rust/src/librustc/middle/ty.rs
Alex Crichton ec57db083f rustc: Add the concept of a Strict Version Hash
This new SVH is used to uniquely identify all crates as a snapshot in time of
their ABI/API/publicly reachable state. This current calculation is just a hash
of the entire crate's AST. This is obviously incorrect, but it is currently the
reality for today.

This change threads through the new Svh structure which originates from crate
dependencies. The concept of crate id hash is preserved to provide efficient
matching on filenames for crate loading. The inspected hash once crate metadata
is opened has been changed to use the new Svh.

The goal of this hash is to identify when upstream crates have changed but
downstream crates have not been recompiled. This will prevent the def-id drift
problem where upstream crates were recompiled, thereby changing their metadata,
but downstream crates were not recompiled.

In the future this hash can be expanded to exclude contents of the AST like doc
comments, but limitations in the compiler prevent this change from being made at
this time.

Closes #10207
2014-02-28 10:48:04 -08:00

5139 lines
163 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[allow(non_camel_case_types)];
use back::svh::Svh;
use driver::session;
use metadata::csearch;
use metadata;
use middle::const_eval;
use middle::lang_items::{ExchangeHeapLangItem, OpaqueStructLangItem};
use middle::lang_items::{TyDescStructLangItem, TyVisitorTraitLangItem};
use middle::freevars;
use middle::resolve;
use middle::resolve_lifetime;
use middle::ty;
use middle::subst::Subst;
use middle::typeck;
use middle::ty_fold;
use middle::ty_fold::TypeFolder;
use middle;
use util::ppaux::{note_and_explain_region, bound_region_ptr_to_str};
use util::ppaux::{trait_store_to_str, ty_to_str, vstore_to_str};
use util::ppaux::{Repr, UserString};
use util::common::{indenter};
use std::cast;
use std::cell::{Cell, RefCell};
use std::cmp;
use std::fmt::Show;
use std::fmt;
use std::hash::{Hash, sip};
use std::ops;
use std::rc::Rc;
use std::vec;
use collections::{HashMap, HashSet};
use syntax::ast::*;
use syntax::ast_util::{is_local, lit_is_str};
use syntax::ast_util;
use syntax::attr;
use syntax::attr::AttrMetaMethods;
use syntax::codemap::Span;
use syntax::parse::token;
use syntax::parse::token::InternedString;
use syntax::{ast, ast_map};
use syntax::opt_vec::OptVec;
use syntax::opt_vec;
use syntax::abi::AbiSet;
use syntax;
use collections::enum_set::{EnumSet, CLike};
pub type Disr = u64;
pub static INITIAL_DISCRIMINANT_VALUE: Disr = 0;
// Data types
#[deriving(Eq, Hash)]
pub struct field {
ident: ast::Ident,
mt: mt
}
#[deriving(Clone)]
pub enum MethodContainer {
TraitContainer(ast::DefId),
ImplContainer(ast::DefId),
}
#[deriving(Clone)]
pub struct Method {
ident: ast::Ident,
generics: ty::Generics,
fty: BareFnTy,
explicit_self: ast::ExplicitSelf_,
vis: ast::Visibility,
def_id: ast::DefId,
container: MethodContainer,
// If this method is provided, we need to know where it came from
provided_source: Option<ast::DefId>
}
impl Method {
pub fn new(ident: ast::Ident,
generics: ty::Generics,
fty: BareFnTy,
explicit_self: ast::ExplicitSelf_,
vis: ast::Visibility,
def_id: ast::DefId,
container: MethodContainer,
provided_source: Option<ast::DefId>)
-> Method {
Method {
ident: ident,
generics: generics,
fty: fty,
explicit_self: explicit_self,
vis: vis,
def_id: def_id,
container: container,
provided_source: provided_source
}
}
pub fn container_id(&self) -> ast::DefId {
match self.container {
TraitContainer(id) => id,
ImplContainer(id) => id,
}
}
}
pub struct Impl {
did: DefId,
ident: Ident,
methods: ~[@Method]
}
#[deriving(Clone, Eq, Hash)]
pub struct mt {
ty: t,
mutbl: ast::Mutability,
}
#[deriving(Clone, Eq, Encodable, Decodable, Hash, Show)]
pub enum vstore {
vstore_fixed(uint),
vstore_uniq,
vstore_slice(Region)
}
#[deriving(Clone, Eq, Hash, Encodable, Decodable, Show)]
pub enum TraitStore {
UniqTraitStore, // ~Trait
RegionTraitStore(Region), // &Trait
}
pub struct field_ty {
name: Name,
id: DefId,
vis: ast::Visibility,
}
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[deriving(Eq, Hash)]
pub struct creader_cache_key {
cnum: CrateNum,
pos: uint,
len: uint
}
type creader_cache = RefCell<HashMap<creader_cache_key, t>>;
struct intern_key {
sty: *sty,
}
// NB: Do not replace this with #[deriving(Eq)]. The automatically-derived
// implementation will not recurse through sty and you will get stack
// exhaustion.
