => 0u
}
}
}
fn sflags(substs: substs) -> uint {
let mut f = 0u;
for substs.tps.each |tt| { f |= get(tt).flags; }
substs.self_r.iter(|r| f |= rflags(r));
return f;
}
match st {
ty_estr(vstore_slice(r)) => {
flags |= rflags(r);
}
ty_evec(mt, vstore_slice(r)) => {
flags |= rflags(r);
flags |= get(mt.ty).flags;
}
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_estr(_) | ty_type | ty_opaque_closure_ptr(_) |
ty_opaque_box => (),
ty_param(_) => flags |= has_params as uint,
ty_var(_) | ty_var_integral(_) => flags |= needs_infer as uint,
ty_self => flags |= has_self as uint,
ty_enum(_, substs) | ty_class(_, substs) | ty_trait(_, substs) => {
flags |= sflags(substs);
}
ty_box(m) | ty_uniq(m) | ty_evec(m, _) |
ty_ptr(m) | ty_unboxed_vec(m) => {
flags |= get(m.ty).flags;
}
ty_rptr(r, m) => {
flags |= rflags(r);
flags |= get(m.ty).flags;
}
ty_rec(flds) => for flds.each |f| { flags |= get(f.mt.ty).flags; },
ty_tup(ts) => for ts.each |tt| { flags |= get(tt).flags; },
ty_fn(f) => {
for f.inputs.each |a| { flags |= get(a.ty).flags; }
flags |= get(f.output).flags;
}
}
let t = @{struct: st, id: cx.next_id, flags: flags, o_def_id: o_def_id};
cx.interner.insert(key, t);
cx.next_id += 1u;
unsafe { unsafe::reinterpret_cast(t) }
}
fn mk_nil(cx: ctxt) -> t { mk_t(cx, ty_nil) }
fn mk_bot(cx: ctxt) -> t { mk_t(cx, ty_bot) }
fn mk_bool(cx: ctxt) -> t { mk_t(cx, ty_bool) }
fn mk_int(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i)) }
fn mk_i8(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i8)) }
fn mk_i16(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i16)) }
fn mk_i32(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i32)) }
fn mk_i64(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i64)) }
fn mk_float(cx: ctxt) -> t { mk_t(cx, ty_float(ast::ty_f)) }
fn mk_uint(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u)) }
fn mk_u8(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u8)) }
fn mk_u16(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u16)) }
fn mk_u32(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u32)) }
fn mk_u64(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u64)) }
fn mk_mach_int(cx: ctxt, tm: ast::int_ty) -> t { mk_t(cx, ty_int(tm)) }
fn mk_mach_uint(cx: ctxt, tm: ast::uint_ty) -> t { mk_t(cx, ty_uint(tm)) }
fn mk_mach_float(cx: ctxt, tm: ast::float_ty) -> t { mk_t(cx, ty_float(tm)) }
fn mk_char(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_char)) }
fn mk_estr(cx: ctxt, t: vstore) -> t {
mk_t(cx, ty_estr(t))
}
fn mk_enum(cx: ctxt, did: ast::def_id, substs: substs) -> t {
mk_t(cx, ty_enum(did, substs))
}
fn mk_box(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_box(tm)) }
fn mk_imm_box(cx: ctxt, ty: t) -> t { mk_box(cx, {ty: ty,
mutbl: ast::m_imm}) }
fn mk_uniq(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_uniq(tm)) }
fn mk_imm_uniq(cx: ctxt, ty: t) -> t { mk_uniq(cx, {ty: ty,
mutbl: ast::m_imm}) }
fn mk_ptr(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_ptr(tm)) }
fn mk_rptr(cx: ctxt, r: region, tm: mt) -> t { mk_t(cx, ty_rptr(r, tm)) }
fn mk_mut_ptr(cx: ctxt, ty: t) -> t { mk_ptr(cx, {ty: ty,
mutbl: ast::m_mutbl}) }
fn mk_imm_ptr(cx: ctxt, ty: t) -> t {
mk_ptr(cx, {ty: ty, mutbl: ast::m_imm})
}
fn mk_nil_ptr(cx: ctxt) -> t {
mk_ptr(cx, {ty: mk_nil(cx), mutbl: ast::m_imm})
}
fn mk_evec(cx: ctxt, tm: mt, t: vstore) -> t {
mk_t(cx, ty_evec(tm, t))
}
fn mk_unboxed_vec(cx: ctxt, tm: mt) -> t {
mk_t(cx, ty_unboxed_vec(tm))
}
fn mk_mut_unboxed_vec(cx: ctxt, ty: t) -> t {
mk_t(cx, ty_unboxed_vec({ty: ty, mutbl: ast::m_imm}))
}
fn mk_rec(cx: ctxt, fs: ~[field]) -> t { mk_t(cx, ty_rec(fs)) }
fn mk_tup(cx: ctxt, ts: ~[t]) -> t { mk_t(cx, ty_tup(ts)) }
fn mk_fn(cx: ctxt, fty: fn_ty) -> t { mk_t(cx, ty_fn(fty)) }
fn mk_trait(cx: ctxt, did: ast::def_id, substs: substs) -> t {
mk_t(cx, ty_trait(did, substs))
}
fn mk_class(cx: ctxt, class_id: ast::def_id, substs: substs) -> t {
mk_t(cx, ty_class(class_id, substs))
}
fn mk_var(cx: ctxt, v: tv_vid) -> t { mk_t(cx, ty_var(v)) }
fn mk_var_integral(cx: ctxt, v: tvi_vid) -> t {
mk_t(cx, ty_var_integral(v))
}
fn mk_self(cx: ctxt) -> t { mk_t(cx, ty_self) }
fn mk_param(cx: ctxt, n: uint, k: def_id) -> t {
mk_t(cx, ty_param({idx: n, def_id: k}))
}
fn mk_type(cx: ctxt) -> t { mk_t(cx, ty_type) }
fn mk_opaque_closure_ptr(cx: ctxt, ck: closure_kind) -> t {
mk_t(cx, ty_opaque_closure_ptr(ck))
}
fn mk_opaque_box(cx: ctxt) -> t { mk_t(cx, ty_opaque_box) }
fn mk_with_id(cx: ctxt, base: t, def_id: ast::def_id) -> t {
mk_t_with_id(cx, get(base).struct, some(def_id))
}
// Converts s to its machine type equivalent
pure fn mach_sty(cfg: @session::config, t: t) -> sty {
match get(t).struct {
ty_int(ast::ty_i) => ty_int(cfg.int_type),
ty_uint(ast::ty_u) => ty_uint(cfg.uint_type),
ty_float(ast::ty_f) => ty_float(cfg.float_type),
s => s
}
}
fn default_arg_mode_for_ty(ty: ty::t) -> ast::rmode {
if ty::type_is_immediate(ty) { ast::by_val }
else { ast::by_ref }
}
// Returns the narrowest lifetime enclosing the evaluation of the expression
// with id `id`.
fn encl_region(cx: ctxt, id: ast::node_id) -> ty::region {
match cx.region_map.find(id) {
some(encl_scope) => ty::re_scope(encl_scope),
none => ty::re_static
}
}
fn walk_ty(ty: t, f: fn(t)) {
maybe_walk_ty(ty, |t| { f(t); true });
}
fn maybe_walk_ty(ty: t, f: fn(t) -> bool) {
if !f(ty) { return; }
match get(ty).struct {
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_estr(_) | ty_type | ty_opaque_box | ty_self |
ty_opaque_closure_ptr(_) | ty_var(_) | ty_var_integral(_) |
ty_param(_) => {
}
ty_box(tm) | ty_evec(tm, _) | ty_unboxed_vec(tm) |
ty_ptr(tm) | ty_rptr(_, tm) => {
maybe_walk_ty(tm.ty, f);
}
ty_enum(_, substs) | ty_class(_, substs) |
ty_trait(_, substs) => {
for substs.tps.each |subty| { maybe_walk_ty(subty, f); }
}
ty_rec(fields) => {
for fields.each |fl| { maybe_walk_ty(fl.mt.ty, f); }
}
ty_tup(ts) => { for ts.each |tt| { maybe_walk_ty(tt, f); } }
ty_fn(ft) => {
for ft.inputs.each |a| { maybe_walk_ty(a.ty, f); }
maybe_walk_ty(ft.output, f);
}
ty_uniq(tm) => { maybe_walk_ty(tm.ty, f); }
}
}
fn fold_sty_to_ty(tcx: ty::ctxt, sty: sty, foldop: fn(t) -> t) -> t {
mk_t(tcx, fold_sty(sty, foldop))
}
fn fold_sty(sty: sty, fldop: fn(t) -> t) -> sty {
fn fold_substs(substs: substs, fldop: fn(t) -> t) -> substs {
{self_r: substs.self_r,
self_ty: substs.self_ty.map(|t| fldop(t)),
tps: substs.tps.map(|t| fldop(t))}
}
match sty {
ty_box(tm) => {
ty_box({ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_uniq(tm) => {
ty_uniq({ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_ptr(tm) => {
ty_ptr({ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_unboxed_vec(tm) => {
ty_unboxed_vec({ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_evec(tm, vst) => {
ty_evec({ty: fldop(tm.ty), mutbl: tm.mutbl}, vst)
}
ty_enum(tid, substs) => {
ty_enum(tid, fold_substs(substs, fldop))
}
ty_trait(did, substs) => {
ty_trait(did, fold_substs(substs, fldop))
}
ty_rec(fields) => {
let new_fields = do vec::map(fields) |fl| {
let new_ty = fldop(fl.mt.ty);
let new_mt = {ty: new_ty, mutbl: fl.mt.mutbl};
{ident: fl.ident, mt: new_mt}
};
ty_rec(new_fields)
}
ty_tup(ts) => {
let new_ts = vec::map(ts, |tt| fldop(tt));
ty_tup(new_ts)
}
ty_fn(f) => {
let new_args = vec::map(f.inputs, |a| {
let new_ty = fldop(a.ty);
{mode: a.mode, ty: new_ty}
});
let new_output = fldop(f.output);
ty_fn({inputs: new_args, output: new_output with f})
}
ty_rptr(r, tm) => {
ty_rptr(r, {ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_class(did, substs) => {
ty_class(did, fold_substs(substs, fldop))
}
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_estr(_) | ty_type | ty_opaque_closure_ptr(_) |
ty_opaque_box | ty_var(_) | ty_var_integral(_) |
ty_param(*) | ty_self => {
sty
}
}
}
// Folds types from the bottom up.
