rust/src/libcore/str.rs
2014-09-17 08:48:33 -07:00

2163 lines
67 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// ignore-lexer-test FIXME #15679
//! String manipulation
//!
//! For more details, see std::str
#![doc(primitive = "str")]
use mem;
use char;
use char::Char;
use clone::Clone;
use cmp;
use cmp::{PartialEq, Eq};
use collections::Collection;
use default::Default;
use iter::{Map, Iterator};
use iter::{DoubleEndedIterator, ExactSize};
use iter::range;
use num::{CheckedMul, Saturating};
use option::{Option, None, Some};
use raw::Repr;
use slice::{ImmutableSlice, MutableSlice};
use slice;
use uint;
/*
Section: Creating a string
*/
/// Converts a vector to a string slice without performing any allocations.
///
/// Once the slice has been validated as utf-8, it is transmuted in-place and
/// returned as a '&str' instead of a '&[u8]'
///
/// Returns None if the slice is not utf-8.
pub fn from_utf8<'a>(v: &'a [u8]) -> Option<&'a str> {
if is_utf8(v) {
Some(unsafe { raw::from_utf8(v) })
} else { None }
}
/// Something that can be used to compare against a character
pub trait CharEq {
/// Determine if the splitter should split at the given character
fn matches(&mut self, char) -> bool;
/// Indicate if this is only concerned about ASCII characters,
/// which can allow for a faster implementation.
fn only_ascii(&self) -> bool;
}
impl CharEq for char {
#[inline]
fn matches(&mut self, c: char) -> bool { *self == c }
#[inline]
fn only_ascii(&self) -> bool { (*self as uint) < 128 }
}
impl<'a> CharEq for |char|: 'a -> bool {
#[inline]
fn matches(&mut self, c: char) -> bool { (*self)(c) }
#[inline]
fn only_ascii(&self) -> bool { false }
}
impl CharEq for extern "Rust" fn(char) -> bool {
#[inline]
fn matches(&mut self, c: char) -> bool { (*self)(c) }
#[inline]
fn only_ascii(&self) -> bool { false }
}
impl<'a> CharEq for &'a [char] {
#[inline]
fn matches(&mut self, c: char) -> bool {
self.iter().any(|&mut m| m.matches(c))
}
#[inline]
fn only_ascii(&self) -> bool {
self.iter().all(|m| m.only_ascii())
}
}
/*
Section: Iterators
*/
/// Iterator for the char (representing *Unicode Scalar Values*) of a string
///
/// Created with the method `.chars()`.
#[deriving(Clone)]
pub struct Chars<'a> {
iter: slice::Items<'a, u8>
}
// Return the initial codepoint accumulator for the first byte.
// The first byte is special, only want bottom 5 bits for width 2, 4 bits
// for width 3, and 3 bits for width 4
macro_rules! utf8_first_byte(
($byte:expr, $width:expr) => (($byte & (0x7F >> $width)) as u32)
)
// return the value of $ch updated with continuation byte $byte
macro_rules! utf8_acc_cont_byte(
($ch:expr, $byte:expr) => (($ch << 6) | ($byte & CONT_MASK) as u32)
)
macro_rules! utf8_is_cont_byte(
($byte:expr) => (($byte & !CONT_MASK) == TAG_CONT_U8)
)
#[inline]
fn unwrap_or_0(opt: Option<&u8>) -> u8 {
match opt {
Some(&byte) => byte,
None => 0,
}
}
impl<'a> Iterator<char> for Chars<'a> {
#[inline]
fn next(&mut self) -> Option<char> {
// Decode UTF-8, using the valid UTF-8 invariant
let x = match self.iter.next() {
None => return None,
Some(&next_byte) if next_byte < 128 => return Some(next_byte as char),
Some(&next_byte) => next_byte,
};
// Multibyte case follows
// Decode from a byte combination out of: [[[x y] z] w]
// NOTE: Performance is sensitive to the exact formulation here
let init = utf8_first_byte!(x, 2);
let y = unwrap_or_0(self.iter.next());
let mut ch = utf8_acc_cont_byte!(init, y);
if x >= 0xE0 {
// [[x y z] w] case
// 5th bit in 0xE0 .. 0xEF is always clear, so `init` is still valid
let z = unwrap_or_0(self.iter.next());
let y_z = utf8_acc_cont_byte!((y & CONT_MASK) as u32, z);
ch = init << 12 | y_z;
if x >= 0xF0 {
// [x y z w] case
// use only the lower 3 bits of `init`
let w = unwrap_or_0(self.iter.next());
ch = (init & 7) << 18 | utf8_acc_cont_byte!(y_z, w);
}
}
// str invariant says `ch` is a valid Unicode Scalar Value
unsafe {
Some(mem::transmute(ch))
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (len, _) = self.iter.size_hint();
(len.saturating_add(3) / 4, Some(len))
}
}
impl<'a> DoubleEndedIterator<char> for Chars<'a> {
#[inline]
fn next_back(&mut self) -> Option<char> {
let w = match self.iter.next_back() {
None => return None,
Some(&back_byte) if back_byte < 128 => return Some(back_byte as char),
Some(&back_byte) => back_byte,
};
// Multibyte case follows
// Decode from a byte combination out of: [x [y [z w]]]
let mut ch;
let z = unwrap_or_0(self.iter.next_back());
ch = utf8_first_byte!(z, 2);
if utf8_is_cont_byte!(z) {
let y = unwrap_or_0(self.iter.next_back());
ch = utf8_first_byte!(y, 3);
if utf8_is_cont_byte!(y) {
let x = unwrap_or_0(self.iter.next_back());
ch = utf8_first_byte!(x, 4);
ch = utf8_acc_cont_byte!(ch, y);
}
ch = utf8_acc_cont_byte!(ch, z);
}
ch = utf8_acc_cont_byte!(ch, w);
// str invariant says `ch` is a valid Unicode Scalar Value
unsafe {
Some(mem::transmute(ch))
}
}
}
/// External iterator for a string's characters and their byte offsets.
/// Use with the `std::iter` module.
#[deriving(Clone)]
pub struct CharOffsets<'a> {
front_offset: uint,
iter: Chars<'a>,
}
impl<'a> Iterator<(uint, char)> for CharOffsets<'a> {
#[inline]
fn next(&mut self) -> Option<(uint, char)> {
let (pre_len, _) = self.iter.iter.size_hint();
match self.iter.next() {
None => None,
Some(ch) => {
let index = self.front_offset;
let (len, _) = self.iter.iter.size_hint();
self.front_offset += pre_len - len;
Some((index, ch))
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
self.iter.size_hint()
}
}
impl<'a> DoubleEndedIterator<(uint, char)> for CharOffsets<'a> {
#[inline]
fn next_back(&mut self) -> Option<(uint, char)> {
match self.iter.next_back() {
None => None,
Some(ch) => {
let (len, _) = self.iter.iter.size_hint();
let index = self.front_offset + len;
Some((index, ch))
}
}
}
}
/// External iterator for a string's bytes.
/// Use with the `std::iter` module.
pub type Bytes<'a> =
Map<'a, &'a u8, u8, slice::Items<'a, u8>>;
/// An iterator over the substrings of a string, separated by `sep`.
#[deriving(Clone)]
pub struct CharSplits<'a, Sep> {
/// The slice remaining to be iterated
string: &'a str,
sep: Sep,
/// Whether an empty string at the end is allowed
allow_trailing_empty: bool,
only_ascii: bool,
finished: bool,
}
/// An iterator over the substrings of a string, separated by `sep`,
/// splitting at most `count` times.
