rust/src/libsyntax/tokenstream.rs
2017-08-30 01:38:54 +03:00

673 lines
22 KiB
Rust

// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Token Streams
//!
//! `TokenStream`s represent syntactic objects before they are converted into ASTs.
//! A `TokenStream` is, roughly speaking, a sequence (eg stream) of `TokenTree`s,
//! which are themselves a single `Token` or a `Delimited` subsequence of tokens.
//!
//! ## Ownership
//! `TokenStreams` are persistent data structures constructed as ropes with reference
//! counted-children. In general, this means that calling an operation on a `TokenStream`
//! (such as `slice`) produces an entirely new `TokenStream` from the borrowed reference to
//! the original. This essentially coerces `TokenStream`s into 'views' of their subparts,
//! and a borrowed `TokenStream` is sufficient to build an owned `TokenStream` without taking
//! ownership of the original.
use syntax_pos::{BytePos, Span, DUMMY_SP};
use ext::base;
use ext::tt::{macro_parser, quoted};
use parse::Directory;
use parse::token::{self, Token};
use print::pprust;
use serialize::{Decoder, Decodable, Encoder, Encodable};
use util::RcSlice;
use std::{fmt, iter, mem};
use std::hash::{self, Hash};
/// A delimited sequence of token trees
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Delimited {
/// The type of delimiter
pub delim: token::DelimToken,
/// The delimited sequence of token trees
pub tts: ThinTokenStream,
}
impl Delimited {
/// Returns the opening delimiter as a token.
pub fn open_token(&self) -> token::Token {
token::OpenDelim(self.delim)
}
/// Returns the closing delimiter as a token.
pub fn close_token(&self) -> token::Token {
token::CloseDelim(self.delim)
}
/// Returns the opening delimiter as a token tree.
pub fn open_tt(&self, span: Span) -> TokenTree {
let open_span = if span == DUMMY_SP {
DUMMY_SP
} else {
span.with_hi(span.lo() + BytePos(self.delim.len() as u32))
};
TokenTree::Token(open_span, self.open_token())
}
/// Returns the closing delimiter as a token tree.
pub fn close_tt(&self, span: Span) -> TokenTree {
let close_span = if span == DUMMY_SP {
DUMMY_SP
} else {
span.with_lo(span.hi() - BytePos(self.delim.len() as u32))
};
TokenTree::Token(close_span, self.close_token())
}
/// Returns the token trees inside the delimiters.
pub fn stream(&self) -> TokenStream {
self.tts.clone().into()
}
}
/// When the main rust parser encounters a syntax-extension invocation, it
/// parses the arguments to the invocation as a token-tree. This is a very
/// loose structure, such that all sorts of different AST-fragments can
/// be passed to syntax extensions using a uniform type.
///
/// If the syntax extension is an MBE macro, it will attempt to match its
/// LHS token tree against the provided token tree, and if it finds a
/// match, will transcribe the RHS token tree, splicing in any captured
/// `macro_parser::matched_nonterminals` into the `SubstNt`s it finds.
///
/// The RHS of an MBE macro is the only place `SubstNt`s are substituted.
/// Nothing special happens to misnamed or misplaced `SubstNt`s.
#[derive(Debug, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub enum TokenTree {
/// A single token
Token(Span, token::Token),
/// A delimited sequence of token trees
Delimited(Span, Delimited),
}
impl TokenTree {
/// Use this token tree as a matcher to parse given tts.
pub fn parse(cx: &base::ExtCtxt, mtch: &[quoted::TokenTree], tts: TokenStream)
-> macro_parser::NamedParseResult {
// `None` is because we're not interpolating
let directory = Directory {
path: cx.current_expansion.module.directory.clone(),
ownership: cx.current_expansion.directory_ownership,
};
macro_parser::parse(cx.parse_sess(), tts, mtch, Some(directory), true)
}
/// Check if this TokenTree is equal to the other, regardless of span information.
pub fn eq_unspanned(&self, other: &TokenTree) -> bool {
match (self, other) {
(&TokenTree::Token(_, ref tk), &TokenTree::Token(_, ref tk2)) => tk == tk2,
(&TokenTree::Delimited(_, ref dl), &TokenTree::Delimited(_, ref dl2)) => {
dl.delim == dl2.delim &&
dl.stream().trees().zip(dl2.stream().trees()).all(|(tt, tt2)| tt.eq_unspanned(&tt2))
}
(_, _) => false,
}
}
/// Retrieve the TokenTree's span.