fn fold_ty(cx: ctxt, t0: t, fldop: fn(t) -> t) -> t {
let sty = fold_sty(get(t0).struct, |t| fold_ty(cx, fldop(t), fldop));
fldop(mk_t(cx, sty))
}
fn walk_regions_and_ty(
cx: ctxt,
ty: t,
walkr: fn(r: region),
walkt: fn(t: t) -> bool) {
if (walkt(ty)) {
fold_regions_and_ty(
cx, ty,
|r| { walkr(r); r },
|t| { walkt(t); walk_regions_and_ty(cx, t, walkr, walkt); t },
|t| { walkt(t); walk_regions_and_ty(cx, t, walkr, walkt); t });
}
}
fn fold_regions_and_ty(
cx: ctxt,
ty: t,
fldr: fn(r: region) -> region,
fldfnt: fn(t: t) -> t,
fldt: fn(t: t) -> t) -> t {
fn fold_substs(
substs: substs,
fldr: fn(r: region) -> region,
fldt: fn(t: t) -> t) -> substs {
{self_r: substs.self_r.map(|r| fldr(r)),
self_ty: substs.self_ty.map(|t| fldt(t)),
tps: substs.tps.map(|t| fldt(t))}
}
let tb = ty::get(ty);
match tb.struct {
ty::ty_rptr(r, mt) => {
let m_r = fldr(r);
let m_t = fldt(mt.ty);
ty::mk_rptr(cx, m_r, {ty: m_t, mutbl: mt.mutbl})
}
ty_estr(vstore_slice(r)) => {
let m_r = fldr(r);
ty::mk_estr(cx, vstore_slice(m_r))
}
ty_evec(mt, vstore_slice(r)) => {
let m_r = fldr(r);
let m_t = fldt(mt.ty);
ty::mk_evec(cx, {ty: m_t, mutbl: mt.mutbl}, vstore_slice(m_r))
}
ty_enum(def_id, substs) => {
ty::mk_enum(cx, def_id, fold_substs(substs, fldr, fldt))
}
ty_class(def_id, substs) => {
ty::mk_class(cx, def_id, fold_substs(substs, fldr, fldt))
}
ty_trait(def_id, substs) => {
ty::mk_trait(cx, def_id, fold_substs(substs, fldr, fldt))
}
sty @ ty_fn(_) => {
fold_sty_to_ty(cx, sty, |t| fldfnt(t))
}
sty => {
fold_sty_to_ty(cx, sty, |t| fldt(t))
}
}
}
// n.b. this function is intended to eventually replace fold_region() below,
// that is why its name is so similar.
fn fold_regions(
cx: ctxt,
ty: t,
fldr: fn(r: region, in_fn: bool) -> region) -> t {
fn do_fold(cx: ctxt, ty: t, in_fn: bool,
fldr: fn(region, bool) -> region) -> t {
if !type_has_regions(ty) { return ty; }
fold_regions_and_ty(
cx, ty,
|r| fldr(r, in_fn),
|t| do_fold(cx, t, true, fldr),
|t| do_fold(cx, t, in_fn, fldr))
}
do_fold(cx, ty, false, fldr)
}
fn fold_region(cx: ctxt, t0: t, fldop: fn(region, bool) -> region) -> t {
fn do_fold(cx: ctxt, t0: t, under_r: bool,
fldop: fn(region, bool) -> region) -> t {
let tb = get(t0);
if !tbox_has_flag(tb, has_regions) { return t0; }
match tb.struct {
ty_rptr(r, {ty: t1, mutbl: m}) => {
let m_r = fldop(r, under_r);
let m_t1 = do_fold(cx, t1, true, fldop);
ty::mk_rptr(cx, m_r, {ty: m_t1, mutbl: m})
}
ty_estr(vstore_slice(r)) => {
let m_r = fldop(r, under_r);
ty::mk_estr(cx, vstore_slice(m_r))
}
ty_evec({ty: t1, mutbl: m}, vstore_slice(r)) => {
let m_r = fldop(r, under_r);
let m_t1 = do_fold(cx, t1, true, fldop);
ty::mk_evec(cx, {ty: m_t1, mutbl: m}, vstore_slice(m_r))
}
ty_fn(_) => {
// do not recurse into functions, which introduce fresh bindings
t0
}
sty => {
do fold_sty_to_ty(cx, sty) |t| {
do_fold(cx, t, under_r, fldop)
}
}
}
}
do_fold(cx, t0, false, fldop)
}
// Substitute *only* type parameters. Used in trans where regions are erased.
fn subst_tps(cx: ctxt, tps: ~[t], typ: t) -> t {
if tps.len() == 0u { return typ; }
let tb = ty::get(typ);
if !tbox_has_flag(tb, has_params) { return typ; }
match tb.struct {
ty_param(p) => tps[p.idx],
sty => fold_sty_to_ty(cx, sty, |t| subst_tps(cx, tps, t))
}
}
fn substs_is_noop(substs: substs) -> bool {
substs.tps.len() == 0u &&
substs.self_r.is_none() &&
substs.self_ty.is_none()
}
fn substs_to_str(cx: ctxt, substs: substs) -> ~str {
fmt!{"substs(self_r=%s, self_ty=%s, tps=%?)",
substs.self_r.map_default(~"none", |r| region_to_str(cx, r)),
substs.self_ty.map_default(~"none", |t| ty_to_str(cx, t)),
substs.tps.map(|t| ty_to_str(cx, t))}
}
fn subst(cx: ctxt,
substs: substs,
typ: t) -> t {
debug!{"subst(substs=%s, typ=%s)",
substs_to_str(cx, substs),
ty_to_str(cx, typ)};
if substs_is_noop(substs) { return typ; }
let r = do_subst(cx, substs, typ);
debug!{" r = %s", ty_to_str(cx, r)};
return r;
fn do_subst(cx: ctxt,
substs: substs,
typ: t) -> t {
let tb = get(typ);
if !tbox_has_flag(tb, needs_subst) { return typ; }
match tb.struct {
ty_param(p) => substs.tps[p.idx],
ty_self => substs.self_ty.get(),
_ => {
fold_regions_and_ty(
cx, typ,
|r| match r {
re_bound(br_self) => substs.self_r.get(),
_ => r
},
|t| do_subst(cx, substs, t),
|t| do_subst(cx, substs, t))
}
}
}
}
// Type utilities
fn type_is_nil(ty: t) -> bool { get(ty).struct == ty_nil }
fn type_is_bot(ty: t) -> bool { get(ty).struct == ty_bot }
fn type_is_var(ty: t) -> bool {
match get(ty).struct {
ty_var(_) => true,
_ => false
}
}
fn type_is_var_integral(ty: t) -> bool {
match get(ty).struct {
ty_var_integral(_) => true,
_ => false
}
}
fn type_is_bool(ty: t) -> bool { get(ty).struct == ty_bool }
fn type_is_structural(ty: t) -> bool {
match get(ty).struct {
ty_rec(_) | ty_class(*) | ty_tup(_) | ty_enum(*) | ty_fn(_) |
ty_trait(*) |
ty_evec(_, vstore_fixed(_)) | ty_estr(vstore_fixed(_)) |
ty_evec(_, vstore_slice(_)) | ty_estr(vstore_slice(_))
=> true,
_ => false
}
}
fn type_is_copyable(cx: ctxt, ty: t) -> bool {
return kind_can_be_copied(type_kind(cx, ty));
}
fn type_is_sequence(ty: t) -> bool {
match get(ty).struct {
ty_estr(_) | ty_evec(_, _) => true,
_ => false
}
}
fn type_is_str(ty: t) -> bool {
match get(ty).struct {
ty_estr(_) => true,
_ => false
}
}
fn sequence_element_type(cx: ctxt, ty: t) -> t {
match get(ty).struct {
ty_estr(_) => return mk_mach_uint(cx, ast::ty_u8),
ty_evec(mt, _) | ty_unboxed_vec(mt) => return mt.ty,
_ => cx.sess.bug(
~"sequence_element_type called on non-sequence value"),
}
}
fn get_element_type(ty: t, i: uint) -> t {
match get(ty).struct {
ty_rec(flds) => return flds[i].mt.ty,
ty_tup(ts) => return ts[i],
_ => fail ~"get_element_type called on invalid type"
}
}
pure fn type_is_box(ty: t) -> bool {
match get(ty).struct {
ty_box(_) => return true,
_ => return false
}
}
pure fn type_is_boxed(ty: t) -> bool {
match get(ty).struct {
ty_box(_) | ty_opaque_box |
ty_evec(_, vstore_box) | ty_estr(vstore_box) => true,
_ => false
}
}
pure fn type_is_region_ptr(ty: t) -> bool {
match get(ty).struct {
ty_rptr(_, _) => true,
_ => false
}
}
pure fn type_is_slice(ty: t) -> bool {
match get(ty).struct {
ty_evec(_, vstore_slice(_)) | ty_estr(vstore_slice(_)) => true,
_ => return false
}
}
pure fn type_is_unique_box(ty: t) -> bool {
match get(ty).struct {
ty_uniq(_) => return true,
_ => return false
}
}
pure fn type_is_unsafe_ptr(ty: t) -> bool {
match get(ty).struct {
ty_ptr(_) => return true,
_ => return false
}
}
pure fn type_is_vec(ty: t) -> bool {
return match get(ty).struct {
ty_evec(_, _) | ty_unboxed_vec(_) => true,
ty_estr(_) => true,
_ => false
};
}
pure fn type_is_unique(ty: t) -> bool {
match get(ty).struct {
ty_uniq(_) => return true,
ty_evec(_, vstore_uniq) => true,
ty_estr(vstore_uniq) => true,
_ => return false
}
}
/*
A scalar type is one that denotes an atomic datum, with no sub-components.
(A ty_ptr is scalar because it represents a non-managed pointer, so its
contents are abstract to rustc.)