#[deriving(Clone)]
pub struct CharSplitsN<'a, Sep> {
iter: CharSplits<'a, Sep>,
/// The number of splits remaining
count: uint,
invert: bool,
}
/// An iterator over the lines of a string, separated by either `\n` or (`\r\n`).
pub type AnyLines<'a> =
Map<'a, &'a str, &'a str, CharSplits<'a, char>>;
impl<'a, Sep> CharSplits<'a, Sep> {
#[inline]
fn get_end(&mut self) -> Option<&'a str> {
if !self.finished && (self.allow_trailing_empty || self.string.len() > 0) {
self.finished = true;
Some(self.string)
} else {
None
}
}
}
impl<'a, Sep: CharEq> Iterator<&'a str> for CharSplits<'a, Sep> {
#[inline]
fn next(&mut self) -> Option<&'a str> {
if self.finished { return None }
let mut next_split = None;
if self.only_ascii {
for (idx, byte) in self.string.bytes().enumerate() {
if self.sep.matches(byte as char) && byte < 128u8 {
next_split = Some((idx, idx + 1));
break;
}
}
} else {
for (idx, ch) in self.string.char_indices() {
if self.sep.matches(ch) {
next_split = Some((idx, self.string.char_range_at(idx).next));
break;
}
}
}
match next_split {
Some((a, b)) => unsafe {
let elt = raw::slice_unchecked(self.string, 0, a);
self.string = raw::slice_unchecked(self.string, b, self.string.len());
Some(elt)
},
None => self.get_end(),
}
}
}
impl<'a, Sep: CharEq> DoubleEndedIterator<&'a str>
for CharSplits<'a, Sep> {
#[inline]
fn next_back(&mut self) -> Option<&'a str> {
if self.finished { return None }
if !self.allow_trailing_empty {
self.allow_trailing_empty = true;
match self.next_back() {
Some(elt) if !elt.is_empty() => return Some(elt),
_ => if self.finished { return None }
}
}
let len = self.string.len();
let mut next_split = None;
if self.only_ascii {
for (idx, byte) in self.string.bytes().enumerate().rev() {
if self.sep.matches(byte as char) && byte < 128u8 {
next_split = Some((idx, idx + 1));
break;
}
}
} else {
for (idx, ch) in self.string.char_indices().rev() {
if self.sep.matches(ch) {
next_split = Some((idx, self.string.char_range_at(idx).next));
break;
}
}
}
match next_split {
Some((a, b)) => unsafe {
let elt = raw::slice_unchecked(self.string, b, len);
self.string = raw::slice_unchecked(self.string, 0, a);
Some(elt)
},
None => { self.finished = true; Some(self.string) }
}
}
}
impl<'a, Sep: CharEq> Iterator<&'a str> for CharSplitsN<'a, Sep> {
#[inline]
fn next(&mut self) -> Option<&'a str> {
if self.count != 0 {
self.count -= 1;
if self.invert { self.iter.next_back() } else { self.iter.next() }
} else {
self.iter.get_end()
}
}
}
/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using naive search
#[deriving(Clone)]
struct NaiveSearcher {
position: uint
}
impl NaiveSearcher {
fn new() -> NaiveSearcher {
NaiveSearcher { position: 0 }
}
fn next(&mut self, haystack: &[u8], needle: &[u8]) -> Option<(uint, uint)> {
while self.position + needle.len() <= haystack.len() {
if haystack.slice(self.position, self.position + needle.len()) == needle {
let match_pos = self.position;
self.position += needle.len(); // add 1 for all matches
return Some((match_pos, match_pos + needle.len()));
} else {
self.position += 1;
}
}
None
}
}
/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using two-way search
#[deriving(Clone)]
struct TwoWaySearcher {
// constants
crit_pos: uint,
period: uint,
byteset: u64,
// variables
position: uint,
memory: uint
}
/*
This is the Two-Way search algorithm, which was introduced in the paper:
Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675.
Here's some background information.
A *word* is a string of symbols. The *length* of a word should be a familiar
notion, and here we denote it for any word x by |x|.
(We also allow for the possibility of the *empty word*, a word of length zero).
If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be a
*period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == x[i+p].
For example, both 1 and 2 are periods for the string "aa". As another example,
the only period of the string "abcd" is 4.
We denote by period(x) the *smallest* period of x (provided that x is non-empty).
This is always well-defined since every non-empty word x has at least one period,
|x|. We sometimes call this *the period* of x.
If u, v and x are words such that x = uv, where uv is the concatenation of u and
v, then we say that (u, v) is a *factorization* of x.
Let (u, v) be a factorization for a word x. Then if w is a non-empty word such
that both of the following hold
- either w is a suffix of u or u is a suffix of w
- either w is a prefix of v or v is a prefix of w
then w is said to be a *repetition* for the factorization (u, v).
Just to unpack this, there are four possibilities here. Let w = "abc". Then we
might have:
- w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde")
- w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab")
- u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi")
- u is a suffix of w and v is a prefix of w. ex: ("bc", "a")
Note that the word vu is a repetition for any factorization (u,v) of x = uv,
so every factorization has at least one repetition.
If x is a string and (u, v) is a factorization for x, then a *local period* for
(u, v) is an integer r such that there is some word w such that |w| = r and w is
a repetition for (u, v).
We denote by local_period(u, v) the smallest local period of (u, v). We sometimes
call this *the local period* of (u, v). Provided that x = uv is non-empty, this
is well-defined (because each non-empty word has at least one factorization, as
noted above).
It can be proven that the following is an equivalent definition of a local period
for a factorization (u, v): any positive integer r such that x[i] == x[i+r] for
all i such that |u| - r <= i <= |u| - 1 and such that both x[i] and x[i+r] are
defined. (i.e. i > 0 and i + r < |x|).
Using the above reformulation, it is easy to prove that
1 <= local_period(u, v) <= period(uv)
A factorization (u, v) of x such that local_period(u,v) = period(x) is called a
*critical factorization*.
The algorithm hinges on the following theorem, which is stated without proof:
**Critical Factorization Theorem** Any word x has at least one critical
factorization (u, v) such that |u| < period(x).
The purpose of maximal_suffix is to find such a critical factorization.
*/
impl TwoWaySearcher {
fn new(needle: &[u8]) -> TwoWaySearcher {
let (crit_pos1, period1) = TwoWaySearcher::maximal_suffix(needle, false);
let (crit_pos2, period2) = TwoWaySearcher::maximal_suffix(needle, true);
let crit_pos;
let period;
if crit_pos1 > crit_pos2 {
crit_pos = crit_pos1;
period = period1;
} else {
crit_pos = crit_pos2;
period = period2;
}
// This isn't in the original algorithm, as far as I'm aware.
let byteset = needle.iter()
.fold(0, |a, &b| (1 << ((b & 0x3f) as uint)) | a);
// A particularly readable explanation of what's going on here can be found
// in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically
// see the code for "Algorithm CP" on p. 323.
//
// What's going on is we have some critical factorization (u, v) of the
// needle, and we want to determine whether u is a suffix of
// v.slice_to(period). If it is, we use "Algorithm CP1". Otherwise we use
// "Algorithm CP2", which is optimized for when the period of the needle
// is large.
if needle.slice_to(crit_pos) == needle.slice(period, period + crit_pos) {
TwoWaySearcher {
crit_pos: crit_pos,
period: period,
byteset: byteset,
position: 0,
memory: 0
}
} else {
TwoWaySearcher {
crit_pos: crit_pos,
period: cmp::max(crit_pos, needle.len() - crit_pos) + 1,
byteset: byteset,
position: 0,
memory: uint::MAX // Dummy value to signify that the period is long
}
}
}
// One of the main ideas of Two-Way is that we factorize the needle into
// two halves, (u, v), and begin trying to find v in the haystack by scanning
// left to right. If v matches, we try to match u by scanning right to left.
// How far we can jump when we encounter a mismatch is all based on the fact
// that (u, v) is a critical factorization for the needle.
