rust/src/librustc_mir/hair/cx/pattern.rs
2016-07-08 12:36:45 +03:00

326 lines
13 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use hair::*;
use hair::cx::Cx;
use rustc_data_structures::indexed_vec::Idx;
use rustc_const_eval as const_eval;
use rustc::hir::def::Def;
use rustc::hir::pat_util::EnumerateAndAdjustIterator;
use rustc::ty::{self, Ty};
use rustc::mir::repr::*;
use rustc::hir::{self, PatKind};
use syntax::ptr::P;
use syntax_pos::Span;
/// When there are multiple patterns in a single arm, each one has its
/// own node-ids for the bindings. References to the variables always
/// use the node-ids from the first pattern in the arm, so we just
/// remap the ids for all subsequent bindings to the first one.
///
/// Example:
/// ```
/// match foo {
/// Test1(flavor /* def 1 */) |
/// Test2(flavor /* def 2 */) if flavor /* ref 1 */.is_tasty() => { ... }
/// _ => { ... }
/// }
/// ```
struct PatCx<'patcx, 'cx: 'patcx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
cx: &'patcx mut Cx<'cx, 'gcx, 'tcx>,
}
impl<'cx, 'gcx, 'tcx> Cx<'cx, 'gcx, 'tcx> {
pub fn irrefutable_pat(&mut self, pat: &hir::Pat) -> Pattern<'tcx> {
PatCx::new(self).to_pattern(pat)
}
pub fn refutable_pat(&mut self,
pat: &hir::Pat)
-> Pattern<'tcx> {
PatCx::new(self).to_pattern(pat)
}
}
impl<'patcx, 'cx, 'gcx, 'tcx> PatCx<'patcx, 'cx, 'gcx, 'tcx> {
fn new(cx: &'patcx mut Cx<'cx, 'gcx, 'tcx>)
-> PatCx<'patcx, 'cx, 'gcx, 'tcx> {
PatCx {
cx: cx,
}
}
fn to_pattern(&mut self, pat: &hir::Pat) -> Pattern<'tcx> {
let mut ty = self.cx.tcx.node_id_to_type(pat.id);
let kind = match pat.node {
PatKind::Wild => PatternKind::Wild,
PatKind::Lit(ref value) => {
let value = const_eval::eval_const_expr(self.cx.tcx.global_tcx(), value);
PatternKind::Constant { value: value }
}
PatKind::Range(ref lo, ref hi) => {
let lo = const_eval::eval_const_expr(self.cx.tcx.global_tcx(), lo);
let lo = Literal::Value { value: lo };
let hi = const_eval::eval_const_expr(self.cx.tcx.global_tcx(), hi);
let hi = Literal::Value { value: hi };
PatternKind::Range { lo: lo, hi: hi }
},
PatKind::Path(..) | PatKind::QPath(..) => {
match self.cx.tcx.expect_def(pat.id) {
Def::Const(def_id) | Def::AssociatedConst(def_id) => {
let tcx = self.cx.tcx.global_tcx();
let substs = Some(self.cx.tcx.node_id_item_substs(pat.id).substs);
match const_eval::lookup_const_by_id(tcx, def_id, substs) {
Some((const_expr, _const_ty)) => {
match const_eval::const_expr_to_pat(tcx,
const_expr,
pat.id,
pat.span) {
Ok(pat) =>
return self.to_pattern(&pat),
Err(_) =>
span_bug!(
pat.span, "illegal constant"),
}
}
None => {
span_bug!(
pat.span,
"cannot eval constant: {:?}",
def_id)
}
}
}
_ => {
self.variant_or_leaf(pat, vec![])
}
}
}
PatKind::Ref(ref subpattern, _) |
PatKind::Box(ref subpattern) => {
PatternKind::Deref { subpattern: self.to_pattern(subpattern) }
}
PatKind::Vec(ref prefix, ref slice, ref suffix) => {
let ty = self.cx.tcx.node_id_to_type(pat.id);
match ty.sty {
ty::TyRef(_, mt) =>
PatternKind::Deref {
subpattern: Pattern {
ty: mt.ty,
span: pat.span,
kind: Box::new(self.slice_or_array_pattern(pat.span, mt.ty, prefix,
slice, suffix)),
},
},
ty::TySlice(..) |
ty::TyArray(..) =>
self.slice_or_array_pattern(pat.span, ty, prefix, slice, suffix),
ref sty =>
span_bug!(
pat.span,
"unexpanded type for vector pattern: {:?}",
sty),
}
}
PatKind::Tuple(ref subpatterns, ddpos) => {
match self.cx.tcx.node_id_to_type(pat.id).sty {
ty::TyTuple(ref tys) => {
let subpatterns =
subpatterns.iter()
.enumerate_and_adjust(tys.len(), ddpos)
.map(|(i, subpattern)| FieldPattern {
field: Field::new(i),
pattern: self.to_pattern(subpattern),
})
.collect();
PatternKind::Leaf { subpatterns: subpatterns }
}
ref sty => span_bug!(pat.span, "unexpected type for tuple pattern: {:?}", sty),
}
}
PatKind::Binding(bm, ref ident, ref sub) => {
let id = self.cx.tcx.expect_def(pat.id).var_id();
let var_ty = self.cx.tcx.node_id_to_type(pat.id);
let region = match var_ty.sty {
ty::TyRef(&r, _) => Some(r),
_ => None,
};
let (mutability, mode) = match bm {
hir::BindByValue(hir::MutMutable) =>
(Mutability::Mut, BindingMode::ByValue),
hir::BindByValue(hir::MutImmutable) =>
(Mutability::Not, BindingMode::ByValue),
hir::BindByRef(hir::MutMutable) =>
(Mutability::Not, BindingMode::ByRef(region.unwrap(), BorrowKind::Mut)),
hir::BindByRef(hir::MutImmutable) =>
(Mutability::Not, BindingMode::ByRef(region.unwrap(), BorrowKind::Shared)),
};
// A ref x pattern is the same node used for x, and as such it has
// x's type, which is &T, where we want T (the type being matched).