*/
pure fn type_is_scalar(ty: t) -> bool {
match get(ty).struct {
ty_nil | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_var_integral(_) | ty_type | ty_ptr(_) => true,
_ => false
}
}
fn type_is_immediate(ty: t) -> bool {
return type_is_scalar(ty) || type_is_boxed(ty) ||
type_is_unique(ty) || type_is_region_ptr(ty);
}
fn type_needs_drop(cx: ctxt, ty: t) -> bool {
match cx.needs_drop_cache.find(ty) {
some(result) => return result,
none => {/* fall through */ }
}
let mut accum = false;
let result = match get(ty).struct {
// scalar types
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_type | ty_ptr(_) | ty_rptr(_, _) |
ty_estr(vstore_fixed(_)) | ty_estr(vstore_slice(_)) |
ty_evec(_, vstore_slice(_)) => false,
ty_evec(mt, vstore_fixed(_)) => type_needs_drop(cx, mt.ty),
ty_unboxed_vec(mt) => type_needs_drop(cx, mt.ty),
ty_rec(flds) => {
for flds.each |f| {
if type_needs_drop(cx, f.mt.ty) { accum = true; }
}
accum
}
ty_class(did, substs) => {
// Any class with a dtor needs a drop
option::is_some(ty_dtor(cx, did)) || {
for vec::each(ty::class_items_as_fields(cx, did, substs)) |f| {
if type_needs_drop(cx, f.mt.ty) { accum = true; }
}
accum
}
}
ty_tup(elts) => {
for elts.each |m| { if type_needs_drop(cx, m) { accum = true; } }
accum
}
ty_enum(did, substs) => {
let variants = enum_variants(cx, did);
for vec::each(*variants) |variant| {
for variant.args.each |aty| {
// Perform any type parameter substitutions.
let arg_ty = subst(cx, substs, aty);
if type_needs_drop(cx, arg_ty) { accum = true; }
}
if accum { break; }
}
accum
}
ty_fn(fty) => {
match fty.proto {
proto_bare | proto_block => false,
_ => true
}
}
_ => true
};
cx.needs_drop_cache.insert(ty, result);
return result;
}
// Some things don't need cleanups during unwinding because the
// task can free them all at once later. Currently only things
// that only contain scalars and shared boxes can avoid unwind
// cleanups.
fn type_needs_unwind_cleanup(cx: ctxt, ty: t) -> bool {
match cx.needs_unwind_cleanup_cache.find(ty) {
some(result) => return result,
none => ()
}
let tycache = new_ty_hash();
let needs_unwind_cleanup =
type_needs_unwind_cleanup_(cx, ty, tycache, false);
cx.needs_unwind_cleanup_cache.insert(ty, needs_unwind_cleanup);
return needs_unwind_cleanup;
}
fn type_needs_unwind_cleanup_(cx: ctxt, ty: t,
tycache: map::hashmap<t, ()>,
encountered_box: bool) -> bool {
// Prevent infinite recursion
match tycache.find(ty) {
some(_) => return false,
none => { tycache.insert(ty, ()); }
}
let mut encountered_box = encountered_box;
let mut needs_unwind_cleanup = false;
do maybe_walk_ty(ty) |ty| {
let old_encountered_box = encountered_box;
let result = match get(ty).struct {
ty_box(_) | ty_opaque_box => {
encountered_box = true;
true
}
ty_nil | ty_bot | ty_bool |
ty_int(_) | ty_uint(_) | ty_float(_) |
ty_rec(_) | ty_tup(_) | ty_ptr(_) => {
true
}
ty_enum(did, substs) => {
for vec::each(*enum_variants(cx, did)) |v| {
for v.args.each |aty| {
let t = subst(cx, substs, aty);
needs_unwind_cleanup |=
type_needs_unwind_cleanup_(cx, t, tycache,
encountered_box);
}
}
!needs_unwind_cleanup
}
ty_uniq(_) |
ty_estr(vstore_uniq) |
ty_estr(vstore_box) |
ty_evec(_, vstore_uniq) |
ty_evec(_, vstore_box)
=> {
// Once we're inside a box, the annihilator will find
// it and destroy it.
if !encountered_box {
needs_unwind_cleanup = true;
false
} else {
true
}
}
_ => {
needs_unwind_cleanup = true;
false
}
};
encountered_box = old_encountered_box;
result
}
return needs_unwind_cleanup;
}
enum kind { kind_(u32) }
/// can be copied (implicitly or explicitly)
const KIND_MASK_COPY : u32 = 0b000000000000000000000000001_u32;
/// can be sent: no shared box, borrowed ptr (must imply OWNED)
const KIND_MASK_SEND : u32 = 0b000000000000000000000000010_u32;
/// is owned (no borrowed ptrs)
const KIND_MASK_OWNED : u32 = 0b000000000000000000000000100_u32;
/// is deeply immutable
const KIND_MASK_CONST : u32 = 0b000000000000000000000001000_u32;
/// can be implicitly copied (must imply COPY)
const KIND_MASK_IMPLICIT : u32 = 0b000000000000000000000010000_u32;
/// safe for default mode (subset of KIND_MASK_IMPLICIT)
const KIND_MASK_DEFAULT_MODE : u32 = 0b000000000000000000000100000_u32;
fn kind_noncopyable() -> kind {
kind_(0u32)
}
fn kind_copyable() -> kind {
kind_(KIND_MASK_COPY)
}
fn kind_implicitly_copyable() -> kind {
kind_(KIND_MASK_IMPLICIT | KIND_MASK_COPY)
}
fn kind_safe_for_default_mode() -> kind {
// similar to implicit copy, but always includes vectors and strings
kind_(KIND_MASK_DEFAULT_MODE | KIND_MASK_IMPLICIT | KIND_MASK_COPY)
}
fn kind_implicitly_sendable() -> kind {
kind_(KIND_MASK_IMPLICIT | KIND_MASK_COPY | KIND_MASK_SEND)
}
fn kind_safe_for_default_mode_send() -> kind {
// similar to implicit copy, but always includes vectors and strings
kind_(KIND_MASK_DEFAULT_MODE | KIND_MASK_IMPLICIT |
KIND_MASK_COPY | KIND_MASK_SEND)
}
fn kind_send_copy() -> kind {
kind_(KIND_MASK_COPY | KIND_MASK_SEND)
}
fn kind_send_only() -> kind {
kind_(KIND_MASK_SEND)
}
fn kind_const() -> kind {
kind_(KIND_MASK_CONST)
}
fn kind_owned() -> kind {
kind_(KIND_MASK_OWNED)
}
fn kind_top() -> kind {
kind_(0xffffffffu32)
}
fn remove_const(k: kind) -> kind {
k - kind_const()
}
fn remove_implicit(k: kind) -> kind {
k - kind_(KIND_MASK_IMPLICIT | KIND_MASK_DEFAULT_MODE)
}
fn remove_send(k: kind) -> kind {
k - kind_(KIND_MASK_SEND)
}
fn remove_owned_send(k: kind) -> kind {
k - kind_(KIND_MASK_OWNED) - kind_(KIND_MASK_SEND)
}
fn remove_copyable(k: kind) -> kind {
k - kind_(KIND_MASK_COPY)
}
impl operators for kind {
fn &(other: kind) -> kind {
lower_kind(self, other)
}
fn |(other: kind) -> kind {
raise_kind(self, other)
}
fn -(other: kind) -> kind {
kind_(*self & !*other)
}
}
impl operators of ops::bitand<kind,kind> for kind {
pure fn bitand(other: kind) -> kind {
unchecked {
lower_kind(self, other)
}
}
}
impl operators of ops::bitor<kind,kind> for kind {
pure fn bitor(other: kind) -> kind {
unchecked {
raise_kind(self, other)
}
}
}
impl operators of ops::sub<kind,kind> for kind {
pure fn sub(other: kind) -> kind {
unchecked {
kind_(*self & !*other)
}
}
}
// Using these query functions is preferable to direct comparison or matching
// against the kind constants, as we may modify the kind hierarchy in the
// future.
pure fn kind_can_be_implicitly_copied(k: kind) -> bool {
*k & KIND_MASK_IMPLICIT == KIND_MASK_IMPLICIT
}
pure fn kind_is_safe_for_default_mode(k: kind) -> bool {
*k & KIND_MASK_DEFAULT_MODE == KIND_MASK_DEFAULT_MODE
}
pure fn kind_can_be_copied(k: kind) -> bool {
*k & KIND_MASK_COPY == KIND_MASK_COPY
}
pure fn kind_can_be_sent(k: kind) -> bool {
*k & KIND_MASK_SEND == KIND_MASK_SEND
}
pure fn kind_is_owned(k: kind) -> bool {
*k & KIND_MASK_OWNED == KIND_MASK_OWNED
}
fn proto_kind(p: proto) -> kind {
match p {
ast::proto_block => kind_noncopyable(),
ast::proto_box => kind_safe_for_default_mode() | kind_owned(),
ast::proto_uniq => kind_send_copy() | kind_owned(),
ast::proto_bare => kind_safe_for_default_mode_send() | kind_const() |
kind_owned()
}
}
fn kind_lteq(a: kind, b: kind) -> bool {
*a & *b == *a
}
fn lower_kind(a: kind, b: kind) -> kind {
kind_(*a & *b)
}
fn raise_kind(a: kind, b: kind) -> kind {
kind_(*a | *b)
}
#[test]
fn test_kinds() {
// The kind "lattice" is defined by the subset operation on the
// set of permitted operations.
assert kind_lteq(kind_send_copy(), kind_send_copy());
assert kind_lteq(kind_copyable(), kind_send_copy());
assert kind_lteq(kind_copyable(), kind_copyable());
assert kind_lteq(kind_noncopyable(), kind_send_copy());
assert kind_lteq(kind_noncopyable(), kind_copyable());
assert kind_lteq(kind_noncopyable(), kind_noncopyable());
assert kind_lteq(kind_copyable(), kind_implicitly_copyable());
assert kind_lteq(kind_copyable(), kind_implicitly_sendable());
assert kind_lteq(kind_send_copy(), kind_implicitly_sendable());
assert !kind_lteq(kind_send_copy(), kind_implicitly_copyable());
assert !kind_lteq(kind_copyable(), kind_send_only());
}
// Return the most permissive kind that a composite object containing a field
// with the given mutability can have.