#[inline]
fn next(&mut self, haystack: &[u8], needle: &[u8], long_period: bool) -> Option<(uint, uint)> {
'search: loop {
// Check that we have room to search in
if self.position + needle.len() > haystack.len() {
return None;
}
// Quickly skip by large portions unrelated to our substring
if (self.byteset >>
((haystack[self.position + needle.len() - 1] & 0x3f)
as uint)) & 1 == 0 {
self.position += needle.len();
if !long_period {
self.memory = 0;
}
continue 'search;
}
// See if the right part of the needle matches
let start = if long_period { self.crit_pos }
else { cmp::max(self.crit_pos, self.memory) };
for i in range(start, needle.len()) {
if needle[i] != haystack[self.position + i] {
self.position += i - self.crit_pos + 1;
if !long_period {
self.memory = 0;
}
continue 'search;
}
}
// See if the left part of the needle matches
let start = if long_period { 0 } else { self.memory };
for i in range(start, self.crit_pos).rev() {
if needle[i] != haystack[self.position + i] {
self.position += self.period;
if !long_period {
self.memory = needle.len() - self.period;
}
continue 'search;
}
}
// We have found a match!
let match_pos = self.position;
self.position += needle.len(); // add self.period for all matches
if !long_period {
self.memory = 0; // set to needle.len() - self.period for all matches
}
return Some((match_pos, match_pos + needle.len()));
}
}
// Computes a critical factorization (u, v) of `arr`.
// Specifically, returns (i, p), where i is the starting index of v in some
// critical factorization (u, v) and p = period(v)
#[inline]
fn maximal_suffix(arr: &[u8], reversed: bool) -> (uint, uint) {
let mut left = -1; // Corresponds to i in the paper
let mut right = 0; // Corresponds to j in the paper
let mut offset = 1; // Corresponds to k in the paper
let mut period = 1; // Corresponds to p in the paper
while right + offset < arr.len() {
let a;
let b;
if reversed {
a = arr[left + offset];
b = arr[right + offset];
} else {
a = arr[right + offset];
b = arr[left + offset];
}
if a < b {
// Suffix is smaller, period is entire prefix so far.
right += offset;
offset = 1;
period = right - left;
} else if a == b {
// Advance through repetition of the current period.
if offset == period {
right += offset;
offset = 1;
} else {
offset += 1;
}
} else {
// Suffix is larger, start over from current location.
left = right;
right += 1;
offset = 1;
period = 1;
}
}
(left + 1, period)
}
}
/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using a dynamically chosen search algorithm
#[deriving(Clone)]
enum Searcher {
Naive(NaiveSearcher),
TwoWay(TwoWaySearcher),
TwoWayLong(TwoWaySearcher)
}
impl Searcher {
fn new(haystack: &[u8], needle: &[u8]) -> Searcher {
// FIXME: Tune this.
// FIXME(#16715): This unsigned integer addition will probably not
// overflow because that would mean that the memory almost solely
// consists of the needle. Needs #16715 to be formally fixed.
if needle.len() + 20 > haystack.len() {
Naive(NaiveSearcher::new())
} else {
let searcher = TwoWaySearcher::new(needle);
if searcher.memory == uint::MAX { // If the period is long
TwoWayLong(searcher)
} else {
TwoWay(searcher)
}
}
}
}
/// An iterator over the start and end indices of the matches of a
/// substring within a larger string
#[deriving(Clone)]
pub struct MatchIndices<'a> {
// constants
haystack: &'a str,
needle: &'a str,
searcher: Searcher
}
/// An iterator over the substrings of a string separated by a given
/// search string
#[deriving(Clone)]
pub struct StrSplits<'a> {
it: MatchIndices<'a>,
last_end: uint,
finished: bool
}
impl<'a> Iterator<(uint, uint)> for MatchIndices<'a> {
#[inline]
fn next(&mut self) -> Option<(uint, uint)> {
match self.searcher {
Naive(ref mut searcher)
=> searcher.next(self.haystack.as_bytes(), self.needle.as_bytes()),
TwoWay(ref mut searcher)
=> searcher.next(self.haystack.as_bytes(), self.needle.as_bytes(), false),
TwoWayLong(ref mut searcher)
=> searcher.next(self.haystack.as_bytes(), self.needle.as_bytes(), true)
}
}
}
impl<'a> Iterator<&'a str> for StrSplits<'a> {
#[inline]
fn next(&mut self) -> Option<&'a str> {
if self.finished { return None; }
match self.it.next() {
Some((from, to)) => {
let ret = Some(self.it.haystack.slice(self.last_end, from));
self.last_end = to;
ret
}
None => {
self.finished = true;
Some(self.it.haystack.slice(self.last_end, self.it.haystack.len()))
}
}
}
}
/// External iterator for a string's UTF16 codeunits.
/// Use with the `std::iter` module.
#[deriving(Clone)]
pub struct Utf16CodeUnits<'a> {
chars: Chars<'a>,
extra: u16
}
impl<'a> Iterator<u16> for Utf16CodeUnits<'a> {
#[inline]
fn next(&mut self) -> Option<u16> {
if self.extra != 0 {
let tmp = self.extra;
self.extra = 0;
return Some(tmp);
}
let mut buf = [0u16, ..2];
self.chars.next().map(|ch| {
let n = ch.encode_utf16(buf.as_mut_slice()).unwrap_or(0);
if n == 2 { self.extra = buf[1]; }
buf[0]
})
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (low, high) = self.chars.size_hint();
// every char gets either one u16 or two u16,
// so this iterator is between 1 or 2 times as
// long as the underlying iterator.
(low, high.and_then(|n| n.checked_mul(&2)))
}
}
/*
Section: Comparing strings
*/
// share the implementation of the lang-item vs. non-lang-item
// eq_slice.
/// NOTE: This function is (ab)used in rustc::middle::trans::_match
/// to compare &[u8] byte slices that are not necessarily valid UTF-8.
#[inline]
fn eq_slice_(a: &str, b: &str) -> bool {
#[allow(ctypes)]
extern { fn memcmp(s1: *const i8, s2: *const i8, n: uint) -> i32; }
a.len() == b.len() && unsafe {
memcmp(a.as_ptr() as *const i8,
b.as_ptr() as *const i8,
a.len()) == 0
}
}
/// Bytewise slice equality
/// NOTE: This function is (ab)used in rustc::middle::trans::_match
/// to compare &[u8] byte slices that are not necessarily valid UTF-8.
#[lang="str_eq"]
#[inline]
pub fn eq_slice(a: &str, b: &str) -> bool {
eq_slice_(a, b)
}
/*
Section: Misc
*/
/// Walk through `iter` checking that it's a valid UTF-8 sequence,
/// returning `true` in that case, or, if it is invalid, `false` with
/// `iter` reset such that it is pointing at the first byte in the
/// invalid sequence.
#[inline(always)]
fn run_utf8_validation_iterator(iter: &mut slice::Items<u8>) -> bool {
loop {
// save the current thing we're pointing at.
let old = *iter;
// restore the iterator we had at the start of this codepoint.
macro_rules! err ( () => { {*iter = old; return false} });
macro_rules! next ( () => {
match iter.next() {
Some(a) => *a,
// we needed data, but there was none: error!
None => err!()
}
});
let first = match iter.next() {
Some(&b) => b,
// we're at the end of the iterator and a codepoint
// boundary at the same time, so this string is valid.
None => return true
};
// ASCII characters are always valid, so only large
// bytes need more examination.
if first >= 128 {
let w = utf8_char_width(first);
let second = next!();
// 2-byte encoding is for codepoints \u0080 to \u07ff
// first C2 80 last DF BF
// 3-byte encoding is for codepoints \u0800 to \uffff
// first E0 A0 80 last EF BF BF
// excluding surrogates codepoints \ud800 to \udfff
// ED A0 80 to ED BF BF
// 4-byte encoding is for codepoints \u10000 to \u10ffff
// first F0 90 80 80 last F4 8F BF BF
//
// Use the UTF-8 syntax from the RFC
//
// https://tools.ietf.org/html/rfc3629
// UTF8-1 = %x00-7F
// UTF8-2 = %xC2-DF UTF8-tail
// UTF8-3 = %xE0 %xA0-BF UTF8-tail / %xE1-EC 2( UTF8-tail ) /
// %xED %x80-9F UTF8-tail / %xEE-EF 2( UTF8-tail )
// UTF8-4 = %xF0 %x90-BF 2( UTF8-tail ) / %xF1-F3 3( UTF8-tail ) /
// %xF4 %x80-8F 2( UTF8-tail )
match w {
2 => if second & !CONT_MASK != TAG_CONT_U8 {err!()},
3 => {
match (first, second, next!() & !CONT_MASK) {
(0xE0 , 0xA0 .. 0xBF, TAG_CONT_U8) |
(0xE1 .. 0xEC, 0x80 .. 0xBF, TAG_CONT_U8) |
(0xED , 0x80 .. 0x9F, TAG_CONT_U8) |
(0xEE .. 0xEF, 0x80 .. 0xBF, TAG_CONT_U8) => {}
_ => err!()
}
}
4 => {
match (first, second, next!() & !CONT_MASK, next!() & !CONT_MASK) {
(0xF0 , 0x90 .. 0xBF, TAG_CONT_U8, TAG_CONT_U8) |
(0xF1 .. 0xF3, 0x80 .. 0xBF, TAG_CONT_U8, TAG_CONT_U8) |
(0xF4 , 0x80 .. 0x8F, TAG_CONT_U8, TAG_CONT_U8) => {}
_ => err!()
}
}
_ => err!()
}
}
}
}
/// Determines if a vector of bytes contains valid UTF-8.