if let hir::BindByRef(_) = bm {
if let ty::TyRef(_, mt) = ty.sty {
ty = mt.ty;
} else {
bug!("`ref {}` has wrong type {}", ident.node, ty);
}
}
PatternKind::Binding {
mutability: mutability,
mode: mode,
name: ident.node,
var: id,
ty: var_ty,
subpattern: self.to_opt_pattern(sub),
}
}
PatKind::TupleStruct(_, ref subpatterns, ddpos) => {
let pat_ty = self.cx.tcx.node_id_to_type(pat.id);
let adt_def = match pat_ty.sty {
ty::TyStruct(adt_def, _) | ty::TyEnum(adt_def, _) => adt_def,
_ => span_bug!(pat.span, "tuple struct pattern not applied to struct or enum"),
};
let variant_def = adt_def.variant_of_def(self.cx.tcx.expect_def(pat.id));
let subpatterns =
subpatterns.iter()
.enumerate_and_adjust(variant_def.fields.len(), ddpos)
.map(|(i, field)| FieldPattern {
field: Field::new(i),
pattern: self.to_pattern(field),
})
.collect();
self.variant_or_leaf(pat, subpatterns)
}
PatKind::Struct(_, ref fields, _) => {
let pat_ty = self.cx.tcx.node_id_to_type(pat.id);
let adt_def = match pat_ty.sty {
ty::TyStruct(adt_def, _) | ty::TyEnum(adt_def, _) => adt_def,
_ => {
span_bug!(
pat.span,
"struct pattern not applied to struct or enum");
}
};
let variant_def = adt_def.variant_of_def(self.cx.tcx.expect_def(pat.id));
let subpatterns =
fields.iter()
.map(|field| {
let index = variant_def.index_of_field_named(field.node.name);
let index = index.unwrap_or_else(|| {
span_bug!(
pat.span,
"no field with name {:?}",
field.node.name);
});
FieldPattern {
field: Field::new(index),
pattern: self.to_pattern(&field.node.pat),
}
})
.collect();
self.variant_or_leaf(pat, subpatterns)
}
};
Pattern {
span: pat.span,
ty: ty,
kind: Box::new(kind),
}
}
fn to_patterns(&mut self, pats: &[P<hir::Pat>]) -> Vec<Pattern<'tcx>> {
pats.iter().map(|p| self.to_pattern(p)).collect()
}
fn to_opt_pattern(&mut self, pat: &Option<P<hir::Pat>>) -> Option<Pattern<'tcx>> {
pat.as_ref().map(|p| self.to_pattern(p))
}
fn slice_or_array_pattern(&mut self,
span: Span,
ty: Ty<'tcx>,
prefix: &[P<hir::Pat>],
slice: &Option<P<hir::Pat>>,
suffix: &[P<hir::Pat>])
-> PatternKind<'tcx> {
match ty.sty {
ty::TySlice(..) => {
// matching a slice or fixed-length array
PatternKind::Slice {
prefix: self.to_patterns(prefix),
slice: self.to_opt_pattern(slice),
suffix: self.to_patterns(suffix),
}
}
ty::TyArray(_, len) => {
// fixed-length array
assert!(len >= prefix.len() + suffix.len());
PatternKind::Array {
prefix: self.to_patterns(prefix),
slice: self.to_opt_pattern(slice),
suffix: self.to_patterns(suffix),
}
}
_ => {
span_bug!(span, "unexpanded macro or bad constant etc");
}
}
}
fn variant_or_leaf(&mut self,
pat: &hir::Pat,
subpatterns: Vec<FieldPattern<'tcx>>)
-> PatternKind<'tcx> {
match self.cx.tcx.expect_def(pat.id) {
Def::Variant(enum_id, variant_id) => {
let adt_def = self.cx.tcx.lookup_adt_def(enum_id);
if adt_def.variants.len() > 1 {
PatternKind::Variant {
adt_def: adt_def,
variant_index: adt_def.variant_index_with_id(variant_id),
subpatterns: subpatterns,
}
} else {
PatternKind::Leaf { subpatterns: subpatterns }
}
}
Def::Struct(..) | Def::TyAlias(..) | Def::AssociatedTy(..) => {
PatternKind::Leaf { subpatterns: subpatterns }
}
def => {
span_bug!(pat.span, "inappropriate def for pattern: {:?}", def);
}
}
}
}