// This is used to prevent objects containing mutable state from being
// implicitly copied and to compute whether things have const kind.
fn mutability_kind(m: mutability) -> kind {
match (m) {
m_mutbl => remove_const(remove_implicit(kind_top())),
m_const => remove_implicit(kind_top()),
m_imm => kind_top()
}
}
fn mutable_type_kind(cx: ctxt, ty: mt) -> kind {
lower_kind(mutability_kind(ty.mutbl), type_kind(cx, ty.ty))
}
fn type_kind(cx: ctxt, ty: t) -> kind {
match cx.kind_cache.find(ty) {
some(result) => return result,
none => {/* fall through */ }
}
// Insert a default in case we loop back on self recursively.
cx.kind_cache.insert(ty, kind_top());
let mut result = match get(ty).struct {
// Scalar and unique types are sendable, constant, and owned
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_ptr(_) => {
kind_safe_for_default_mode_send() | kind_const() | kind_owned()
}
// Implicit copyability of strs is configurable
ty_estr(vstore_uniq) => {
if cx.vecs_implicitly_copyable {
kind_implicitly_sendable() | kind_const() | kind_owned()
} else {
kind_send_copy() | kind_const() | kind_owned()
}
}
// functions depend on the protocol
ty_fn(f) => proto_kind(f.proto),
// Those with refcounts raise noncopyable to copyable,
// lower sendable to copyable. Therefore just set result to copyable.
ty_box(tm) => {
remove_send(mutable_type_kind(cx, tm) | kind_safe_for_default_mode())
}
// Trait instances are (for now) like shared boxes, basically
ty_trait(_, _) => kind_safe_for_default_mode() | kind_owned(),
// Region pointers are copyable but NOT owned nor sendable
ty_rptr(_, _) => kind_safe_for_default_mode(),
// Unique boxes and vecs have the kind of their contained type,
// but unique boxes can't be implicitly copyable.
ty_uniq(tm) => remove_implicit(mutable_type_kind(cx, tm)),
// Implicit copyability of vecs is configurable
ty_evec(tm, vstore_uniq) => {
if cx.vecs_implicitly_copyable {
mutable_type_kind(cx, tm)
} else {
remove_implicit(mutable_type_kind(cx, tm))
}
}
// Slices, refcounted evecs are copyable; uniques depend on the their
// contained type, but aren't implicitly copyable. Fixed vectors have
// the kind of the element they contain, taking mutability into account.
ty_evec(tm, vstore_box) => {
remove_send(kind_safe_for_default_mode() | mutable_type_kind(cx, tm))
}
ty_evec(tm, vstore_slice(_)) => {
remove_owned_send(kind_safe_for_default_mode() |
mutable_type_kind(cx, tm))
}
ty_evec(tm, vstore_fixed(_)) => {
mutable_type_kind(cx, tm)
}
// All estrs are copyable; uniques and interiors are sendable.
ty_estr(vstore_box) => {
kind_safe_for_default_mode() | kind_const() | kind_owned()
}
ty_estr(vstore_slice(_)) => {
kind_safe_for_default_mode() | kind_const()
}
ty_estr(vstore_fixed(_)) => {
kind_safe_for_default_mode_send() | kind_const() | kind_owned()
}
// Records lower to the lowest of their members.
ty_rec(flds) => {
let mut lowest = kind_top();
for flds.each |f| {
lowest = lower_kind(lowest, mutable_type_kind(cx, f.mt));
}
lowest
}
ty_class(did, substs) => {
// Classes are sendable if all their fields are sendable,
// likewise for copyable...
// also factor out this code, copied from the records case
let mut lowest = kind_top();
let flds = class_items_as_fields(cx, did, substs);
for flds.each |f| {
lowest = lower_kind(lowest, mutable_type_kind(cx, f.mt));
}
// ...but classes with dtors are never copyable (they can be
// sendable)
if ty::has_dtor(cx, did) {
lowest = remove_copyable(lowest);
}
lowest
}
// Tuples lower to the lowest of their members.
ty_tup(tys) => {
let mut lowest = kind_top();
for tys.each |ty| { lowest = lower_kind(lowest, type_kind(cx, ty)); }
lowest
}
// Enums lower to the lowest of their variants.
ty_enum(did, substs) => {
let mut lowest = kind_top();
let variants = enum_variants(cx, did);
if vec::len(*variants) == 0u {
lowest = kind_send_only() | kind_owned();
} else {
for vec::each(*variants) |variant| {
for variant.args.each |aty| {
// Perform any type parameter substitutions.
let arg_ty = subst(cx, substs, aty);
lowest = lower_kind(lowest, type_kind(cx, arg_ty));
if lowest == kind_noncopyable() { break; }
}
}
}
lowest
}
ty_param(p) => {
param_bounds_to_kind(cx.ty_param_bounds.get(p.def_id.node))
}
// self is a special type parameter that can only appear in traits; it
// is never bounded in any way, hence it has the bottom kind.
ty_self => kind_noncopyable(),
ty_var(_) | ty_var_integral(_) => {
cx.sess.bug(~"Asked to compute kind of a type variable");
}
ty_type | ty_opaque_closure_ptr(_)
| ty_opaque_box | ty_unboxed_vec(_) => {
cx.sess.bug(~"Asked to compute kind of fictitious type");
}
};
// arbitrary threshold to prevent by-value copying of big records
if kind_is_safe_for_default_mode(result) {
if type_size(cx, ty) > 4 {
result -= kind_(KIND_MASK_DEFAULT_MODE);
}
}
cx.kind_cache.insert(ty, result);
return result;
}
/// gives a rough estimate of how much space it takes to represent
/// an instance of `ty`. Used for the mode transition.
fn type_size(cx: ctxt, ty: t) -> uint {
match get(ty).struct {
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_ptr(_) | ty_box(_) | ty_uniq(_) | ty_estr(vstore_uniq) |
ty_trait(*) | ty_rptr(*) | ty_evec(_, vstore_uniq) |
ty_evec(_, vstore_box) | ty_estr(vstore_box) => {
1
}
ty_evec(_, vstore_slice(_)) |
ty_estr(vstore_slice(_)) |
ty_fn(_) => {
2
}
ty_evec(t, vstore_fixed(n)) => {
type_size(cx, t.ty) * n
}
ty_estr(vstore_fixed(n)) => {
n
}
ty_rec(flds) => {
flds.foldl(0, |s, f| s + type_size(cx, f.mt.ty))
}
ty_class(did, substs) => {
let flds = class_items_as_fields(cx, did, substs);
flds.foldl(0, |s, f| s + type_size(cx, f.mt.ty))
}
ty_tup(tys) => {
tys.foldl(0, |s, t| s + type_size(cx, t))
}
ty_enum(did, substs) => {
let variants = substd_enum_variants(cx, did, substs);
variants.foldl( // find max size of any variant
0,
|m, v| uint::max(m,
// find size of this variant:
v.args.foldl(0, |s, a| s + type_size(cx, a))))
}
ty_param(_) | ty_self => {
1
}
ty_var(_) | ty_var_integral(_) => {
cx.sess.bug(~"Asked to compute kind of a type variable");
}
ty_type | ty_opaque_closure_ptr(_)
| ty_opaque_box | ty_unboxed_vec(_) => {
cx.sess.bug(~"Asked to compute kind of fictitious type");
}
}
}
// True if instantiating an instance of `r_ty` requires an instance of `r_ty`.
fn is_instantiable(cx: ctxt, r_ty: t) -> bool {
fn type_requires(cx: ctxt, seen: @mut ~[def_id],
r_ty: t, ty: t) -> bool {
debug!{"type_requires(%s, %s)?",
ty_to_str(cx, r_ty),
ty_to_str(cx, ty)};
let r = {
get(r_ty).struct == get(ty).struct ||
subtypes_require(cx, seen, r_ty, ty)
};
debug!{"type_requires(%s, %s)? %b",
ty_to_str(cx, r_ty),
ty_to_str(cx, ty),
r};
return r;
}
fn subtypes_require(cx: ctxt, seen: @mut ~[def_id],
r_ty: t, ty: t) -> bool {
debug!{"subtypes_require(%s, %s)?",
ty_to_str(cx, r_ty),
ty_to_str(cx, ty)};
let r = match get(ty).struct {
ty_nil |
ty_bot |
ty_bool |
ty_int(_) |
ty_uint(_) |
ty_float(_) |
ty_estr(_) |
ty_fn(_) |
ty_var(_) |
ty_var_integral(_) |
ty_param(_) |
ty_self |
ty_type |
ty_opaque_box |
ty_opaque_closure_ptr(_) |
ty_evec(_, _) |
ty_unboxed_vec(_) => {
false
}
ty_box(mt) |
ty_uniq(mt) |
ty_rptr(_, mt) => {
return type_requires(cx, seen, r_ty, mt.ty);
}
ty_ptr(mt) => {
false // unsafe ptrs can always be NULL
}
ty_rec(fields) => {
do vec::any(fields) |field| {
type_requires(cx, seen, r_ty, field.mt.ty)
}
}
ty_trait(_, _) => {
false
}
ty_class(did, _) if vec::contains(*seen, did) => {
false
}
ty_class(did, substs) => {
vec::push(*seen, did);
let r = vec::any(class_items_as_fields(cx, did, substs),
|f| type_requires(cx, seen, r_ty, f.mt.ty));
vec::pop(*seen);
r
}
ty_tup(ts) => {
vec::any(ts, |t| type_requires(cx, seen, r_ty, t))
}
ty_enum(did, _) if vec::contains(*seen, did) => {
false
}
ty_enum(did, substs) => {
vec::push(*seen, did);
let vs = enum_variants(cx, did);
let r = vec::len(*vs) > 0u && vec::all(*vs, |variant| {
vec::any(variant.args, |aty| {
let sty = subst(cx, substs, aty);
type_requires(cx, seen, r_ty, sty)
})
});
vec::pop(*seen);
r
}
};
debug!{"subtypes_require(%s, %s)? %b",
ty_to_str(cx, r_ty),
ty_to_str(cx, ty),
r};
return r;
}
let seen = @mut ~[];
!subtypes_require(cx, seen, r_ty, r_ty)
}
fn type_structurally_contains(cx: ctxt, ty: t, test: fn(sty) -> bool) ->
bool {
let sty = get(ty).struct;
debug!{"type_structurally_contains: %s", ty_to_str(cx, ty)};
if test(sty) { return true; }
match sty {
ty_enum(did, substs) => {
for vec::each(*enum_variants(cx, did)) |variant| {
for variant.args.each |aty| {
let sty = subst(cx, substs, aty);
if type_structurally_contains(cx, sty, test) { return true; }
}
}
return false;
}
ty_rec(fields) => {
for fields.each |field| {
if type_structurally_contains(cx, field.mt.ty, test) {
return true;
}
}
return false;
}
ty_class(did, substs) => {
for lookup_class_fields(cx, did).each |field| {
let ft = lookup_field_type(cx, did, field.id, substs);
if type_structurally_contains(cx, ft, test) { return true; }
}
return false;
}
ty_tup(ts) => {
for ts.each |tt| {
if type_structurally_contains(cx, tt, test) { return true; }
}
return false;
}
ty_evec(mt, vstore_fixed(_)) => {
return type_structurally_contains(cx, mt.ty, test);
}
_ => return false
}
}
fn type_structurally_contains_uniques(cx: ctxt, ty: t) -> bool {
return type_structurally_contains(cx, ty, |sty| {
match sty {
ty_uniq(_) |
ty_evec(_, vstore_uniq) |
ty_estr(vstore_uniq) => true,
_ => false,
}
});
}
fn type_is_integral(ty: t) -> bool {
match get(ty).struct {
ty_var_integral(_) | ty_int(_) | ty_uint(_) | ty_bool => true,
_ => false
}
}
fn type_is_fp(ty: t) -> bool {
match get(ty).struct {
ty_float(_) => true,
_ => false
}
}
fn type_is_numeric(ty: t) -> bool {
return type_is_integral(ty) || type_is_fp(ty);
}
fn type_is_signed(ty: t) -> bool {
match get(ty).struct {
ty_int(_) => true,
_ => false
}
}
// Whether a type is Plain Old Data -- meaning it does not contain pointers
// that the cycle collector might care about.