pub fn is_utf8(v: &[u8]) -> bool {
run_utf8_validation_iterator(&mut v.iter())
}
/// Determines if a vector of `u16` contains valid UTF-16
pub fn is_utf16(v: &[u16]) -> bool {
let mut it = v.iter();
macro_rules! next ( ($ret:expr) => {
match it.next() { Some(u) => *u, None => return $ret }
}
)
loop {
let u = next!(true);
match char::from_u32(u as u32) {
Some(_) => {}
None => {
let u2 = next!(false);
if u < 0xD7FF || u > 0xDBFF ||
u2 < 0xDC00 || u2 > 0xDFFF { return false; }
}
}
}
}
/// An iterator that decodes UTF-16 encoded codepoints from a vector
/// of `u16`s.
#[deriving(Clone)]
pub struct Utf16Items<'a> {
iter: slice::Items<'a, u16>
}
/// The possibilities for values decoded from a `u16` stream.
#[deriving(PartialEq, Eq, Clone, Show)]
pub enum Utf16Item {
/// A valid codepoint.
ScalarValue(char),
/// An invalid surrogate without its pair.
LoneSurrogate(u16)
}
impl Utf16Item {
/// Convert `self` to a `char`, taking `LoneSurrogate`s to the
/// replacement character (U+FFFD).
#[inline]
pub fn to_char_lossy(&self) -> char {
match *self {
ScalarValue(c) => c,
LoneSurrogate(_) => '\uFFFD'
}
}
}
impl<'a> Iterator<Utf16Item> for Utf16Items<'a> {
fn next(&mut self) -> Option<Utf16Item> {
let u = match self.iter.next() {
Some(u) => *u,
None => return None
};
if u < 0xD800 || 0xDFFF < u {
// not a surrogate
Some(ScalarValue(unsafe {mem::transmute(u as u32)}))
} else if u >= 0xDC00 {
// a trailing surrogate
Some(LoneSurrogate(u))
} else {
// preserve state for rewinding.
let old = self.iter;
let u2 = match self.iter.next() {
Some(u2) => *u2,
// eof
None => return Some(LoneSurrogate(u))
};
if u2 < 0xDC00 || u2 > 0xDFFF {
// not a trailing surrogate so we're not a valid
// surrogate pair, so rewind to redecode u2 next time.
self.iter = old;
return Some(LoneSurrogate(u))
}
// all ok, so lets decode it.
let c = ((u - 0xD800) as u32 << 10 | (u2 - 0xDC00) as u32) + 0x1_0000;
Some(ScalarValue(unsafe {mem::transmute(c)}))
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (low, high) = self.iter.size_hint();
// we could be entirely valid surrogates (2 elements per
// char), or entirely non-surrogates (1 element per char)
(low / 2, high)
}
}
/// Create an iterator over the UTF-16 encoded codepoints in `v`,
/// returning invalid surrogates as `LoneSurrogate`s.
///
/// # Example
///
/// ```rust
/// use std::str;
/// use std::str::{ScalarValue, LoneSurrogate};
///
/// // 𝄞mus<invalid>ic<invalid>
/// let v = [0xD834, 0xDD1E, 0x006d, 0x0075,
/// 0x0073, 0xDD1E, 0x0069, 0x0063,
/// 0xD834];
///
/// assert_eq!(str::utf16_items(v).collect::<Vec<_>>(),
/// vec![ScalarValue('𝄞'),
/// ScalarValue('m'), ScalarValue('u'), ScalarValue('s'),
/// LoneSurrogate(0xDD1E),
/// ScalarValue('i'), ScalarValue('c'),
/// LoneSurrogate(0xD834)]);
/// ```
pub fn utf16_items<'a>(v: &'a [u16]) -> Utf16Items<'a> {
Utf16Items { iter : v.iter() }
}
/// Return a slice of `v` ending at (and not including) the first NUL
/// (0).
///
/// # Example
///
/// ```rust
/// use std::str;
///
/// // "abcd"
/// let mut v = ['a' as u16, 'b' as u16, 'c' as u16, 'd' as u16];
/// // no NULs so no change
/// assert_eq!(str::truncate_utf16_at_nul(v), v.as_slice());
///
/// // "ab\0d"
/// v[2] = 0;
/// let b: &[_] = &['a' as u16, 'b' as u16];
/// assert_eq!(str::truncate_utf16_at_nul(v), b);
/// ```
pub fn truncate_utf16_at_nul<'a>(v: &'a [u16]) -> &'a [u16] {
match v.iter().position(|c| *c == 0) {
// don't include the 0
Some(i) => v.slice_to(i),
None => v
}
}
// https://tools.ietf.org/html/rfc3629
static UTF8_CHAR_WIDTH: [u8, ..256] = [
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x1F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x3F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x5F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x7F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0x9F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0xBF
0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, // 0xDF
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, // 0xEF
4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0, // 0xFF
];
/// Given a first byte, determine how many bytes are in this UTF-8 character
#[inline]
pub fn utf8_char_width(b: u8) -> uint {
return UTF8_CHAR_WIDTH[b as uint] as uint;
}
/// Struct that contains a `char` and the index of the first byte of
/// the next `char` in a string. This can be used as a data structure
/// for iterating over the UTF-8 bytes of a string.
pub struct CharRange {
/// Current `char`
pub ch: char,
/// Index of the first byte of the next `char`
pub next: uint,
}
/// Mask of the value bits of a continuation byte
static CONT_MASK: u8 = 0b0011_1111u8;
/// Value of the tag bits (tag mask is !CONT_MASK) of a continuation byte
static TAG_CONT_U8: u8 = 0b1000_0000u8;
/// Unsafe operations
pub mod raw {
use mem;
use collections::Collection;
use ptr::RawPtr;
use raw::Slice;
use slice::{ImmutableSlice};
use str::{is_utf8, StrSlice};
/// Converts a slice of bytes to a string slice without checking
/// that the string contains valid UTF-8.
pub unsafe fn from_utf8<'a>(v: &'a [u8]) -> &'a str {
mem::transmute(v)
}
/// Form a slice from a C string. Unsafe because the caller must ensure the
/// C string has the static lifetime, or else the return value may be
/// invalidated later.
pub unsafe fn c_str_to_static_slice(s: *const i8) -> &'static str {
let s = s as *const u8;
let mut curr = s;
let mut len = 0u;
while *curr != 0u8 {
len += 1u;
curr = s.offset(len as int);
}
let v = Slice { data: s, len: len };
assert!(is_utf8(::mem::transmute(v)));
::mem::transmute(v)
}
/// Takes a bytewise (not UTF-8) slice from a string.
///
/// Returns the substring from [`begin`..`end`).
///
/// # Failure
///
/// If begin is greater than end.
/// If end is greater than the length of the string.
#[inline]
pub unsafe fn slice_bytes<'a>(s: &'a str, begin: uint, end: uint) -> &'a str {
assert!(begin <= end);
assert!(end <= s.len());
slice_unchecked(s, begin, end)
}
/// Takes a bytewise (not UTF-8) slice from a string.