impl cmp::Eq for intern_key {
fn eq(&self, other: &intern_key) -> bool {
unsafe {
*self.sty == *other.sty
}
}
fn ne(&self, other: &intern_key) -> bool {
!self.eq(other)
}
}
impl Hash for intern_key {
fn hash(&self, s: &mut sip::SipState) {
unsafe {
(*self.sty).hash(s)
}
}
}
pub enum ast_ty_to_ty_cache_entry {
atttce_unresolved, /* not resolved yet */
atttce_resolved(t) /* resolved to a type, irrespective of region */
}
#[deriving(Clone, Eq, Decodable, Encodable)]
pub struct ItemVariances {
self_param: Option<Variance>,
type_params: OptVec<Variance>,
region_params: OptVec<Variance>
}
#[deriving(Clone, Eq, Decodable, Encodable, Show)]
pub enum Variance {
Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
}
pub enum AutoAdjustment {
AutoAddEnv(ty::Region, ast::Sigil),
AutoDerefRef(AutoDerefRef),
AutoObject(ast::Sigil, Option<ty::Region>,
ast::Mutability,
ty::BuiltinBounds,
ast::DefId, /* Trait ID */
ty::substs /* Trait substitutions */)
}
#[deriving(Decodable, Encodable)]
pub struct AutoDerefRef {
autoderefs: uint,
autoref: Option<AutoRef>
}
#[deriving(Decodable, Encodable)]
pub enum AutoRef {
/// Convert from T to &T
AutoPtr(Region, ast::Mutability),
/// Convert from ~[]/&[] to &[] (or str)
AutoBorrowVec(Region, ast::Mutability),
/// Convert from ~[]/&[] to &&[] (or str)
AutoBorrowVecRef(Region, ast::Mutability),
/// Convert from @fn()/~fn()/|| to ||
AutoBorrowFn(Region),
/// Convert from T to *T
AutoUnsafe(ast::Mutability),
/// Convert from ~Trait/&Trait to &Trait
AutoBorrowObj(Region, ast::Mutability),
}
pub type ctxt = @ctxt_;
/// The data structure to keep track of all the information that typechecker
/// generates so that so that it can be reused and doesn't have to be redone
/// later on.
pub struct ctxt_ {
diag: @syntax::diagnostic::SpanHandler,
interner: RefCell<HashMap<intern_key, ~t_box_>>,
next_id: Cell<uint>,
cstore: @metadata::cstore::CStore,
sess: session::Session,
def_map: resolve::DefMap,
named_region_map: @RefCell<resolve_lifetime::NamedRegionMap>,
region_maps: middle::region::RegionMaps,
// Stores the types for various nodes in the AST. Note that this table
// is not guaranteed to be populated until after typeck. See
// typeck::check::fn_ctxt for details.
node_types: node_type_table,
// Stores the type parameters which were substituted to obtain the type
// of this node. This only applies to nodes that refer to entities
// parameterized by type parameters, such as generic fns, types, or
// other items.