fn type_is_pod(cx: ctxt, ty: t) -> bool {
let mut result = true;
match get(ty).struct {
// Scalar types
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_type | ty_ptr(_) => result = true,
// Boxed types
ty_box(_) | ty_uniq(_) | ty_fn(_) |
ty_estr(vstore_uniq) | ty_estr(vstore_box) |
ty_evec(_, vstore_uniq) | ty_evec(_, vstore_box) |
ty_trait(_, _) | ty_rptr(_,_) | ty_opaque_box => result = false,
// Structural types
ty_enum(did, substs) => {
let variants = enum_variants(cx, did);
for vec::each(*variants) |variant| {
let tup_ty = mk_tup(cx, variant.args);
// Perform any type parameter substitutions.
let tup_ty = subst(cx, substs, tup_ty);
if !type_is_pod(cx, tup_ty) { result = false; }
}
}
ty_rec(flds) => {
for flds.each |f| {
if !type_is_pod(cx, f.mt.ty) { result = false; }
}
}
ty_tup(elts) => {
for elts.each |elt| { if !type_is_pod(cx, elt) { result = false; } }
}
ty_estr(vstore_fixed(_)) => result = true,
ty_evec(mt, vstore_fixed(_)) | ty_unboxed_vec(mt) => {
result = type_is_pod(cx, mt.ty);
}
ty_param(_) => result = false,
ty_opaque_closure_ptr(_) => result = true,
ty_class(did, substs) => {
result = vec::any(lookup_class_fields(cx, did), |f| {
let fty = ty::lookup_item_type(cx, f.id);
let sty = subst(cx, substs, fty.ty);
type_is_pod(cx, sty)
});
}
ty_estr(vstore_slice(*)) | ty_evec(_, vstore_slice(*)) => {
result = false;
}
ty_var(*) | ty_var_integral(*) | ty_self(*) => {
cx.sess.bug(~"non concrete type in type_is_pod");
}
}
return result;
}
fn type_is_enum(ty: t) -> bool {
match get(ty).struct {
ty_enum(_, _) => return true,
_ => return false
}
}
// Whether a type is enum like, that is a enum type with only nullary
// constructors
fn type_is_c_like_enum(cx: ctxt, ty: t) -> bool {
match get(ty).struct {
ty_enum(did, substs) => {
let variants = enum_variants(cx, did);
let some_n_ary = vec::any(*variants, |v| vec::len(v.args) > 0u);
return !some_n_ary;
}
_ => return false
}
}
fn type_param(ty: t) -> option<uint> {
match get(ty).struct {
ty_param(p) => return some(p.idx),
_ => {/* fall through */ }
}
return none;
}
// Returns the type and mutability of *t.
//
// The parameter `expl` indicates if this is an *explicit* dereference. Some
// types---notably unsafe ptrs---can only be dereferenced explicitly.
fn deref(cx: ctxt, t: t, expl: bool) -> option<mt> {
deref_sty(cx, get(t).struct, expl)
}
fn deref_sty(cx: ctxt, sty: sty, expl: bool) -> option<mt> {
match sty {
ty_rptr(_, mt) | ty_box(mt) | ty_uniq(mt) => {
some(mt)
}
ty_ptr(mt) if expl => {
some(mt)
}
ty_enum(did, substs) => {
let variants = enum_variants(cx, did);
if vec::len(*variants) == 1u && vec::len(variants[0].args) == 1u {
let v_t = subst(cx, substs, variants[0].args[0]);
some({ty: v_t, mutbl: ast::m_imm})
} else {
none
}
}
_ => none
}
}
fn type_autoderef(cx: ctxt, t: t) -> t {
let mut t = t;
loop {
match deref(cx, t, false) {
none => return t,
some(mt) => t = mt.ty
}
}
}
// Returns the type and mutability of t[i]
fn index(cx: ctxt, t: t) -> option<mt> {
index_sty(cx, get(t).struct)
}
fn index_sty(cx: ctxt, sty: sty) -> option<mt> {
match sty {
ty_evec(mt, _) => some(mt),
ty_estr(_) => some({ty: mk_u8(cx), mutbl: ast::m_imm}),
_ => none
}
}
pure fn hash_bound_region(br: &bound_region) -> uint {
match *br { // no idea if this is any good
ty::br_self => 0u,
ty::br_anon => 1u,
ty::br_named(str) => str::hash(str),
ty::br_cap_avoid(id, br) => id as uint | hash_bound_region(br)
}
}
fn br_hashmap<V:copy>() -> hashmap<bound_region, V> {
map::hashmap(hash_bound_region, sys::shape_eq)
}
// Type hashing.
pure fn hash_type_structure(st: sty) -> uint {
pure fn hash_uint(id: uint, n: uint) -> uint { (id << 2u) + n }
pure fn hash_def(id: uint, did: ast::def_id) -> uint {
let h = (id << 2u) + (did.crate as uint);
(h << 2u) + (did.node as uint)
}
pure fn hash_subty(id: uint, subty: t) -> uint {
(id << 2u) + type_id(subty)
}
pure fn hash_subtys(id: uint, subtys: ~[t]) -> uint {
let mut h = id;
for vec::each(subtys) |s| { h = (h << 2u) + type_id(s) }
h
}
pure fn hash_region(r: &region) -> uint {
match *r { // no idea if this is any good
re_bound(br) => (hash_bound_region(&br)) << 2u | 0u,
re_free(id, br) => ((id as uint) << 4u) |
(hash_bound_region(&br)) << 2u | 1u,
re_scope(id) => ((id as uint) << 2u) | 2u,
re_var(id) => (id.to_uint() << 2u) | 3u,
re_bot => 4u
}
}
pure fn hash_substs(h: uint, substs: substs) -> uint {
let h = hash_subtys(h, substs.tps);
h + substs.self_r.map_default(0u, |r| hash_region(&r))
}
match st {
ty_nil => 0u,
ty_bool => 1u,
ty_int(t) => match t {
ast::ty_i => 2u,
ast::ty_char => 3u,
ast::ty_i8 => 4u,
ast::ty_i16 => 5u,
ast::ty_i32 => 6u,
ast::ty_i64 => 7u
},
ty_uint(t) => match t {
ast::ty_u => 8u,
ast::ty_u8 => 9u,
ast::ty_u16 => 10u,
ast::ty_u32 => 11u,
ast::ty_u64 => 12u
},
ty_float(t) => match t {
ast::ty_f => 13u,
ast::ty_f32 => 14u,
ast::ty_f64 => 15u
},
ty_estr(_) => 16u,
ty_enum(did, substs) => {
let mut h = hash_def(18u, did);
hash_substs(h, substs)
}
ty_box(mt) => hash_subty(19u, mt.ty),
ty_evec(mt, _) => hash_subty(20u, mt.ty),
ty_unboxed_vec(mt) => hash_subty(22u, mt.ty),
ty_tup(ts) => hash_subtys(25u, ts),
ty_rec(fields) => {
let mut h = 26u;
for vec::each(fields) |f| { h = hash_subty(h, f.mt.ty); }
h
}
ty_fn(f) => {
let mut h = 27u;
for vec::each(f.inputs) |a| { h = hash_subty(h, a.ty); }
hash_subty(h, f.output)
}
ty_self => 28u,
ty_var(v) => hash_uint(29u, v.to_uint()),
ty_var_integral(v) => hash_uint(30u, v.to_uint()),
ty_param(p) => hash_def(hash_uint(31u, p.idx), p.def_id),
ty_type => 32u,
ty_bot => 34u,
ty_ptr(mt) => hash_subty(35u, mt.ty),
ty_uniq(mt) => hash_subty(37u, mt.ty),
ty_trait(did, substs) => {
let mut h = hash_def(40u, did);
hash_substs(h, substs)
}
ty_opaque_closure_ptr(ck_block) => 41u,
ty_opaque_closure_ptr(ck_box) => 42u,
ty_opaque_closure_ptr(ck_uniq) => 43u,
ty_opaque_box => 44u,
ty_class(did, substs) => {
let mut h = hash_def(45u, did);
hash_substs(h, substs)
}
ty_rptr(region, mt) => {
let mut h = (46u << 2u) + hash_region(&region);
hash_subty(h, mt.ty)
}
}
}
fn node_id_to_type(cx: ctxt, id: ast::node_id) -> t {
match smallintmap::find(*cx.node_types, id as uint) {
some(t) => t,
none => cx.sess.bug(fmt!{"node_id_to_type: unbound node ID %s",
ast_map::node_id_to_str(cx.items, id)})
}
}
fn node_id_to_type_params(cx: ctxt, id: ast::node_id) -> ~[t] {
match cx.node_type_substs.find(id) {
none => return ~[],
some(ts) => return ts
}
}
fn node_id_has_type_params(cx: ctxt, id: ast::node_id) -> bool {
return cx.node_type_substs.contains_key(id);
}
// Type accessors for substructures of types
fn ty_fn_args(fty: t) -> ~[arg] {
match get(fty).struct {
ty_fn(f) => f.inputs,
_ => fail ~"ty_fn_args() called on non-fn type"
}
}
fn ty_fn_proto(fty: t) -> ast::proto {
match get(fty).struct {
ty_fn(f) => f.proto,
_ => fail ~"ty_fn_proto() called on non-fn type"
}
}
pure fn ty_fn_ret(fty: t) -> t {
match get(fty).struct {
ty_fn(f) => f.output,
_ => fail ~"ty_fn_ret() called on non-fn type"
}
}
fn ty_fn_ret_style(fty: t) -> ast::ret_style {
match get(fty).struct {
ty_fn(f) => f.ret_style,
_ => fail ~"ty_fn_ret_style() called on non-fn type"
}
}
fn is_fn_ty(fty: t) -> bool {
match get(fty).struct {
ty_fn(_) => true,
_ => false
}
}
fn ty_region(ty: t) -> region {
match get(ty).struct {
ty_rptr(r, _) => r,
s => fail fmt!{"ty_region() invoked on non-rptr: %?", s}
}
}
// Returns a vec of all the input and output types of fty.