///
/// Returns the substring from [`begin`..`end`).
///
/// Caller must check slice boundaries!
#[inline]
pub unsafe fn slice_unchecked<'a>(s: &'a str, begin: uint, end: uint) -> &'a str {
mem::transmute(Slice {
data: s.as_ptr().offset(begin as int),
len: end - begin,
})
}
}
/*
Section: Trait implementations
*/
#[allow(missing_doc)]
pub mod traits {
use cmp::{Ord, Ordering, Less, Equal, Greater, PartialEq, PartialOrd, Equiv, Eq};
use collections::Collection;
use iter::Iterator;
use option::{Option, Some};
use str::{Str, StrSlice, eq_slice};
impl<'a> Ord for &'a str {
#[inline]
fn cmp(&self, other: & &'a str) -> Ordering {
for (s_b, o_b) in self.bytes().zip(other.bytes()) {
match s_b.cmp(&o_b) {
Greater => return Greater,
Less => return Less,
Equal => ()
}
}
self.len().cmp(&other.len())
}
}
impl<'a> PartialEq for &'a str {
#[inline]
fn eq(&self, other: & &'a str) -> bool {
eq_slice((*self), (*other))
}
#[inline]
fn ne(&self, other: & &'a str) -> bool { !(*self).eq(other) }
}
impl<'a> Eq for &'a str {}
impl<'a> PartialOrd for &'a str {
#[inline]
fn partial_cmp(&self, other: &&'a str) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<'a, S: Str> Equiv<S> for &'a str {
#[inline]
fn equiv(&self, other: &S) -> bool { eq_slice(*self, other.as_slice()) }
}
}
/// Any string that can be represented as a slice
pub trait Str {
/// Work with `self` as a slice.
fn as_slice<'a>(&'a self) -> &'a str;
}
impl<'a> Str for &'a str {
#[inline]
fn as_slice<'a>(&'a self) -> &'a str { *self }
}
impl<'a> Collection for &'a str {
#[inline]
fn len(&self) -> uint {
self.repr().len
}
}
/// Methods for string slices
pub trait StrSlice<'a> {
/// Returns true if one string contains another
///
/// # Arguments
///
/// - needle - The string to look for
///
/// # Example
///
/// ```rust
/// assert!("bananas".contains("nana"));
/// ```
fn contains<'a>(&self, needle: &'a str) -> bool;
/// Returns true if a string contains a char.
///
/// # Arguments
///
/// - needle - The char to look for
///
/// # Example
///
/// ```rust
/// assert!("hello".contains_char('e'));
/// ```
fn contains_char(&self, needle: char) -> bool;
/// An iterator over the characters of `self`. Note, this iterates
/// over Unicode code-points, not Unicode graphemes.
///
/// # Example
///
/// ```rust
/// let v: Vec<char> = "abc åäö".chars().collect();
/// assert_eq!(v, vec!['a', 'b', 'c', ' ', 'å', 'ä', 'ö']);
/// ```
fn chars(&self) -> Chars<'a>;
/// An iterator over the bytes of `self`
///
/// # Example
///
/// ```rust
/// let v: Vec<u8> = "bors".bytes().collect();
/// assert_eq!(v, b"bors".to_vec());
/// ```
fn bytes(&self) -> Bytes<'a>;
/// An iterator over the characters of `self` and their byte offsets.
fn char_indices(&self) -> CharOffsets<'a>;
/// An iterator over substrings of `self`, separated by characters
/// matched by `sep`.
///
/// # Example
///
/// ```rust
/// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
/// assert_eq!(v, vec!["Mary", "had", "a", "little", "lamb"]);
///
/// let v: Vec<&str> = "abc1def2ghi".split(|c: char| c.is_digit()).collect();
/// assert_eq!(v, vec!["abc", "def", "ghi"]);
///
/// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
/// assert_eq!(v, vec!["lion", "", "tiger", "leopard"]);
///
/// let v: Vec<&str> = "".split('X').collect();
/// assert_eq!(v, vec![""]);
/// ```
fn split<Sep: CharEq>(&self, sep: Sep) -> CharSplits<'a, Sep>;
/// An iterator over substrings of `self`, separated by characters
/// matched by `sep`, restricted to splitting at most `count`
/// times.
///
/// # Example
///
/// ```rust
/// let v: Vec<&str> = "Mary had a little lambda".splitn(2, ' ').collect();
/// assert_eq!(v, vec!["Mary", "had", "a little lambda"]);
///
/// let v: Vec<&str> = "abc1def2ghi".splitn(1, |c: char| c.is_digit()).collect();
/// assert_eq!(v, vec!["abc", "def2ghi"]);
///
/// let v: Vec<&str> = "lionXXtigerXleopard".splitn(2, 'X').collect();
/// assert_eq!(v, vec!["lion", "", "tigerXleopard"]);
///
/// let v: Vec<&str> = "abcXdef".splitn(0, 'X').collect();
/// assert_eq!(v, vec!["abcXdef"]);
///
/// let v: Vec<&str> = "".splitn(1, 'X').collect();
/// assert_eq!(v, vec![""]);
/// ```
fn splitn<Sep: CharEq>(&self, count: uint, sep: Sep) -> CharSplitsN<'a, Sep>;
/// An iterator over substrings of `self`, separated by characters
/// matched by `sep`.
///
/// Equivalent to `split`, except that the trailing substring
/// is skipped if empty (terminator semantics).
///
/// # Example
///
/// ```rust
/// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
/// assert_eq!(v, vec!["A", "B"]);
///
/// let v: Vec<&str> = "A..B..".split_terminator('.').collect();
/// assert_eq!(v, vec!["A", "", "B", ""]);
///
/// let v: Vec<&str> = "Mary had a little lamb".split(' ').rev().collect();
/// assert_eq!(v, vec!["lamb", "little", "a", "had", "Mary"]);
///
/// let v: Vec<&str> = "abc1def2ghi".split(|c: char| c.is_digit()).rev().collect();
/// assert_eq!(v, vec!["ghi", "def", "abc"]);
///
/// let v: Vec<&str> = "lionXXtigerXleopard".split('X').rev().collect();
/// assert_eq!(v, vec!["leopard", "tiger", "", "lion"]);
/// ```
fn split_terminator<Sep: CharEq>(&self, sep: Sep) -> CharSplits<'a, Sep>;
/// An iterator over substrings of `self`, separated by characters
/// matched by `sep`, starting from the end of the string.
/// Restricted to splitting at most `count` times.
///
/// # Example
///
/// ```rust
/// let v: Vec<&str> = "Mary had a little lamb".rsplitn(2, ' ').collect();
/// assert_eq!(v, vec!["lamb", "little", "Mary had a"]);
///
/// let v: Vec<&str> = "abc1def2ghi".rsplitn(1, |c: char| c.is_digit()).collect();
/// assert_eq!(v, vec!["ghi", "abc1def"]);
///
/// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(2, 'X').collect();
/// assert_eq!(v, vec!["leopard", "tiger", "lionX"]);
/// ```
fn rsplitn<Sep: CharEq>(&self, count: uint, sep: Sep) -> CharSplitsN<'a, Sep>;
/// An iterator over the start and end indices of the disjoint
/// matches of `sep` within `self`.
///
/// That is, each returned value `(start, end)` satisfies
/// `self.slice(start, end) == sep`. For matches of `sep` within
/// `self` that overlap, only the indices corresponding to the
/// first match are returned.
///
/// # Example
///
/// ```rust
/// let v: Vec<(uint, uint)> = "abcXXXabcYYYabc".match_indices("abc").collect();
/// assert_eq!(v, vec![(0,3), (6,9), (12,15)]);
///
/// let v: Vec<(uint, uint)> = "1abcabc2".match_indices("abc").collect();
/// assert_eq!(v, vec![(1,4), (4,7)]);
///
/// let v: Vec<(uint, uint)> = "ababa".match_indices("aba").collect();
/// assert_eq!(v, vec![(0, 3)]); // only the first `aba`
/// ```
fn match_indices(&self, sep: &'a str) -> MatchIndices<'a>;
/// An iterator over the substrings of `self` separated by `sep`.