node_type_substs: RefCell<HashMap<NodeId, ~[t]>>,
// Maps from a method to the method "descriptor"
methods: RefCell<HashMap<DefId, @Method>>,
// Maps from a trait def-id to a list of the def-ids of its methods
trait_method_def_ids: RefCell<HashMap<DefId, @~[DefId]>>,
// A cache for the trait_methods() routine
trait_methods_cache: RefCell<HashMap<DefId, @~[@Method]>>,
impl_trait_cache: RefCell<HashMap<ast::DefId, Option<@ty::TraitRef>>>,
trait_refs: RefCell<HashMap<NodeId, @TraitRef>>,
trait_defs: RefCell<HashMap<DefId, @TraitDef>>,
map: ast_map::Map,
intrinsic_defs: RefCell<HashMap<ast::DefId, t>>,
freevars: RefCell<freevars::freevar_map>,
tcache: type_cache,
rcache: creader_cache,
short_names_cache: RefCell<HashMap<t, ~str>>,
needs_unwind_cleanup_cache: RefCell<HashMap<t, bool>>,
tc_cache: RefCell<HashMap<uint, TypeContents>>,
ast_ty_to_ty_cache: RefCell<HashMap<NodeId, ast_ty_to_ty_cache_entry>>,
enum_var_cache: RefCell<HashMap<DefId, @~[@VariantInfo]>>,
ty_param_defs: RefCell<HashMap<ast::NodeId, TypeParameterDef>>,
adjustments: RefCell<HashMap<ast::NodeId, @AutoAdjustment>>,
normalized_cache: RefCell<HashMap<t, t>>,
lang_items: @middle::lang_items::LanguageItems,
// A mapping of fake provided method def_ids to the default implementation
provided_method_sources: RefCell<HashMap<ast::DefId, ast::DefId>>,
supertraits: RefCell<HashMap<ast::DefId, @~[@TraitRef]>>,
// Maps from def-id of a type or region parameter to its
// (inferred) variance.
item_variance_map: RefCell<HashMap<ast::DefId, @ItemVariances>>,
// A mapping from the def ID of an enum or struct type to the def ID
// of the method that implements its destructor. If the type is not
// present in this map, it does not have a destructor. This map is
// populated during the coherence phase of typechecking.
destructor_for_type: RefCell<HashMap<ast::DefId, ast::DefId>>,
// A method will be in this list if and only if it is a destructor.
destructors: RefCell<HashSet<ast::DefId>>,
// Maps a trait onto a list of impls of that trait.
trait_impls: RefCell<HashMap<ast::DefId, @RefCell<~[@Impl]>>>,
// Maps a def_id of a type to a list of its inherent impls.
// Contains implementations of methods that are inherent to a type.
// Methods in these implementations don't need to be exported.
inherent_impls: RefCell<HashMap<ast::DefId, @RefCell<~[@Impl]>>>,
// Maps a def_id of an impl to an Impl structure.
// Note that this contains all of the impls that we know about,
// including ones in other crates. It's not clear that this is the best
// way to do it.
impls: RefCell<HashMap<ast::DefId, @Impl>>,
// Set of used unsafe nodes (functions or blocks). Unsafe nodes not
// present in this set can be warned about.
used_unsafe: RefCell<HashSet<ast::NodeId>>,
// Set of nodes which mark locals as mutable which end up getting used at
// some point. Local variable definitions not in this set can be warned
// about.
used_mut_nodes: RefCell<HashSet<ast::NodeId>>,
// vtable resolution information for impl declarations
impl_vtables: typeck::impl_vtable_map,
// The set of external nominal types whose implementations have been read.