pub fn span(&self) -> Span {
match *self {
TokenTree::Token(sp, _) | TokenTree::Delimited(sp, _) => sp,
}
}
/// Modify the `TokenTree`'s span inplace.
pub fn set_span(&mut self, span: Span) {
match *self {
TokenTree::Token(ref mut sp, _) | TokenTree::Delimited(ref mut sp, _) => {
*sp = span;
}
}
}
/// Indicates if the stream is a token that is equal to the provided token.
pub fn eq_token(&self, t: Token) -> bool {
match *self {
TokenTree::Token(_, ref tk) => *tk == t,
_ => false,
}
}
pub fn joint(self) -> TokenStream {
TokenStream { kind: TokenStreamKind::JointTree(self) }
}
}
/// # Token Streams
///
/// A `TokenStream` is an abstract sequence of tokens, organized into `TokenTree`s.
/// The goal is for procedural macros to work with `TokenStream`s and `TokenTree`s
/// instead of a representation of the abstract syntax tree.
/// Today's `TokenTree`s can still contain AST via `Token::Interpolated` for back-compat.
#[derive(Clone, Debug)]
pub struct TokenStream {
kind: TokenStreamKind,
}
#[derive(Clone, Debug)]
enum TokenStreamKind {
Empty,
Tree(TokenTree),
JointTree(TokenTree),
Stream(RcSlice<TokenStream>),
}
impl From<TokenTree> for TokenStream {
fn from(tt: TokenTree) -> TokenStream {
TokenStream { kind: TokenStreamKind::Tree(tt) }
}
}
impl From<Token> for TokenStream {
fn from(token: Token) -> TokenStream {
TokenTree::Token(DUMMY_SP, token).into()
}
}
impl<T: Into<TokenStream>> iter::FromIterator<T> for TokenStream {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
TokenStream::concat(iter.into_iter().map(Into::into).collect::<Vec<_>>())
}
}
impl Eq for TokenStream {}
impl PartialEq<TokenStream> for TokenStream {
fn eq(&self, other: &TokenStream) -> bool {
self.trees().eq(other.trees())
}
}
impl TokenStream {
pub fn len(&self) -> usize {
if let TokenStreamKind::Stream(ref slice) = self.kind {
slice.len()
} else {
0
}
}
pub fn empty() -> TokenStream {
TokenStream { kind: TokenStreamKind::Empty }
}
pub fn is_empty(&self) -> bool {
match self.kind {
TokenStreamKind::Empty => true,
_ => false,
}
}
pub fn concat(mut streams: Vec<TokenStream>) -> TokenStream {
match streams.len() {
0 => TokenStream::empty(),
1 => streams.pop().unwrap(),
_ => TokenStream::concat_rc_slice(RcSlice::new(streams)),
}
}
fn concat_rc_slice(streams: RcSlice<TokenStream>) -> TokenStream {
TokenStream { kind: TokenStreamKind::Stream(streams) }
}
pub fn trees(&self) -> Cursor {
self.clone().into_trees()
}
pub fn into_trees(self) -> Cursor {
Cursor::new(self)
}
/// Compares two TokenStreams, checking equality without regarding span information.
pub fn eq_unspanned(&self, other: &TokenStream) -> bool {
for (t1, t2) in self.trees().zip(other.trees()) {
if !t1.eq_unspanned(&t2) {
return false;
}
}
true
}
/// Precondition: `self` consists of a single token tree.
/// Returns true if the token tree is a joint operation w.r.t. `proc_macro::TokenNode`.