fn tys_in_fn_ty(fty: fn_ty) -> ~[t] {
vec::append_one(fty.inputs.map(|a| a.ty), fty.output)
}
// Just checks whether it's a fn that returns bool,
// not its purity.
fn is_pred_ty(fty: t) -> bool {
is_fn_ty(fty) && type_is_bool(ty_fn_ret(fty))
}
fn ty_var_id(typ: t) -> tv_vid {
match get(typ).struct {
ty_var(vid) => return vid,
_ => { error!{"ty_var_id called on non-var ty"}; fail; }
}
}
fn ty_var_integral_id(typ: t) -> tvi_vid {
match get(typ).struct {
ty_var_integral(vid) => return vid,
_ => { error!{"ty_var_integral_id called on ty other than \
ty_var_integral"};
fail; }
}
}
// Type accessors for AST nodes
fn block_ty(cx: ctxt, b: ast::blk) -> t {
return node_id_to_type(cx, b.node.id);
}
// Returns the type of a pattern as a monotype. Like @expr_ty, this function
// doesn't provide type parameter substitutions.
fn pat_ty(cx: ctxt, pat: @ast::pat) -> t {
return node_id_to_type(cx, pat.id);
}
// Returns the type of an expression as a monotype.
//
// NB: This type doesn't provide type parameter substitutions; e.g. if you
// ask for the type of "id" in "id(3)", it will return "fn(&int) -> int"
// instead of "fn(t) -> T with T = int". If this isn't what you want, see
// expr_ty_params_and_ty() below.
fn expr_ty(cx: ctxt, expr: @ast::expr) -> t {
return node_id_to_type(cx, expr.id);
}
fn expr_ty_params_and_ty(cx: ctxt,
expr: @ast::expr) -> {params: ~[t], ty: t} {
return {params: node_id_to_type_params(cx, expr.id),
ty: node_id_to_type(cx, expr.id)};
}
fn expr_has_ty_params(cx: ctxt, expr: @ast::expr) -> bool {
return node_id_has_type_params(cx, expr.id);
}
fn expr_is_lval(method_map: typeck::method_map, e: @ast::expr) -> bool {
match e.node {
ast::expr_path(_) | ast::expr_unary(ast::deref, _) => true,
ast::expr_field(_, _, _) | ast::expr_index(_, _) => {
!method_map.contains_key(e.id)
}
_ => false
}
}
fn stmt_node_id(s: @ast::stmt) -> ast::node_id {
match s.node {
ast::stmt_decl(_, id) | stmt_expr(_, id) | stmt_semi(_, id) => {
return id;
}
}
}
fn field_idx(id: ast::ident, fields: ~[field]) -> option<uint> {
let mut i = 0u;
for fields.each |f| { if f.ident == id { return some(i); } i += 1u; }
return none;
}
fn get_field(rec_ty: t, id: ast::ident) -> field {
match check vec::find(get_fields(rec_ty), |f| str::eq(f.ident, id)) {
some(f) => f
}
}
fn get_fields(rec_ty:t) -> ~[field] {
match check get(rec_ty).struct {
ty_rec(fields) => fields
}
}
fn method_idx(id: ast::ident, meths: ~[method]) -> option<uint> {
let mut i = 0u;
for meths.each |m| { if m.ident == id { return some(i); } i += 1u; }
return none;
}
/// Returns a vector containing the indices of all type parameters that appear
/// in `ty`. The vector may contain duplicates. Probably should be converted
/// to a bitset or some other representation.
fn param_tys_in_type(ty: t) -> ~[param_ty] {
let mut rslt = ~[];
do walk_ty(ty) |ty| {
match get(ty).struct {
ty_param(p) => {
vec::push(rslt, p);
}
_ => ()
}
}
rslt
}
fn occurs_check(tcx: ctxt, sp: span, vid: tv_vid, rt: t) {
// Returns a vec of all the type variables occurring in `ty`. It may
// contain duplicates. (Integral type vars aren't counted.)
fn vars_in_type(ty: t) -> ~[tv_vid] {
let mut rslt = ~[];
do walk_ty(ty) |ty| {
match get(ty).struct {
ty_var(v) => vec::push(rslt, v),
_ => ()
}
}
rslt
}
// Fast path
if !type_needs_infer(rt) { return; }
// Occurs check!
if vec::contains(vars_in_type(rt), vid) {
// Maybe this should be span_err -- however, there's an
// assertion later on that the type doesn't contain
// variables, so in this case we have to be sure to die.
tcx.sess.span_fatal
(sp, ~"type inference failed because I \
could not find a type\n that's both of the form "
+ ty_to_str(tcx, mk_var(tcx, vid)) +
~" and of the form " + ty_to_str(tcx, rt) +
~" - such a type would have to be infinitely large.");
}
}
// Maintains a little union-set tree for inferred modes. `canon()` returns
// the current head value for `m0`.
fn canon<T:copy>(tbl: hashmap<ast::node_id, ast::inferable<T>>,
m0: ast::inferable<T>) -> ast::inferable<T> {
match m0 {
ast::infer(id) => match tbl.find(id) {
none => m0,
some(m1) => {
let cm1 = canon(tbl, m1);
// path compression:
if cm1 != m1 { tbl.insert(id, cm1); }
cm1
}
},
_ => m0
}
}
// Maintains a little union-set tree for inferred modes. `resolve_mode()`
// returns the current head value for `m0`.
fn canon_mode(cx: ctxt, m0: ast::mode) -> ast::mode {
canon(cx.inferred_modes, m0)
}
// Returns the head value for mode, failing if `m` was a infer(_) that
// was never inferred. This should be safe for use after typeck.
fn resolved_mode(cx: ctxt, m: ast::mode) -> ast::rmode {
match canon_mode(cx, m) {
ast::infer(_) => {
cx.sess.bug(fmt!{"mode %? was never resolved", m});
}
ast::expl(m0) => m0
}
}
fn arg_mode(cx: ctxt, a: arg) -> ast::rmode { resolved_mode(cx, a.mode) }
// Unifies `m1` and `m2`. Returns unified value or failure code.
fn unify_mode(cx: ctxt, m1: ast::mode, m2: ast::mode)
-> result<ast::mode, type_err> {
match (canon_mode(cx, m1), canon_mode(cx, m2)) {
(m1, m2) if (m1 == m2) => {
result::ok(m1)
}
(ast::infer(id1), ast::infer(id2)) => {
cx.inferred_modes.insert(id2, m1);
result::ok(m1)
}
(ast::infer(id), m) | (m, ast::infer(id)) => {
cx.inferred_modes.insert(id, m);
result::ok(m1)
}
(m1, m2) => {
result::err(terr_mode_mismatch(m1, m2))
}
}
}
// If `m` was never unified, unifies it with `m_def`. Returns the final value
// for `m`.