// This is used for lazy resolution of methods.
populated_external_types: RefCell<HashSet<ast::DefId>>,
// The set of external traits whose implementations have been read. This
// is used for lazy resolution of traits.
populated_external_traits: RefCell<HashSet<ast::DefId>>,
// Borrows
upvar_borrow_map: RefCell<UpvarBorrowMap>,
// These two caches are used by const_eval when decoding external statics
// and variants that are found.
extern_const_statics: RefCell<HashMap<ast::DefId, Option<@ast::Expr>>>,
extern_const_variants: RefCell<HashMap<ast::DefId, Option<@ast::Expr>>>,
}
pub enum tbox_flag {
has_params = 1,
has_self = 2,
needs_infer = 4,
has_regions = 8,
has_ty_err = 16,
has_ty_bot = 32,
// a meta-flag: subst may be required if the type has parameters, a self
// type, or references bound regions
needs_subst = 1 | 2 | 8
}
pub type t_box = &'static t_box_;
pub struct t_box_ {
sty: sty,
id: uint,
flags: uint,
}
// To reduce refcounting cost, we're representing types as unsafe pointers
// throughout the compiler. These are simply casted t_box values. Use ty::get
// to cast them back to a box. (Without the cast, compiler performance suffers
// ~15%.) This does mean that a t value relies on the ctxt to keep its box
// alive, and using ty::get is unsafe when the ctxt is no longer alive.
enum t_opaque {}
#[deriving(Clone, Eq, Hash)]
pub struct t { priv inner: *t_opaque }
impl fmt::Show for t {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.buf.write_str("*t_opaque")
}
}
pub fn get(t: t) -> t_box {
unsafe {
let t2: t_box = cast::transmute(t);
t2
}
}
pub fn tbox_has_flag(tb: t_box, flag: tbox_flag) -> bool {
(tb.flags & (flag as uint)) != 0u
}
pub fn type_has_params(t: t) -> bool {
tbox_has_flag(get(t), has_params)
}
pub fn type_has_self(t: t) -> bool { tbox_has_flag(get(t), has_self) }
pub fn type_needs_infer(t: t) -> bool {
tbox_has_flag(get(t), needs_infer)
}
pub fn type_has_regions(t: t) -> bool {
tbox_has_flag(get(t), has_regions)
}
pub fn type_id(t: t) -> uint { get(t).id }
#[deriving(Clone, Eq, Hash)]
pub struct BareFnTy {
purity: ast::Purity,
abis: AbiSet,
sig: FnSig
}
#[deriving(Clone, Eq, Hash)]
pub struct ClosureTy {
purity: ast::Purity,
sigil: ast::Sigil,
onceness: ast::Onceness,
region: Region,
bounds: BuiltinBounds,
sig: FnSig,
}
/**
* Signature of a function type, which I have arbitrarily
* decided to use to refer to the input/output types.
*
* - `binder_id` is the node id where this fn type appeared;
* it is used to identify all the bound regions appearing
* in the input/output types that are bound by this fn type
* (vs some enclosing or enclosed fn type)
* - `inputs` is the list of arguments and their modes.
* - `output` is the return type.
* - `variadic` indicates whether this is a varidic function. (only true for foreign fns)
*/
#[deriving(Clone, Eq, Hash)]
pub struct FnSig {
binder_id: ast::NodeId,
inputs: ~[t],
output: t,
variadic: bool
}
#[deriving(Clone, Eq, Hash)]
pub struct param_ty {
idx: uint,
def_id: DefId
}
/// Representation of regions:
#[deriving(Clone, Eq, Hash, Encodable, Decodable, Show)]
pub enum Region {
// Region bound in a type or fn declaration which will be
// substituted 'early' -- that is, at the same time when type
// parameters are substituted.
ReEarlyBound(/* param id */ ast::NodeId, /*index*/ uint, ast::Name),
// Region bound in a function scope, which will be substituted when the
// function is called. The first argument must be the `binder_id` of
// some enclosing function signature.
ReLateBound(/* binder_id */ ast::NodeId, BoundRegion),
/// When checking a function body, the types of all arguments and so forth
/// that refer to bound region parameters are modified to refer to free
/// region parameters.
ReFree(FreeRegion),
/// A concrete region naming some expression within the current function.
ReScope(NodeId),
/// Static data that has an "infinite" lifetime. Top in the region lattice.
ReStatic,
/// A region variable. Should not exist after typeck.
ReInfer(InferRegion),
/// Empty lifetime is for data that is never accessed.
/// Bottom in the region lattice. We treat ReEmpty somewhat
/// specially; at least right now, we do not generate instances of
/// it during the GLB computations, but rather
/// generate an error instead. This is to improve error messages.