pub fn as_tree(self) -> (TokenTree, bool /* joint? */) {
match self.kind {
TokenStreamKind::Tree(tree) => (tree, false),
TokenStreamKind::JointTree(tree) => (tree, true),
_ => unreachable!(),
}
}
pub fn map_enumerated<F: FnMut(usize, TokenTree) -> TokenTree>(self, mut f: F) -> TokenStream {
let mut trees = self.into_trees();
let mut result = Vec::new();
let mut i = 0;
while let Some(stream) = trees.next_as_stream() {
result.push(match stream.kind {
TokenStreamKind::Tree(tree) => f(i, tree).into(),
TokenStreamKind::JointTree(tree) => f(i, tree).joint(),
_ => unreachable!()
});
i += 1;
}
TokenStream::concat(result)
}
pub fn map<F: FnMut(TokenTree) -> TokenTree>(self, mut f: F) -> TokenStream {
let mut trees = self.into_trees();
let mut result = Vec::new();
while let Some(stream) = trees.next_as_stream() {
result.push(match stream.kind {
TokenStreamKind::Tree(tree) => f(tree).into(),
TokenStreamKind::JointTree(tree) => f(tree).joint(),
_ => unreachable!()
});
}
TokenStream::concat(result)
}
fn first_tree(&self) -> Option<TokenTree> {
match self.kind {
TokenStreamKind::Empty => None,
TokenStreamKind::Tree(ref tree) |
TokenStreamKind::JointTree(ref tree) => Some(tree.clone()),
TokenStreamKind::Stream(ref stream) => stream.first().unwrap().first_tree(),
}
}
fn last_tree_if_joint(&self) -> Option<TokenTree> {
match self.kind {
TokenStreamKind::Empty | TokenStreamKind::Tree(..) => None,
TokenStreamKind::JointTree(ref tree) => Some(tree.clone()),
TokenStreamKind::Stream(ref stream) => stream.last().unwrap().last_tree_if_joint(),
}
}
}
pub struct TokenStreamBuilder(Vec<TokenStream>);
impl TokenStreamBuilder {
pub fn new() -> TokenStreamBuilder {
TokenStreamBuilder(Vec::new())
}
pub fn push<T: Into<TokenStream>>(&mut self, stream: T) {
let stream = stream.into();
let last_tree_if_joint = self.0.last().and_then(TokenStream::last_tree_if_joint);
if let Some(TokenTree::Token(last_span, last_tok)) = last_tree_if_joint {
if let Some(TokenTree::Token(span, tok)) = stream.first_tree() {
if let Some(glued_tok) = last_tok.glue(tok) {
let last_stream = self.0.pop().unwrap();
self.push_all_but_last_tree(&last_stream);
let glued_span = last_span.to(span);
self.0.push(TokenTree::Token(glued_span, glued_tok).into());
self.push_all_but_first_tree(&stream);
return
}
}
}
self.0.push(stream);
}
pub fn add<T: Into<TokenStream>>(mut self, stream: T) -> Self {
self.push(stream);
self
}
pub fn build(self) -> TokenStream {
TokenStream::concat(self.0)
}
fn push_all_but_last_tree(&mut self, stream: &TokenStream) {
if let TokenStreamKind::Stream(ref streams) = stream.kind {
let len = streams.len();
match len {
1 => {}
2 => self.0.push(streams[0].clone().into()),
_ => self.0.push(TokenStream::concat_rc_slice(streams.sub_slice(0 .. len - 1))),
}
self.push_all_but_last_tree(&streams[len - 1])
}
}
fn push_all_but_first_tree(&mut self, stream: &TokenStream) {
if let TokenStreamKind::Stream(ref streams) = stream.kind {
let len = streams.len();
match len {
1 => {}
2 => self.0.push(streams[1].clone().into()),
_ => self.0.push(TokenStream::concat_rc_slice(streams.sub_slice(1 .. len))),
}
self.push_all_but_first_tree(&streams[0])
}
}
}
#[derive(Clone)]
pub struct Cursor(CursorKind);
#[derive(Clone)]
enum CursorKind {
Empty,
Tree(TokenTree, bool /* consumed? */),
JointTree(TokenTree, bool /* consumed? */),
Stream(StreamCursor),
}
#[derive(Clone)]
struct StreamCursor {
stream: RcSlice<TokenStream>,
index: usize,
stack: Vec<(RcSlice<TokenStream>, usize)>,
}
impl StreamCursor {
fn new(stream: RcSlice<TokenStream>) -> Self {
StreamCursor { stream: stream, index: 0, stack: Vec::new() }
}
fn next_as_stream(&mut self) -> Option<TokenStream> {