///
/// # Example
///
/// ```rust
/// let v: Vec<&str> = "abcXXXabcYYYabc".split_str("abc").collect();
/// assert_eq!(v, vec!["", "XXX", "YYY", ""]);
///
/// let v: Vec<&str> = "1abcabc2".split_str("abc").collect();
/// assert_eq!(v, vec!["1", "", "2"]);
/// ```
fn split_str(&self, &'a str) -> StrSplits<'a>;
/// An iterator over the lines of a string (subsequences separated
/// by `\n`). This does not include the empty string after a
/// trailing `\n`.
///
/// # Example
///
/// ```rust
/// let four_lines = "foo\nbar\n\nbaz\n";
/// let v: Vec<&str> = four_lines.lines().collect();
/// assert_eq!(v, vec!["foo", "bar", "", "baz"]);
/// ```
fn lines(&self) -> CharSplits<'a, char>;
/// An iterator over the lines of a string, separated by either
/// `\n` or `\r\n`. As with `.lines()`, this does not include an
/// empty trailing line.
///
/// # Example
///
/// ```rust
/// let four_lines = "foo\r\nbar\n\r\nbaz\n";
/// let v: Vec<&str> = four_lines.lines_any().collect();
/// assert_eq!(v, vec!["foo", "bar", "", "baz"]);
/// ```
fn lines_any(&self) -> AnyLines<'a>;
/// Returns the number of Unicode code points (`char`) that a
/// string holds.
///
/// This does not perform any normalization, and is `O(n)`, since
/// UTF-8 is a variable width encoding of code points.
///
/// *Warning*: The number of code points in a string does not directly
/// correspond to the number of visible characters or width of the
/// visible text due to composing characters, and double- and
/// zero-width ones.
///
/// See also `.len()` for the byte length.
///
/// # Example
///
/// ```rust
/// // composed forms of `ö` and `é`
/// let c = "Löwe 老虎 Léopard"; // German, Simplified Chinese, French
/// // decomposed forms of `ö` and `é`
/// let d = "Lo\u0308we 老虎 Le\u0301opard";
///
/// assert_eq!(c.char_len(), 15);
/// assert_eq!(d.char_len(), 17);
///
/// assert_eq!(c.len(), 21);
/// assert_eq!(d.len(), 23);
///
/// // the two strings *look* the same
/// println!("{}", c);
/// println!("{}", d);
/// ```
fn char_len(&self) -> uint;
/// Returns a slice of the given string from the byte range
/// [`begin`..`end`).
///
/// This operation is `O(1)`.
///
/// Fails when `begin` and `end` do not point to valid characters
/// or point beyond the last character of the string.
///
/// See also `slice_to` and `slice_from` for slicing prefixes and
/// suffixes of strings, and `slice_chars` for slicing based on
/// code point counts.
///
/// # Example
///
/// ```rust
/// let s = "Löwe 老虎 Léopard";
/// assert_eq!(s.slice(0, 1), "L");
///
/// assert_eq!(s.slice(1, 9), "öwe 老");
///
/// // these will fail:
/// // byte 2 lies within `ö`:
/// // s.slice(2, 3);
///
/// // byte 8 lies within `老`
/// // s.slice(1, 8);
///
/// // byte 100 is outside the string
/// // s.slice(3, 100);
/// ```
fn slice(&self, begin: uint, end: uint) -> &'a str;
/// Returns a slice of the string from `begin` to its end.
///
/// Equivalent to `self.slice(begin, self.len())`.
///
/// Fails when `begin` does not point to a valid character, or is
/// out of bounds.
///
/// See also `slice`, `slice_to` and `slice_chars`.
fn slice_from(&self, begin: uint) -> &'a str;
/// Returns a slice of the string from the beginning to byte
/// `end`.
///
/// Equivalent to `self.slice(0, end)`.
///
/// Fails when `end` does not point to a valid character, or is
/// out of bounds.
///
/// See also `slice`, `slice_from` and `slice_chars`.
fn slice_to(&self, end: uint) -> &'a str;
/// Returns a slice of the string from the character range
/// [`begin`..`end`).
///
/// That is, start at the `begin`-th code point of the string and
/// continue to the `end`-th code point. This does not detect or
/// handle edge cases such as leaving a combining character as the
/// first code point of the string.
///
/// Due to the design of UTF-8, this operation is `O(end)`.
/// See `slice`, `slice_to` and `slice_from` for `O(1)`
/// variants that use byte indices rather than code point
/// indices.
///
/// Fails if `begin` > `end` or the either `begin` or `end` are
/// beyond the last character of the string.
///
/// # Example
///
/// ```rust
/// let s = "Löwe 老虎 Léopard";
/// assert_eq!(s.slice_chars(0, 4), "Löwe");
/// assert_eq!(s.slice_chars(5, 7), "老虎");
/// ```
fn slice_chars(&self, begin: uint, end: uint) -> &'a str;
/// Returns true if `needle` is a prefix of the string.
///
/// # Example
///
/// ```rust
/// assert!("banana".starts_with("ba"));
/// ```
fn starts_with(&self, needle: &str) -> bool;
/// Returns true if `needle` is a suffix of the string.
///
/// # Example
///
/// ```rust
/// assert!("banana".ends_with("nana"));
/// ```
fn ends_with(&self, needle: &str) -> bool;
/// Returns a string with characters that match `to_trim` removed.
///
/// # Arguments
///
/// * to_trim - a character matcher
///
/// # Example
///
/// ```rust
/// assert_eq!("11foo1bar11".trim_chars('1'), "foo1bar")
/// let x: &[_] = &['1', '2'];
/// assert_eq!("12foo1bar12".trim_chars(x), "foo1bar")
/// assert_eq!("123foo1bar123".trim_chars(|c: char| c.is_digit()), "foo1bar")
/// ```
fn trim_chars<C: CharEq>(&self, to_trim: C) -> &'a str;
/// Returns a string with leading `chars_to_trim` removed.
///
/// # Arguments
///
/// * to_trim - a character matcher
///
/// # Example
///
/// ```rust
/// assert_eq!("11foo1bar11".trim_left_chars('1'), "foo1bar11")
/// let x: &[_] = &['1', '2'];
/// assert_eq!("12foo1bar12".trim_left_chars(x), "foo1bar12")
/// assert_eq!("123foo1bar123".trim_left_chars(|c: char| c.is_digit()), "foo1bar123")
/// ```
fn trim_left_chars<C: CharEq>(&self, to_trim: C) -> &'a str;
/// Returns a string with trailing `chars_to_trim` removed.
///
/// # Arguments
///
/// * to_trim - a character matcher
///
/// # Example
///
/// ```rust
/// assert_eq!("11foo1bar11".trim_right_chars('1'), "11foo1bar")
/// let x: &[_] = &['1', '2'];
/// assert_eq!("12foo1bar12".trim_right_chars(x), "12foo1bar")
/// assert_eq!("123foo1bar123".trim_right_chars(|c: char| c.is_digit()), "123foo1bar")
/// ```
fn trim_right_chars<C: CharEq>(&self, to_trim: C) -> &'a str;
/// Check that `index`-th byte lies at the start and/or end of a
/// UTF-8 code point sequence.
///
/// The start and end of the string (when `index == self.len()`)
/// are considered to be boundaries.
///
/// Fails if `index` is greater than `self.len()`.
///
/// # Example
///
/// ```rust
/// let s = "Löwe 老虎 Léopard";
/// assert!(s.is_char_boundary(0));
/// // start of `老`
/// assert!(s.is_char_boundary(6));
/// assert!(s.is_char_boundary(s.len()));
///
/// // second byte of `ö`
/// assert!(!s.is_char_boundary(2));
///
/// // third byte of `老`
/// assert!(!s.is_char_boundary(8));
/// ```
fn is_char_boundary(&self, index: uint) -> bool;
/// Pluck a character out of a string and return the index of the next
/// character.
///
/// This function can be used to iterate over the Unicode characters of a
/// string.
///
/// # Example
///
/// This example manually iterates through the characters of a
/// string; this should normally be done by `.chars()` or
/// `.char_indices`.