/// The only way to get an instance of ReEmpty is to have a region
/// variable with no constraints.
ReEmpty,
}
/**
* Upvars do not get their own node-id. Instead, we use the pair of
* the original var id (that is, the root variable that is referenced
* by the upvar) and the id of the closure expression.
*/
#[deriving(Clone, Eq, Hash)]
pub struct UpvarId {
var_id: ast::NodeId,
closure_expr_id: ast::NodeId,
}
#[deriving(Clone, Eq, Hash)]
pub enum BorrowKind {
/// Data must be immutable and is aliasable.
ImmBorrow,
/// Data must be immutable but not aliasable. This kind of borrow
/// cannot currently be expressed by the user and is used only in
/// implicit closure bindings. It is needed when you the closure
/// is borrowing or mutating a mutable referent, e.g.:
///
/// let x: &mut int = ...;
/// let y = || *x += 5;
///
/// If we were to try to translate this closure into a more explicit
/// form, we'd encounter an error with the code as written:
///
/// struct Env { x: & &mut int }
/// let x: &mut int = ...;
/// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
///
/// This is then illegal because you cannot mutate a `&mut` found
/// in an aliasable location. To solve, you'd have to translate with
/// an `&mut` borrow:
///
/// struct Env { x: & &mut int }
/// let x: &mut int = ...;
/// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
///
/// Now the assignment to `**env.x` is legal, but creating a
/// mutable pointer to `x` is not because `x` is not mutable. We
/// could fix this by declaring `x` as `let mut x`. This is ok in
/// user code, if awkward, but extra weird for closures, since the
/// borrow is hidden.
///
/// So we introduce a "unique imm" borrow -- the referent is
/// immutable, but not aliasable. This solves the problem. For
/// simplicity, we don't give users the way to express this
/// borrow, it's just used when translating closures.
UniqueImmBorrow,
/// Data is mutable and not aliasable.
MutBorrow
}
/**
* Information describing the borrowing of an upvar. This is computed
* during `typeck`, specifically by `regionck`. The general idea is
* that the compiler analyses treat closures like:
*
* let closure: &'e fn() = || {
* x = 1; // upvar x is assigned to
* use(y); // upvar y is read
* foo(&z); // upvar z is borrowed immutably
* };
*
* as if they were "desugared" to something loosely like:
*
* struct Vars<'x,'y,'z> { x: &'x mut int,
* y: &'y const int,
* z: &'z int }
* let closure: &'e fn() = {
* fn f(env: &Vars) {
* *env.x = 1;
* use(*env.y);
* foo(env.z);
* }
* let env: &'e mut Vars<'x,'y,'z> = &mut Vars { x: &'x mut x,
* y: &'y const y,
* z: &'z z };
* (env, f)
* };
*
* This is basically what happens at runtime. The closure is basically
* an existentially quantified version of the `(env, f)` pair.
*
* This data structure indicates the region and mutability of a single
* one of the `x...z` borrows.
*
* It may not be obvious why each borrowed variable gets its own
* lifetime (in the desugared version of the example, these are indicated
* by the lifetime parameters `'x`, `'y`, and `'z` in the `Vars` definition).
* Each such lifetime must encompass the lifetime `'e` of the closure itself,
* but need not be identical to it. The reason that this makes sense:
*
* - Callers are only permitted to invoke the closure, and hence to
* use the pointers, within the lifetime `'e`, so clearly `'e` must
* be a sublifetime of `'x...'z`.
* - The closure creator knows which upvars were borrowed by the closure
* and thus `x...z` will be reserved for `'x...'z` respectively.
* - Through mutation, the borrowed upvars can actually escape the
* the closure, so sometimes it is necessary for them to be larger
* than the closure lifetime itself.