fn set_default_mode(cx: ctxt, m: ast::mode, m_def: ast::rmode) {
match canon_mode(cx, m) {
ast::infer(id) => {
cx.inferred_modes.insert(id, ast::expl(m_def));
}
ast::expl(_) => ()
}
}
fn ty_sort_str(cx: ctxt, t: t) -> ~str {
match get(t).struct {
ty_nil | ty_bot | ty_bool | ty_int(_) |
ty_uint(_) | ty_float(_) | ty_estr(_) |
ty_type | ty_opaque_box | ty_opaque_closure_ptr(_) => {
ty_to_str(cx, t)
}
ty_enum(id, _) => fmt!{"enum %s", item_path_str(cx, id)},
ty_box(_) => ~"@-ptr",
ty_uniq(_) => ~"~-ptr",
ty_evec(_, _) => ~"vector",
ty_unboxed_vec(_) => ~"unboxed vector",
ty_ptr(_) => ~"*-ptr",
ty_rptr(_, _) => ~"&-ptr",
ty_rec(_) => ~"record",
ty_fn(_) => ~"fn",
ty_trait(id, _) => fmt!{"trait %s", item_path_str(cx, id)},
ty_class(id, _) => fmt!{"class %s", item_path_str(cx, id)},
ty_tup(_) => ~"tuple",
ty_var(_) => ~"variable",
ty_var_integral(_) => ~"integral variable",
ty_param(_) => ~"type parameter",
ty_self => ~"self"
}
}
fn type_err_to_str(cx: ctxt, err: type_err) -> ~str {
fn terr_vstore_kind_to_str(k: terr_vstore_kind) -> ~str {
match k { terr_vec => ~"[]", terr_str => ~"str" }
}
match err {
terr_mismatch => return ~"types differ",
terr_ret_style_mismatch(expect, actual) => {
fn to_str(s: ast::ret_style) -> ~str {
match s {
ast::noreturn => ~"non-returning",
ast::return_val => ~"return-by-value"
}
}
return to_str(actual) + ~" function found where " + to_str(expect) +
~" function was expected";
}
terr_purity_mismatch(f1, f2) => {
return fmt!{"expected %s fn but found %s fn",
purity_to_str(f1), purity_to_str(f2)};
}
terr_proto_mismatch(e, a) => {
return fmt!{"closure protocol mismatch (%s vs %s)",
proto_to_str(e), proto_to_str(a)};
}
terr_mutability => return ~"values differ in mutability",
terr_box_mutability => return ~"boxed values differ in mutability",
terr_vec_mutability => return ~"vectors differ in mutability",
terr_ptr_mutability => return ~"pointers differ in mutability",
terr_ref_mutability => return ~"references differ in mutability",
terr_ty_param_size(e_sz, a_sz) => {
return ~"expected a type with " + uint::to_str(e_sz, 10u) +
~" type params but found one with " + uint::to_str(a_sz, 10u) +
~" type params";
}
terr_tuple_size(e_sz, a_sz) => {
return ~"expected a tuple with " + uint::to_str(e_sz, 10u) +
~" elements but found one with " + uint::to_str(a_sz, 10u) +
~" elements";
}
terr_record_size(e_sz, a_sz) => {
return ~"expected a record with " + uint::to_str(e_sz, 10u) +
~" fields but found one with " + uint::to_str(a_sz, 10u) +
~" fields";
}
terr_record_mutability => {
return ~"record elements differ in mutability";
}
terr_record_fields(e_fld, a_fld) => {
return ~"expected a record with field `" + *e_fld +
~"` but found one with field `" + *a_fld + ~"`";
}
terr_arg_count => return ~"incorrect number of function parameters",
terr_mode_mismatch(e_mode, a_mode) => {
return ~"expected argument mode " + mode_to_str(e_mode) +
~" but found " + mode_to_str(a_mode);
}
terr_regions_differ(subregion, superregion) => {
return fmt!{"%s does not necessarily outlive %s",
explain_region(cx, subregion),
explain_region(cx, superregion)};
}
terr_vstores_differ(k, e_vs, a_vs) => {
return fmt!{"%s storage differs: expected %s but found %s",
terr_vstore_kind_to_str(k),
vstore_to_str(cx, e_vs),
vstore_to_str(cx, a_vs)};
}
terr_in_field(err, fname) => {
return fmt!{"in field `%s`, %s", *fname, type_err_to_str(cx, *err)};
}
terr_sorts(exp, act) => {
return fmt!{"%s vs %s", ty_sort_str(cx, exp), ty_sort_str(cx, act)};
}
terr_self_substs => {
return ~"inconsistent self substitution"; // XXX this is more of a bug
}
terr_no_integral_type => {
return ~"couldn't determine an appropriate integral type for integer \
literal";
}
}
}
fn def_has_ty_params(def: ast::def) -> bool {
match def {
ast::def_fn(_, _) | ast::def_variant(_, _) | ast::def_class(_, _)
=> true,
_ => false
}
}
fn store_trait_methods(cx: ctxt, id: ast::node_id, ms: @~[method]) {
cx.trait_method_cache.insert(ast_util::local_def(id), ms);
}
fn trait_methods(cx: ctxt, id: ast::def_id) -> @~[method] {
match cx.trait_method_cache.find(id) {
// Local traits are supposed to have been added explicitly.
some(ms) => ms,
_ => {
// If the lookup in trait_method_cache fails, assume that the trait
// method we're trying to look up is in a different crate, and look
// for it there.
assert id.crate != ast::local_crate;
let result = csearch::get_trait_methods(cx, id);
// Store the trait method in the local trait_method_cache so that
// future lookups succeed.
cx.trait_method_cache.insert(id, result);
result
}
}
}
fn impl_traits(cx: ctxt, id: ast::def_id) -> ~[t] {
if id.crate == ast::local_crate {
debug!{"(impl_traits) searching for trait impl %?", id};
match cx.items.find(id.node) {
some(ast_map::node_item(@{
node: ast::item_impl(_, trait_refs, _, _),
_},
_)) => {
do vec::map(trait_refs) |trait_ref| {
node_id_to_type(cx, trait_ref.ref_id)
}
}
some(ast_map::node_item(@{node: ast::item_class(*),
_},_)) => {
match cx.def_map.find(id.node) {
some(def_ty(trait_id)) => {
// XXX: Doesn't work cross-crate.
debug!{"(impl_traits) found trait id %?", trait_id};
~[node_id_to_type(cx, trait_id.node)]
}
some(x) => {
cx.sess.bug(fmt!{"impl_traits: trait ref is in trait map \
but is bound to %?", x});
}
none => {
~[]
}
}
}
_ => ~[]
}
} else {
csearch::get_impl_traits(cx, id)
}
}
fn ty_to_def_id(ty: t) -> option<ast::def_id> {
match get(ty).struct {
ty_trait(id, _) | ty_class(id, _) | ty_enum(id, _) => some(id),
_ => none
}
}
// Enum information
type variant_info = @{args: ~[t], ctor_ty: t, name: ast::ident,
id: ast::def_id, disr_val: int};
fn substd_enum_variants(cx: ctxt,
id: ast::def_id,
substs: substs) -> ~[variant_info] {
do vec::map(*enum_variants(cx, id)) |variant_info| {
let substd_args = vec::map(variant_info.args,
|aty| subst(cx, substs, aty));
let substd_ctor_ty = subst(cx, substs, variant_info.ctor_ty);
@{args: substd_args, ctor_ty: substd_ctor_ty with *variant_info}
}
}
fn item_path_str(cx: ctxt, id: ast::def_id) -> ~str {
ast_map::path_to_str(item_path(cx, id))
}
/* If class_id names a class with a dtor, return some(the dtor's id).
Otherwise return none. */
fn ty_dtor(cx: ctxt, class_id: def_id) -> option<def_id> {
if is_local(class_id) {
match cx.items.find(class_id.node) {
some(ast_map::node_item(@{
node: ast::item_class({ dtor: some(dtor), _ }, _),
_
}, _)) =>
some(local_def(dtor.node.id)),
_ =>
none
}
}
else {
csearch::class_dtor(cx.sess.cstore, class_id)
}
}
fn has_dtor(cx: ctxt, class_id: def_id) -> bool {
option::is_some(ty_dtor(cx, class_id))
}
fn item_path(cx: ctxt, id: ast::def_id) -> ast_map::path {
if id.crate != ast::local_crate {
csearch::get_item_path(cx, id)
} else {
let node = cx.items.get(id.node);
match node {
ast_map::node_item(item, path) => {
let item_elt = match item.node {
item_mod(_) | item_foreign_mod(_) => {
ast_map::path_mod(item.ident)
}
_ => {
ast_map::path_name(item.ident)
}
};
vec::append_one(*path, item_elt)
}
ast_map::node_foreign_item(nitem, _, path) => {
vec::append_one(*path, ast_map::path_name(nitem.ident))
}
ast_map::node_method(method, _, path) => {
vec::append_one(*path, ast_map::path_name(method.ident))
}
ast_map::node_trait_method(trait_method, _, path) => {
let method = ast_util::trait_method_to_ty_method(*trait_method);
vec::append_one(*path, ast_map::path_name(method.ident))
}
ast_map::node_variant(variant, _, path) => {
vec::append_one(vec::init(*path),
ast_map::path_name(variant.node.name))
}
ast_map::node_ctor(nm, _, _, _, path) => {
vec::append_one(*path, ast_map::path_name(nm))
}
ast_map::node_dtor(_, _, _, path) => {
vec::append_one(*path, ast_map::path_name(@~"dtor"))
}
ast_map::node_expr(_) | ast_map::node_arg(_, _) |
ast_map::node_local(_) | ast_map::node_export(_, _) |
ast_map::node_block(_) => {
cx.sess.bug(fmt!{"cannot find item_path for node %?", node});
}
}
}
}
fn enum_is_univariant(cx: ctxt, id: ast::def_id) -> bool {
vec::len(*enum_variants(cx, id)) == 1u
}
fn type_is_empty(cx: ctxt, t: t) -> bool {
match ty::get(t).struct {
ty_enum(did, _) => (*enum_variants(cx, did)).is_empty(),
_ => false
}
}
fn enum_variants(cx: ctxt, id: ast::def_id) -> @~[variant_info] {
match cx.enum_var_cache.find(id) {
some(variants) => return variants,
_ => { /* fallthrough */ }
}
let result = if ast::local_crate != id.crate {
@csearch::get_enum_variants(cx, id)
} else {
/*
Although both this code and check_enum_variants in typeck/check
call eval_const_expr, it should never get called twice for the same
expr, since check_enum_variants also updates the enum_var_cache
*/
match cx.items.get(id.node) {
ast_map::node_item(@{node: ast::item_enum(variants, _), _}, _) => {
let mut disr_val = -1;
@vec::map(variants, |variant| {
match variant.node.kind {
ast::tuple_variant_kind(args) => {
let ctor_ty = node_id_to_type(cx, variant.node.id);
let arg_tys = {
if vec::len(args) > 0u {
ty_fn_args(ctor_ty).map(|a| a.ty)
} else {
~[]
}
};
match variant.node.disr_expr {
some (ex) => {
// FIXME: issue #1417
disr_val = match const_eval::eval_const_expr(cx,
ex) {
const_eval::const_int(val) => val as int,
_ => cx.sess.bug(~"tag_variants: bad disr expr")
}
}
_ => disr_val += 1
}
@{args: arg_tys,
ctor_ty: ctor_ty,
name: variant.node.name,
id: ast_util::local_def(variant.node.id),
disr_val: disr_val
}
}
ast::struct_variant_kind =>
fail ~"struct variant kinds unimpl in enum_variants"
}
})
}
_ => cx.sess.bug(~"tag_variants: id not bound to an enum")
}
};
cx.enum_var_cache.insert(id, result);
result
}
// Returns information about the enum variant with the given ID:
fn enum_variant_with_id(cx: ctxt, enum_id: ast::def_id,
variant_id: ast::def_id) -> variant_info {
let variants = enum_variants(cx, enum_id);
let mut i = 0u;
while i < vec::len::<variant_info>(*variants) {
let variant = variants[i];
if ast_util::def_eq(&variant.id, &variant_id) { return variant; }
i += 1u;
}
cx.sess.bug(~"enum_variant_with_id(): no variant exists with that ID");
}
// If the given item is in an external crate, looks up its type and adds it to
// the type cache. Returns the type parameters and type.