///
/// ```rust
/// use std::str::CharRange;
///
/// let s = "中华Việt Nam";
/// let mut i = 0u;
/// while i < s.len() {
/// let CharRange {ch, next} = s.char_range_at(i);
/// println!("{}: {}", i, ch);
/// i = next;
/// }
/// ```
///
/// ## Output
///
/// ```ignore
/// 0: 中
/// 3: 华
/// 6: V
/// 7: i
/// 8: ệ
/// 11: t
/// 12:
/// 13: N
/// 14: a
/// 15: m
/// ```
///
/// # Arguments
///
/// * s - The string
/// * i - The byte offset of the char to extract
///
/// # Return value
///
/// A record {ch: char, next: uint} containing the char value and the byte
/// index of the next Unicode character.
///
/// # Failure
///
/// If `i` is greater than or equal to the length of the string.
/// If `i` is not the index of the beginning of a valid UTF-8 character.
fn char_range_at(&self, start: uint) -> CharRange;
/// Given a byte position and a str, return the previous char and its position.
///
/// This function can be used to iterate over a Unicode string in reverse.
///
/// Returns 0 for next index if called on start index 0.
///
/// # Failure
///
/// If `i` is greater than the length of the string.
/// If `i` is not an index following a valid UTF-8 character.
fn char_range_at_reverse(&self, start: uint) -> CharRange;
/// Plucks the character starting at the `i`th byte of a string.
///
/// # Example
///
/// ```rust
/// let s = "abπc";
/// assert_eq!(s.char_at(1), 'b');
/// assert_eq!(s.char_at(2), 'π');
/// assert_eq!(s.char_at(4), 'c');
/// ```
///
/// # Failure
///
/// If `i` is greater than or equal to the length of the string.
/// If `i` is not the index of the beginning of a valid UTF-8 character.
fn char_at(&self, i: uint) -> char;
/// Plucks the character ending at the `i`th byte of a string.
///
/// # Failure
///
/// If `i` is greater than the length of the string.
/// If `i` is not an index following a valid UTF-8 character.
fn char_at_reverse(&self, i: uint) -> char;
/// Work with the byte buffer of a string as a byte slice.
///
/// # Example
///
/// ```rust
/// assert_eq!("bors".as_bytes(), b"bors");
/// ```
fn as_bytes(&self) -> &'a [u8];
/// Returns the byte index of the first character of `self` that
/// matches `search`.
///
/// # Return value
///
/// `Some` containing the byte index of the last matching character
/// or `None` if there is no match
///
/// # Example
///
/// ```rust
/// let s = "Löwe 老虎 Léopard";
///
/// assert_eq!(s.find('L'), Some(0));
/// assert_eq!(s.find('é'), Some(14));
///
/// // the first space
/// assert_eq!(s.find(|c: char| c.is_whitespace()), Some(5));
///
/// // neither are found
/// let x: &[_] = &['1', '2'];
/// assert_eq!(s.find(x), None);
/// ```
fn find<C: CharEq>(&self, search: C) -> Option<uint>;
/// Returns the byte index of the last character of `self` that
/// matches `search`.
///
/// # Return value
///
/// `Some` containing the byte index of the last matching character
/// or `None` if there is no match.
///
/// # Example
///
/// ```rust
/// let s = "Löwe 老虎 Léopard";
///
/// assert_eq!(s.rfind('L'), Some(13));
/// assert_eq!(s.rfind('é'), Some(14));
///
/// // the second space
/// assert_eq!(s.rfind(|c: char| c.is_whitespace()), Some(12));
///
/// // searches for an occurrence of either `1` or `2`, but neither are found
/// let x: &[_] = &['1', '2'];
/// assert_eq!(s.rfind(x), None);
/// ```
fn rfind<C: CharEq>(&self, search: C) -> Option<uint>;
/// Returns the byte index of the first matching substring
///
/// # Arguments
///
/// * `needle` - The string to search for
///
/// # Return value
///
/// `Some` containing the byte index of the first matching substring
/// or `None` if there is no match.
///
/// # Example
///
/// ```rust
/// let s = "Löwe 老虎 Léopard";
///
/// assert_eq!(s.find_str("老虎 L"), Some(6));
/// assert_eq!(s.find_str("muffin man"), None);
/// ```
fn find_str(&self, &str) -> Option<uint>;
/// Retrieves the first character from a string slice and returns
/// it. This does not allocate a new string; instead, it returns a
/// slice that point one character beyond the character that was
/// shifted. If the string does not contain any characters,
/// a tuple of None and an empty string is returned instead.
///
/// # Example
///
/// ```rust
/// let s = "Löwe 老虎 Léopard";
/// let (c, s1) = s.slice_shift_char();
/// assert_eq!(c, Some('L'));
/// assert_eq!(s1, "öwe 老虎 Léopard");
///
/// let (c, s2) = s1.slice_shift_char();
/// assert_eq!(c, Some('ö'));
/// assert_eq!(s2, "we 老虎 Léopard");
/// ```
fn slice_shift_char(&self) -> (Option<char>, &'a str);
/// Returns the byte offset of an inner slice relative to an enclosing outer slice.
///
/// Fails if `inner` is not a direct slice contained within self.
///
/// # Example
///
/// ```rust
/// let string = "a\nb\nc";
/// let lines: Vec<&str> = string.lines().collect();
/// let lines = lines.as_slice();
///
/// assert!(string.subslice_offset(lines[0]) == 0); // &"a"
/// assert!(string.subslice_offset(lines[1]) == 2); // &"b"
/// assert!(string.subslice_offset(lines[2]) == 4); // &"c"
/// ```
fn subslice_offset(&self, inner: &str) -> uint;
/// Return an unsafe pointer to the strings buffer.
///
/// The caller must ensure that the string outlives this pointer,
/// and that it is not reallocated (e.g. by pushing to the
/// string).
fn as_ptr(&self) -> *const u8;
/// Return an iterator of `u16` over the string encoded as UTF-16.