*/
#[deriving(Eq, Clone)]
pub struct UpvarBorrow {
kind: BorrowKind,
region: ty::Region,
}
pub type UpvarBorrowMap = HashMap<UpvarId, UpvarBorrow>;
impl Region {
pub fn is_bound(&self) -> bool {
match self {
&ty::ReEarlyBound(..) => true,
&ty::ReLateBound(..) => true,
_ => false
}
}
}
#[deriving(Clone, Eq, TotalOrd, TotalEq, Hash, Encodable, Decodable, Show)]
pub struct FreeRegion {
scope_id: NodeId,
bound_region: BoundRegion
}
#[deriving(Clone, Eq, TotalEq, TotalOrd, Hash, Encodable, Decodable, Show)]
pub enum BoundRegion {
/// An anonymous region parameter for a given fn (&T)
BrAnon(uint),
/// Named region parameters for functions (a in &'a T)
///
/// The def-id is needed to distinguish free regions in
/// the event of shadowing.
BrNamed(ast::DefId, ast::Name),
/// Fresh bound identifiers created during GLB computations.
BrFresh(uint),
}
/**
* Represents the values to use when substituting lifetime parameters.
* If the value is `ErasedRegions`, then this subst is occurring during
* trans, and all region parameters will be replaced with `ty::ReStatic`. */
#[deriving(Clone, Eq, Hash)]
pub enum RegionSubsts {
ErasedRegions,
NonerasedRegions(OptVec<ty::Region>)
}
/**
* The type substs represents the kinds of things that can be substituted to
* convert a polytype into a monotype. Note however that substituting bound
* regions other than `self` is done through a different mechanism:
*
* - `tps` represents the type parameters in scope. They are indexed
* according to the order in which they were declared.
*
* - `self_r` indicates the region parameter `self` that is present on nominal
* types (enums, structs) declared as having a region parameter. `self_r`
* should always be none for types that are not region-parameterized and
* Some(_) for types that are. The only bound region parameter that should
* appear within a region-parameterized type is `self`.
*
* - `self_ty` is the type to which `self` should be remapped, if any. The
* `self` type is rather funny in that it can only appear on traits and is
* always substituted away to the implementing type for a trait. */
#[deriving(Clone, Eq, Hash)]
pub struct substs {
self_ty: Option<ty::t>,
tps: ~[t],
regions: RegionSubsts,
}
mod primitives {
use super::t_box_;
use syntax::ast;
macro_rules! def_prim_ty(
($name:ident, $sty:expr, $id:expr) => (
pub static $name: t_box_ = t_box_ {
sty: $sty,
id: $id,
flags: 0,
};
)
)
def_prim_ty!(TY_NIL, super::ty_nil, 0)
def_prim_ty!(TY_BOOL, super::ty_bool, 1)
def_prim_ty!(TY_CHAR, super::ty_char, 2)
def_prim_ty!(TY_INT, super::ty_int(ast::TyI), 3)
def_prim_ty!(TY_I8, super::ty_int(ast::TyI8), 4)
def_prim_ty!(TY_I16, super::ty_int(ast::TyI16), 5)
def_prim_ty!(TY_I32, super::ty_int(ast::TyI32), 6)
def_prim_ty!(TY_I64, super::ty_int(ast::TyI64), 7)
def_prim_ty!(TY_UINT, super::ty_uint(ast::TyU), 8)
def_prim_ty!(TY_U8, super::ty_uint(ast::TyU8), 9)
def_prim_ty!(TY_U16, super::ty_uint(ast::TyU16), 10)
def_prim_ty!(TY_U32, super::ty_uint(ast::TyU32), 11)
def_prim_ty!(TY_U64, super::ty_uint(ast::TyU64), 12)
def_prim_ty!(TY_F32, super::ty_float(ast::TyF32), 14)
def_prim_ty!(TY_F64, super::ty_float(ast::TyF64), 15)
pub static TY_BOT: t_box_ = t_box_ {
sty: super::ty_bot,
id: 16,
flags: super::has_ty_bot as uint,
};
pub static TY_ERR: t_box_ = t_box_ {
sty: super::ty_err,
id: 17,
flags: super::has_ty_err as uint,
};
pub static LAST_PRIMITIVE_ID: uint = 18;
}
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in libsyntax/ast.rs as well.