fn lookup_item_type(cx: ctxt, did: ast::def_id) -> ty_param_bounds_and_ty {
match cx.tcache.find(did) {
some(tpt) => return tpt,
none => {
// The item is in this crate. The caller should have added it to the
// type cache already
assert did.crate != ast::local_crate;
let tyt = csearch::get_type(cx, did);
cx.tcache.insert(did, tyt);
return tyt;
}
}
}
// Look up a field ID, whether or not it's local
// Takes a list of type substs in case the class is generic
fn lookup_field_type(tcx: ctxt, class_id: def_id, id: def_id,
substs: substs) -> ty::t {
let t = if id.crate == ast::local_crate {
node_id_to_type(tcx, id.node)
}
else {
match tcx.tcache.find(id) {
some(tpt) => tpt.ty,
none => {
let tpt = csearch::get_field_type(tcx, class_id, id);
tcx.tcache.insert(id, tpt);
tpt.ty
}
}
};
subst(tcx, substs, t)
}
// Look up the list of field names and IDs for a given class
// Fails if the id is not bound to a class.
fn lookup_class_fields(cx: ctxt, did: ast::def_id) -> ~[field_ty] {
if did.crate == ast::local_crate {
match cx.items.find(did.node) {
some(ast_map::node_item(i,_)) => {
match i.node {
ast::item_class(struct_def, _) => {
class_field_tys(struct_def.members)
}
_ => cx.sess.bug(~"class ID bound to non-class")
}
}
_ => {
cx.sess.bug(fmt!{"class ID not bound to an item: %s",
ast_map::node_id_to_str(cx.items, did.node)});
}
}
}
else {
return csearch::get_class_fields(cx, did);
}
}
fn lookup_class_field(cx: ctxt, parent: ast::def_id, field_id: ast::def_id)
-> field_ty {
match vec::find(lookup_class_fields(cx, parent),
|f| f.id.node == field_id.node) {
some(t) => t,
none => cx.sess.bug(~"class ID not found in parent's fields")
}
}
fn lookup_public_fields(cx: ctxt, did: ast::def_id) -> ~[field_ty] {
vec::filter(lookup_class_fields(cx, did), is_public)
}
pure fn is_public(f: field_ty) -> bool {
// XXX: This is wrong.
match f.vis {
public | inherited => true,
private => false
}
}
/* Given a class def_id and a method name, return the method's
def_id. Needed so we can do static dispatch for methods
Doesn't care about the method's privacy. (It's assumed that
the caller already checked that.)
*/
fn lookup_class_method_by_name(cx:ctxt, did: ast::def_id, name: ident,
sp: span) -> def_id {
// Look up the list of method names and IDs for a given class
// Fails if the id is not bound to a class.
fn lookup_class_method_ids(cx: ctxt, did: ast::def_id)
-> ~[{name: ident, id: node_id, vis: visibility}] {
assert is_local(did);
match cx.items.find(did.node) {
some(ast_map::node_item(@{
node: item_class(struct_def, _), _
}, _)) => {
let (_,ms) = split_class_items(struct_def.members);
vec::map(ms, |m| {name: m.ident, id: m.id,
vis: m.vis})
}
_ => {
cx.sess.bug(~"lookup_class_method_ids: id not bound to a class");
}
}
}
if is_local(did) {
let ms = lookup_class_method_ids(cx, did);
for ms.each |m| {
if m.name == name {
return ast_util::local_def(m.id);
}
}
cx.sess.span_fatal(sp, fmt!{"Class doesn't have a method \
named %s", *name});
}
else {
csearch::get_class_method(cx.sess.cstore, did, name)
}
}
fn class_field_tys(items: ~[@class_member]) -> ~[field_ty] {
let mut rslt = ~[];
for items.each |it| {
match it.node {
instance_var(nm, _, cm, id, vis) => {
vec::push(rslt, {ident: nm, id: ast_util::local_def(id),
vis: vis, mutability: cm});
}
class_method(_) => ()
}
}
rslt
}
// Return a list of fields corresponding to the class's items
// (as if the class was a record). trans uses this
// Takes a list of substs with which to instantiate field types
// Keep in mind that this function reports that all fields are
// mutable, regardless of how they were declared. It's meant to
// be used in trans.
fn class_items_as_mutable_fields(cx:ctxt, did: ast::def_id,
substs: substs) -> ~[field] {
class_item_fields(cx, did, substs, |_mt| m_mutbl)
}
// Same as class_items_as_mutable_fields, but doesn't change
// mutability.
fn class_items_as_fields(cx:ctxt, did: ast::def_id,
substs: substs) -> ~[field] {
class_item_fields(cx, did, substs, |mt| match mt {
class_mutable => m_mutbl,
class_immutable => m_imm })
}
fn class_item_fields(cx:ctxt, did: ast::def_id,
substs: substs, frob_mutability: fn(class_mutability) -> mutability)
-> ~[field] {
let mut rslt = ~[];
for lookup_class_fields(cx, did).each |f| {
// consider all instance vars mut, because the
// constructor may mutate all vars
vec::push(rslt, {ident: f.ident, mt:
{ty: lookup_field_type(cx, did, f.id, substs),
mutbl: frob_mutability(f.mutability)}});
}
rslt
}
fn is_binopable(_cx: ctxt, ty: t, op: ast::binop) -> bool {
const tycat_other: int = 0;
const tycat_bool: int = 1;
const tycat_int: int = 2;
const tycat_float: int = 3;
const tycat_struct: int = 4;
const tycat_bot: int = 5;
const opcat_add: int = 0;
const opcat_sub: int = 1;
const opcat_mult: int = 2;
const opcat_shift: int = 3;
const opcat_rel: int = 4;
const opcat_eq: int = 5;
const opcat_bit: int = 6;
const opcat_logic: int = 7;
fn opcat(op: ast::binop) -> int {
match op {
ast::add => opcat_add,
ast::subtract => opcat_sub,
ast::mul => opcat_mult,
ast::div => opcat_mult,
ast::rem => opcat_mult,
ast::and => opcat_logic,
ast::or => opcat_logic,
ast::bitxor => opcat_bit,
ast::bitand => opcat_bit,
ast::bitor => opcat_bit,
ast::shl => opcat_shift,
ast::shr => opcat_shift,
ast::eq => opcat_eq,
ast::ne => opcat_eq,
ast::lt => opcat_rel,
ast::le => opcat_rel,
ast::ge => opcat_rel,
ast::gt => opcat_rel
}
}
fn tycat(ty: t) -> int {
match get(ty).struct {
ty_bool => tycat_bool,
ty_int(_) | ty_uint(_) | ty_var_integral(_) => tycat_int,
ty_float(_) => tycat_float,
ty_rec(_) | ty_tup(_) | ty_enum(_, _) => tycat_struct,
ty_bot => tycat_bot,
_ => tycat_other
}
}
const t: bool = true;
const f: bool = false;
let tbl = ~[
/*. add, shift, bit
. sub, rel, logic
. mult, eq, */
/*other*/ ~[f, f, f, f, t, t, f, f],
/*bool*/ ~[f, f, f, f, t, t, t, t],
/*int*/ ~[t, t, t, t, t, t, t, f],
/*float*/ ~[t, t, t, f, t, t, f, f],
/*bot*/ ~[f, f, f, f, t, t, f, f],
/*struct*/ ~[t, t, t, t, t, t, t, t]];
return tbl[tycat(ty)][opcat(op)];
}
fn ty_params_to_tys(tcx: ty::ctxt, tps: ~[ast::ty_param]) -> ~[t] {
vec::from_fn(tps.len(), |i| {
ty::mk_param(tcx, i, ast_util::local_def(tps[i].id))
})
}
/// Returns an equivalent type with all the typedefs and self regions removed.
fn normalize_ty(cx: ctxt, t: t) -> t {
fn normalize_mt(cx: ctxt, mt: mt) -> mt {
{ ty: normalize_ty(cx, mt.ty), mutbl: mt.mutbl }
}
fn normalize_vstore(vstore: vstore) -> vstore {
match vstore {
vstore_fixed(*) | vstore_uniq | vstore_box => vstore,
vstore_slice(_) => vstore_slice(re_static)
}
}
match cx.normalized_cache.find(t) {
some(t) => return t,
none => ()
}
let t = match get(t).struct {
ty_evec(mt, vstore) =>
// This type has a vstore. Get rid of it
mk_evec(cx, normalize_mt(cx, mt), normalize_vstore(vstore)),
ty_estr(vstore) =>
// This type has a vstore. Get rid of it
mk_estr(cx, normalize_vstore(vstore)),
ty_rptr(region, mt) =>
// This type has a region. Get rid of it
mk_rptr(cx, re_static, normalize_mt(cx, mt)),
ty_enum(did, r) =>
match r.self_r {
some(_) =>
// This enum has a self region. Get rid of it
mk_enum(cx, did,
{self_r: none, self_ty: none, tps: r.tps}),
none =>
t
},
ty_class(did, r) =>
match r.self_r {
some(_) =>
// Ditto.
mk_class(cx, did, {self_r: none, self_ty: none, tps: r.tps}),
none =>
t
},
_ =>
t
};
// FIXME #2187: This also reduced int types to their compatible machine
// types, which isn't necessary after #2187
let t = mk_t(cx, mach_sty(cx.sess.targ_cfg, t));
let sty = fold_sty(get(t).struct, |t| { normalize_ty(cx, t) });
let t_norm = mk_t(cx, sty);
cx.normalized_cache.insert(t, t_norm);
return t_norm;
}
// Returns the repeat count for a repeating vector expression.
fn eval_repeat_count(tcx: ctxt, count_expr: @ast::expr, span: span) -> uint {
match const_eval::eval_const_expr(tcx, count_expr) {
const_eval::const_int(count) => return count as uint,
const_eval::const_uint(count) => return count as uint,
const_eval::const_float(count) => {
tcx.sess.span_err(span,
~"expected signed or unsigned integer for \
repeat count but found float");
return count as uint;
}
const_eval::const_str(_) => {
tcx.sess.span_err(span,
~"expected signed or unsigned integer for \
repeat count but found string");
return 0;
}
}
}
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: