rust/miri/range_map.rs
2017-12-14 11:35:33 +01:00

251 lines
7.8 KiB
Rust

//! Implements a map from integer indices to data.
//! Rather than storing data for every index, internally, this maps entire ranges to the data.
//! To this end, the APIs all work on ranges, not on individual integers. Ranges are split as
//! necessary (e.g. when [0,5) is first associated with X, and then [1,2) is mutated).
//! Users must not depend on whether a range is coalesced or not, even though this is observable
//! via the iteration APIs.
use std::collections::BTreeMap;
use std::ops;
#[derive(Clone, Debug)]
pub struct RangeMap<T> {
map: BTreeMap<Range, T>,
}
// The derived `Ord` impl sorts first by the first field, then, if the fields are the same,
// by the second field.
// This is exactly what we need for our purposes, since a range query on a BTReeSet/BTreeMap will give us all
// `MemoryRange`s whose `start` is <= than the one we're looking for, but not > the end of the range we're checking.
// At the same time the `end` is irrelevant for the sorting and range searching, but used for the check.
// This kind of search breaks, if `end < start`, so don't do that!
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
struct Range {
start: u64,
end: u64, // Invariant: end > start
}
impl Range {
fn range(offset: u64, len: u64) -> ops::Range<Range> {
assert!(len > 0);
// We select all elements that are within
// the range given by the offset into the allocation and the length.
// This is sound if all ranges that intersect with the argument range, are in the
// resulting range of ranges.
let left = Range {
// lowest range to include `offset`
start: 0,
end: offset + 1,
};
let right = Range {
// lowest (valid) range not to include `offset+len`
start: offset + len,
end: offset + len + 1,
};
left..right
}
/// Tests if all of [offset, offset+len) are contained in this range.
fn overlaps(&self, offset: u64, len: u64) -> bool {
assert!(len > 0);
offset < self.end && offset + len >= self.start
}
}
impl<T> RangeMap<T> {
pub fn new() -> RangeMap<T> {
RangeMap { map: BTreeMap::new() }
}
fn iter_with_range<'a>(
&'a self,
offset: u64,
len: u64,
) -> impl Iterator<Item = (&'a Range, &'a T)> + 'a {
assert!(len > 0);
self.map.range(Range::range(offset, len)).filter_map(
move |(range,
data)| {
if range.overlaps(offset, len) {
Some((range, data))
} else {
None
}
},
)
}
pub fn iter<'a>(&'a self, offset: u64, len: u64) -> impl Iterator<Item = &'a T> + 'a {
self.iter_with_range(offset, len).map(|(_, data)| data)
}
fn split_entry_at(&mut self, offset: u64)
where
T: Clone,
{
let range = match self.iter_with_range(offset, 1).next() {
Some((&range, _)) => range,
None => return,
};
assert!(
range.start <= offset && range.end > offset,
"We got a range that doesn't even contain what we asked for."
);
// There is an entry overlapping this position, see if we have to split it
if range.start < offset {
let data = self.map.remove(&range).unwrap();
let old = self.map.insert(
Range {
start: range.start,
end: offset,
},
data.clone(),
);
assert!(old.is_none());
let old = self.map.insert(
Range {
start: offset,
end: range.end,
},
data,
);
assert!(old.is_none());
}
}
pub fn iter_mut_all<'a>(&'a mut self) -> impl Iterator<Item = &'a mut T> + 'a {
self.map.values_mut()
}
/// Provide mutable iteration over everything in the given range. As a side-effect,
/// this will split entries in the map that are only partially hit by the given range,
/// to make sure that when they are mutated, the effect is constrained to the given range.
pub fn iter_mut_with_gaps<'a>(
&'a mut self,
offset: u64,
len: u64,
) -> impl Iterator<Item = &'a mut T> + 'a
where
T: Clone,
{
assert!(len > 0);
// Preparation: Split first and last entry as needed.
self.split_entry_at(offset);
self.split_entry_at(offset + len);
// Now we can provide a mutable iterator
self.map.range_mut(Range::range(offset, len)).filter_map(
move |(&range, data)| {
if range.overlaps(offset, len) {
assert!(
offset <= range.start && offset + len >= range.end,
"The splitting went wrong"
);
Some(data)
} else {
// Skip this one
None
}
},
)
}
/// Provide a mutable iterator over everything in the given range, with the same side-effects as
/// iter_mut_with_gaps. Furthermore, if there are gaps between ranges, fill them with the given default.
/// This is also how you insert.
pub fn iter_mut<'a>(&'a mut self, offset: u64, len: u64) -> impl Iterator<Item = &'a mut T> + 'a
where
T: Clone + Default,
{
// Do a first iteration to collect the gaps
let mut gaps = Vec::new();
let mut last_end = offset;
for (range, _) in self.iter_with_range(offset, len) {
if last_end < range.start {
gaps.push(Range {
start: last_end,
end: range.start,
});
}
last_end = range.end;
}
if last_end < offset + len {
gaps.push(Range {
start: last_end,
end: offset + len,
});
}
// Add default for all gaps
for gap in gaps {
let old = self.map.insert(gap, Default::default());
assert!(old.is_none());
}
// Now provide mutable iteration
self.iter_mut_with_gaps(offset, len)
}
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&T) -> bool,
{
let mut remove = Vec::new();
for (range, data) in self.map.iter() {
if !f(data) {
remove.push(*range);
}
}
for range in remove {
self.map.remove(&range);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
/// Query the map at every offset in the range and collect the results.
fn to_vec<T: Copy>(map: &RangeMap<T>, offset: u64, len: u64) -> Vec<T> {
(offset..offset + len)
.into_iter()
.map(|i| *map.iter(i, 1).next().unwrap())
.collect()
}
#[test]
fn basic_insert() {
let mut map = RangeMap::<i32>::new();
// Insert
for x in map.iter_mut(10, 1) {
*x = 42;
}
// Check
assert_eq!(to_vec(&map, 10, 1), vec![42]);
}
#[test]
fn gaps() {
let mut map = RangeMap::<i32>::new();
for x in map.iter_mut(11, 1) {
*x = 42;
}
for x in map.iter_mut(15, 1) {
*x = 42;
}
// Now request a range that needs three gaps filled
for x in map.iter_mut(10, 10) {
if *x != 42 {
*x = 23;
}
}
assert_eq!(
to_vec(&map, 10, 10),
vec![23, 42, 23, 23, 23, 42, 23, 23, 23, 23]
);
assert_eq!(to_vec(&map, 13, 5), vec![23, 23, 42, 23, 23]);
}
}