loop {
if self.index < self.stream.len() {
self.index += 1;
let next = self.stream[self.index - 1].clone();
match next.kind {
TokenStreamKind::Tree(..) | TokenStreamKind::JointTree(..) => return Some(next),
TokenStreamKind::Stream(stream) => self.insert(stream),
TokenStreamKind::Empty => {}
}
} else if let Some((stream, index)) = self.stack.pop() {
self.stream = stream;
self.index = index;
} else {
return None;
}
}
}
fn insert(&mut self, stream: RcSlice<TokenStream>) {
self.stack.push((mem::replace(&mut self.stream, stream),
mem::replace(&mut self.index, 0)));
}
}
impl Iterator for Cursor {
type Item = TokenTree;
fn next(&mut self) -> Option<TokenTree> {
self.next_as_stream().map(|stream| match stream.kind {
TokenStreamKind::Tree(tree) | TokenStreamKind::JointTree(tree) => tree,
_ => unreachable!()
})
}
}
impl Cursor {
fn new(stream: TokenStream) -> Self {
Cursor(match stream.kind {
TokenStreamKind::Empty => CursorKind::Empty,
TokenStreamKind::Tree(tree) => CursorKind::Tree(tree, false),
TokenStreamKind::JointTree(tree) => CursorKind::JointTree(tree, false),
TokenStreamKind::Stream(stream) => CursorKind::Stream(StreamCursor::new(stream)),
})
}
pub fn next_as_stream(&mut self) -> Option<TokenStream> {
let (stream, consumed) = match self.0 {
CursorKind::Tree(ref tree, ref mut consumed @ false) =>
(tree.clone().into(), consumed),
CursorKind::JointTree(ref tree, ref mut consumed @ false) =>
(tree.clone().joint(), consumed),
CursorKind::Stream(ref mut cursor) => return cursor.next_as_stream(),
_ => return None,
};
*consumed = true;
Some(stream)
}
pub fn insert(&mut self, stream: TokenStream) {
match self.0 {
_ if stream.is_empty() => return,
CursorKind::Empty => *self = stream.trees(),
CursorKind::Tree(_, consumed) | CursorKind::JointTree(_, consumed) => {
*self = TokenStream::concat(vec![self.original_stream(), stream]).trees();
if consumed {
self.next();
}
}
CursorKind::Stream(ref mut cursor) => {
cursor.insert(ThinTokenStream::from(stream).0.unwrap());
}
}
}
pub fn original_stream(&self) -> TokenStream {
match self.0 {
CursorKind::Empty => TokenStream::empty(),
CursorKind::Tree(ref tree, _) => tree.clone().into(),
CursorKind::JointTree(ref tree, _) => tree.clone().joint(),
CursorKind::Stream(ref cursor) => TokenStream::concat_rc_slice({
cursor.stack.get(0).cloned().map(|(stream, _)| stream)
.unwrap_or(cursor.stream.clone())
}),
}
}
pub fn look_ahead(&self, n: usize) -> Option<TokenTree> {
fn look_ahead(streams: &[TokenStream], mut n: usize) -> Result<TokenTree, usize> {
for stream in streams {
n = match stream.kind {
TokenStreamKind::Tree(ref tree) | TokenStreamKind::JointTree(ref tree)
if n == 0 => return Ok(tree.clone()),
TokenStreamKind::Tree(..) | TokenStreamKind::JointTree(..) => n - 1,
TokenStreamKind::Stream(ref stream) => match look_ahead(stream, n) {
Ok(tree) => return Ok(tree),
Err(n) => n,
},
_ => n,
};
}
Err(n)
}
match self.0 {
CursorKind::Empty |
CursorKind::Tree(_, true) |
CursorKind::JointTree(_, true) => Err(n),
CursorKind::Tree(ref tree, false) |
CursorKind::JointTree(ref tree, false) => look_ahead(&[tree.clone().into()], n),
CursorKind::Stream(ref cursor) => {
look_ahead(&cursor.stream[cursor.index ..], n).or_else(|mut n| {
for &(ref stream, index) in cursor.stack.iter().rev() {
n = match look_ahead(&stream[index..], n) {
Ok(tree) => return Ok(tree),
Err(n) => n,
}
}
Err(n)
})
}
}.ok()
}
}
/// The `TokenStream` type is large enough to represent a single `TokenTree` without allocation.
/// `ThinTokenStream` is smaller, but needs to allocate to represent a single `TokenTree`.
/// We must use `ThinTokenStream` in `TokenTree::Delimited` to avoid infinite size due to recursion.