fn utf16_units(&self) -> Utf16CodeUnits<'a>;
}
#[inline(never)]
fn slice_error_fail(s: &str, begin: uint, end: uint) -> ! {
assert!(begin <= end);
fail!("index {} and/or {} in `{}` do not lie on character boundary",
begin, end, s);
}
impl<'a> StrSlice<'a> for &'a str {
#[inline]
fn contains<'a>(&self, needle: &'a str) -> bool {
self.find_str(needle).is_some()
}
#[inline]
fn contains_char(&self, needle: char) -> bool {
self.find(needle).is_some()
}
#[inline]
fn chars(&self) -> Chars<'a> {
Chars{iter: self.as_bytes().iter()}
}
#[inline]
fn bytes(&self) -> Bytes<'a> {
self.as_bytes().iter().map(|&b| b)
}
#[inline]
fn char_indices(&self) -> CharOffsets<'a> {
CharOffsets{front_offset: 0, iter: self.chars()}
}
#[inline]
fn split<Sep: CharEq>(&self, sep: Sep) -> CharSplits<'a, Sep> {
CharSplits {
string: *self,
only_ascii: sep.only_ascii(),
sep: sep,
allow_trailing_empty: true,
finished: false,
}
}
#[inline]
fn splitn<Sep: CharEq>(&self, count: uint, sep: Sep)
-> CharSplitsN<'a, Sep> {
CharSplitsN {
iter: self.split(sep),
count: count,
invert: false,
}
}
#[inline]
fn split_terminator<Sep: CharEq>(&self, sep: Sep)
-> CharSplits<'a, Sep> {
CharSplits {
allow_trailing_empty: false,
..self.split(sep)
}
}
#[inline]
fn rsplitn<Sep: CharEq>(&self, count: uint, sep: Sep)
-> CharSplitsN<'a, Sep> {
CharSplitsN {
iter: self.split(sep),
count: count,
invert: true,
}
}
#[inline]
fn match_indices(&self, sep: &'a str) -> MatchIndices<'a> {
assert!(!sep.is_empty())
MatchIndices {
haystack: *self,
needle: sep,
searcher: Searcher::new(self.as_bytes(), sep.as_bytes())
}
}
#[inline]
fn split_str(&self, sep: &'a str) -> StrSplits<'a> {
StrSplits {
it: self.match_indices(sep),
last_end: 0,
finished: false
}
}
#[inline]
fn lines(&self) -> CharSplits<'a, char> {
self.split_terminator('\n')
}
fn lines_any(&self) -> AnyLines<'a> {
self.lines().map(|line| {
let l = line.len();
if l > 0 && line.as_bytes()[l - 1] == b'\r' { line.slice(0, l - 1) }
else { line }
})
}
#[inline]
fn char_len(&self) -> uint { self.chars().count() }
#[inline]
fn slice(&self, begin: uint, end: uint) -> &'a str {
// is_char_boundary checks that the index is in [0, .len()]
if begin <= end &&
self.is_char_boundary(begin) &&
self.is_char_boundary(end) {
unsafe { raw::slice_unchecked(*self, begin, end) }
} else {
slice_error_fail(*self, begin, end)
}
}
#[inline]
fn slice_from(&self, begin: uint) -> &'a str {
// is_char_boundary checks that the index is in [0, .len()]
if self.is_char_boundary(begin) {
unsafe { raw::slice_unchecked(*self, begin, self.len()) }
} else {
slice_error_fail(*self, begin, self.len())
}
}
#[inline]
fn slice_to(&self, end: uint) -> &'a str {
// is_char_boundary checks that the index is in [0, .len()]
if self.is_char_boundary(end) {
unsafe { raw::slice_unchecked(*self, 0, end) }
} else {
slice_error_fail(*self, 0, end)
}
}
fn slice_chars(&self, begin: uint, end: uint) -> &'a str {
assert!(begin <= end);
let mut count = 0;
let mut begin_byte = None;
let mut end_byte = None;
// This could be even more efficient by not decoding,
// only finding the char boundaries
for (idx, _) in self.char_indices() {
if count == begin { begin_byte = Some(idx); }
if count == end { end_byte = Some(idx); break; }
count += 1;
}
if begin_byte.is_none() && count == begin { begin_byte = Some(self.len()) }
if end_byte.is_none() && count == end { end_byte = Some(self.len()) }
match (begin_byte, end_byte) {
(None, _) => fail!("slice_chars: `begin` is beyond end of string"),
(_, None) => fail!("slice_chars: `end` is beyond end of string"),
(Some(a), Some(b)) => unsafe { raw::slice_bytes(*self, a, b) }
}
}
#[inline]
fn starts_with<'a>(&self, needle: &'a str) -> bool {
let n = needle.len();
self.len() >= n && needle.as_bytes() == self.as_bytes().slice_to(n)
}
#[inline]
fn ends_with(&self, needle: &str) -> bool {
let (m, n) = (self.len(), needle.len());
m >= n && needle.as_bytes() == self.as_bytes().slice_from(m - n)
}
#[inline]
fn trim_chars<C: CharEq>(&self, mut to_trim: C) -> &'a str {
let cur = match self.find(|c: char| !to_trim.matches(c)) {
None => "",
Some(i) => unsafe { raw::slice_bytes(*self, i, self.len()) }
};
match cur.rfind(|c: char| !to_trim.matches(c)) {
None => "",
Some(i) => {
let right = cur.char_range_at(i).next;
unsafe { raw::slice_bytes(cur, 0, right) }
}
}
}
#[inline]
fn trim_left_chars<C: CharEq>(&self, mut to_trim: C) -> &'a str {
match self.find(|c: char| !to_trim.matches(c)) {
None => "",
Some(first) => unsafe { raw::slice_bytes(*self, first, self.len()) }
}
}
#[inline]
fn trim_right_chars<C: CharEq>(&self, mut to_trim: C) -> &'a str {
match self.rfind(|c: char| !to_trim.matches(c)) {
None => "",
Some(last) => {
let next = self.char_range_at(last).next;
unsafe { raw::slice_bytes(*self, 0u, next) }
}
}
}
#[inline]
fn is_char_boundary(&self, index: uint) -> bool {
if index == self.len() { return true; }
match self.as_bytes().get(index) {
None => false,
Some(&b) => b < 128u8 || b >= 192u8,
}
}
#[inline]
fn char_range_at(&self, i: uint) -> CharRange {
if self.as_bytes()[i] < 128u8 {
return CharRange {ch: self.as_bytes()[i] as char, next: i + 1 };
}
// Multibyte case is a fn to allow char_range_at to inline cleanly
fn multibyte_char_range_at(s: &str, i: uint) -> CharRange {
let mut val = s.as_bytes()[i] as u32;
let w = UTF8_CHAR_WIDTH[val as uint] as uint;
assert!((w != 0));
val = utf8_first_byte!(val, w);
val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 1]);
if w > 2 { val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 2]); }
if w > 3 { val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 3]); }
return CharRange {ch: unsafe { mem::transmute(val) }, next: i + w};
}
return multibyte_char_range_at(*self, i);
}
#[inline]
fn char_range_at_reverse(&self, start: uint) -> CharRange {
let mut prev = start;
prev = prev.saturating_sub(1);
if self.as_bytes()[prev] < 128 {
return CharRange{ch: self.as_bytes()[prev] as char, next: prev}
}
// Multibyte case is a fn to allow char_range_at_reverse to inline cleanly
fn multibyte_char_range_at_reverse(s: &str, mut i: uint) -> CharRange {
// while there is a previous byte == 10......
while i > 0 && s.as_bytes()[i] & !CONT_MASK == TAG_CONT_U8 {
i -= 1u;
}
let mut val = s.as_bytes()[i] as u32;
let w = UTF8_CHAR_WIDTH[val as uint] as uint;
assert!((w != 0));
val = utf8_first_byte!(val, w);
val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 1]);
if w > 2 { val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 2]); }
if w > 3 { val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 3]); }
return CharRange {ch: unsafe { mem::transmute(val) }, next: i};
}
return multibyte_char_range_at_reverse(*self, prev);
}
#[inline]
fn char_at(&self, i: uint) -> char {
self.char_range_at(i).ch
}
#[inline]
fn char_at_reverse(&self, i: uint) -> char {
self.char_range_at_reverse(i).ch
}
#[inline]
fn as_bytes(&self) -> &'a [u8] {
unsafe { mem::transmute(*self) }
}
fn find<C: CharEq>(&self, mut search: C) -> Option<uint> {
if search.only_ascii() {
self.bytes().position(|b| search.matches(b as char))
} else {
for (index, c) in self.char_indices() {
if search.matches(c) { return Some(index); }
}
None
}
}
fn rfind<C: CharEq>(&self, mut search: C) -> Option<uint> {
if search.only_ascii() {
self.bytes().rposition(|b| search.matches(b as char))
} else {
for (index, c) in self.char_indices().rev() {
if search.matches(c) { return Some(index); }
}
None
}
}
fn find_str(&self, needle: &str) -> Option<uint> {
if needle.is_empty() {
Some(0)
} else {
self.match_indices(needle)
.next()
.map(|(start, _end)| start)
}
}
#[inline]
fn slice_shift_char(&self) -> (Option<char>, &'a str) {
if self.is_empty() {
return (None, *self);
} else {
let CharRange {ch, next} = self.char_range_at(0u);
let next_s = unsafe { raw::slice_bytes(*self, next, self.len()) };
return (Some(ch), next_s);
}
}
fn subslice_offset(&self, inner: &str) -> uint {
let a_start = self.as_ptr() as uint;
let a_end = a_start + self.len();
let b_start = inner.as_ptr() as uint;
let b_end = b_start + inner.len();
assert!(a_start <= b_start);
assert!(b_end <= a_end);
b_start - a_start
}
#[inline]
fn as_ptr(&self) -> *const u8 {
self.repr().data
}
#[inline]
fn utf16_units(&self) -> Utf16CodeUnits<'a> {
Utf16CodeUnits{ chars: self.chars(), extra: 0}
}
}
impl<'a> Default for &'a str {
fn default() -> &'a str { "" }
}