#[derive(Debug, Clone)]
pub struct ThinTokenStream(Option<RcSlice<TokenStream>>);
impl From<TokenStream> for ThinTokenStream {
fn from(stream: TokenStream) -> ThinTokenStream {
ThinTokenStream(match stream.kind {
TokenStreamKind::Empty => None,
TokenStreamKind::Tree(tree) => Some(RcSlice::new(vec![tree.into()])),
TokenStreamKind::JointTree(tree) => Some(RcSlice::new(vec![tree.joint()])),
TokenStreamKind::Stream(stream) => Some(stream),
})
}
}
impl From<ThinTokenStream> for TokenStream {
fn from(stream: ThinTokenStream) -> TokenStream {
stream.0.map(TokenStream::concat_rc_slice).unwrap_or_else(TokenStream::empty)
}
}
impl Eq for ThinTokenStream {}
impl PartialEq<ThinTokenStream> for ThinTokenStream {
fn eq(&self, other: &ThinTokenStream) -> bool {
TokenStream::from(self.clone()) == TokenStream::from(other.clone())
}
}
impl fmt::Display for TokenStream {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&pprust::tokens_to_string(self.clone()))
}
}
impl Encodable for TokenStream {
fn encode<E: Encoder>(&self, encoder: &mut E) -> Result<(), E::Error> {
self.trees().collect::<Vec<_>>().encode(encoder)
}
}
impl Decodable for TokenStream {
fn decode<D: Decoder>(decoder: &mut D) -> Result<TokenStream, D::Error> {
Vec::<TokenTree>::decode(decoder).map(|vec| vec.into_iter().collect())
}
}
impl Hash for TokenStream {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
for tree in self.trees() {
tree.hash(state);
}
}
}
impl Encodable for ThinTokenStream {
fn encode<E: Encoder>(&self, encoder: &mut E) -> Result<(), E::Error> {
TokenStream::from(self.clone()).encode(encoder)
}
}
impl Decodable for ThinTokenStream {
fn decode<D: Decoder>(decoder: &mut D) -> Result<ThinTokenStream, D::Error> {
TokenStream::decode(decoder).map(Into::into)
}
}
impl Hash for ThinTokenStream {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
TokenStream::from(self.clone()).hash(state);
}
}
#[cfg(test)]
mod tests {
use super::*;
use syntax::ast::Ident;
use syntax_pos::{Span, BytePos, NO_EXPANSION};
use parse::token::Token;
use util::parser_testing::string_to_stream;
fn string_to_ts(string: &str) -> TokenStream {
string_to_stream(string.to_owned())
}
fn sp(a: u32, b: u32) -> Span {
Span::new(BytePos(a), BytePos(b), NO_EXPANSION)
}
#[test]
fn test_concat() {
let test_res = string_to_ts("foo::bar::baz");
let test_fst = string_to_ts("foo::bar");
let test_snd = string_to_ts("::baz");
let eq_res = TokenStream::concat(vec![test_fst, test_snd]);
assert_eq!(test_res.trees().count(), 5);
assert_eq!(eq_res.trees().count(), 5);
assert_eq!(test_res.eq_unspanned(&eq_res), true);
}
#[test]
fn test_to_from_bijection() {
let test_start = string_to_ts("foo::bar(baz)");
let test_end = test_start.trees().collect();
assert_eq!(test_start, test_end)
}
#[test]
fn test_eq_0() {
let test_res = string_to_ts("foo");
let test_eqs = string_to_ts("foo");
assert_eq!(test_res, test_eqs)
}
#[test]
fn test_eq_1() {
let test_res = string_to_ts("::bar::baz");
let test_eqs = string_to_ts("::bar::baz");
assert_eq!(test_res, test_eqs)
}
#[test]
fn test_eq_3() {
let test_res = string_to_ts("");
let test_eqs = string_to_ts("");
assert_eq!(test_res, test_eqs)
}
#[test]
fn test_diseq_0() {
let test_res = string_to_ts("::bar::baz");
let test_eqs = string_to_ts("bar::baz");
assert_eq!(test_res == test_eqs, false)
}
#[test]
fn test_diseq_1() {
let test_res = string_to_ts("(bar,baz)");
let test_eqs = string_to_ts("bar,baz");
assert_eq!(test_res == test_eqs, false)
}
#[test]
fn test_is_empty() {
let test0: TokenStream = Vec::<TokenTree>::new().into_iter().collect();
let test1: TokenStream =
TokenTree::Token(sp(0, 1), Token::Ident(Ident::from_str("a"))).into();
let test2 = string_to_ts("foo(bar::baz)");
assert_eq!(test0.is_empty(), true);
assert_eq!(test1.is_empty(), false);
assert_eq!(test2.is_empty(), false);
}
}