#[deriving(Clone, Eq, Hash)]
pub enum sty {
ty_nil,
ty_bot,
ty_bool,
ty_char,
ty_int(ast::IntTy),
ty_uint(ast::UintTy),
ty_float(ast::FloatTy),
ty_str(vstore),
ty_enum(DefId, substs),
ty_box(t),
ty_uniq(t),
ty_vec(mt, vstore),
ty_ptr(mt),
ty_rptr(Region, mt),
ty_bare_fn(BareFnTy),
ty_closure(ClosureTy),
ty_trait(DefId, substs, TraitStore, ast::Mutability, BuiltinBounds),
ty_struct(DefId, substs),
ty_tup(~[t]),
ty_param(param_ty), // type parameter
ty_self(DefId), /* special, implicit `self` type parameter;
* def_id is the id of the trait */
ty_infer(InferTy), // something used only during inference/typeck
ty_err, // Also only used during inference/typeck, to represent
// the type of an erroneous expression (helps cut down
// on non-useful type error messages)
// "Fake" types, used for trans purposes
ty_unboxed_vec(mt),
}
#[deriving(Eq, Hash)]
pub struct TraitRef {
def_id: DefId,
substs: substs
}
#[deriving(Clone, Eq)]
pub enum IntVarValue {
IntType(ast::IntTy),
UintType(ast::UintTy),
}
#[deriving(Clone, Show)]
pub enum terr_vstore_kind {
terr_vec,
terr_str,
terr_fn,
terr_trait
}
#[deriving(Clone, Show)]
pub struct expected_found<T> {
expected: T,
found: T
}
// Data structures used in type unification
#[deriving(Clone, Show)]
pub enum type_err {
terr_mismatch,
terr_purity_mismatch(expected_found<Purity>),
terr_onceness_mismatch(expected_found<Onceness>),
terr_abi_mismatch(expected_found<AbiSet>),
terr_mutability,
terr_sigil_mismatch(expected_found<ast::Sigil>),
terr_box_mutability,
terr_ptr_mutability,
terr_ref_mutability,
terr_vec_mutability,
terr_tuple_size(expected_found<uint>),
terr_ty_param_size(expected_found<uint>),
terr_record_size(expected_found<uint>),
terr_record_mutability,
terr_record_fields(expected_found<Ident>),
terr_arg_count,
terr_regions_does_not_outlive(Region, Region),
terr_regions_not_same(Region, Region),
terr_regions_no_overlap(Region, Region),
terr_regions_insufficiently_polymorphic(BoundRegion, Region),
terr_regions_overly_polymorphic(BoundRegion, Region),
terr_vstores_differ(terr_vstore_kind, expected_found<vstore>),
terr_trait_stores_differ(terr_vstore_kind, expected_found<TraitStore>),
terr_in_field(@type_err, ast::Ident),
terr_sorts(expected_found<t>),
terr_integer_as_char,
terr_int_mismatch(expected_found<IntVarValue>),
terr_float_mismatch(expected_found<ast::FloatTy>),
terr_traits(expected_found<ast::DefId>),
terr_builtin_bounds(expected_found<BuiltinBounds>),
terr_variadic_mismatch(expected_found<bool>)
}
#[deriving(Eq, Hash)]
pub struct ParamBounds {
builtin_bounds: BuiltinBounds,
trait_bounds: ~[@TraitRef]
}
pub type BuiltinBounds = EnumSet<BuiltinBound>;
#[deriving(Clone, Encodable, Eq, Decodable, Hash, Show)]
#[repr(uint)]
pub enum BuiltinBound {
BoundStatic,
BoundSend,
BoundFreeze,
BoundSized,
BoundPod,
}
pub fn EmptyBuiltinBounds() -> BuiltinBounds {
EnumSet::empty()
}
pub fn AllBuiltinBounds() -> BuiltinBounds {
let mut set = EnumSet::empty();
set.add(BoundStatic);
set.add(BoundSend);
set.add(BoundFreeze);
set.add(BoundSized);
set
}
impl CLike for BuiltinBound {
fn to_uint(&self) -> uint {
*self as uint
}
fn from_uint(v: uint) -> BuiltinBound {
unsafe { cast::transmute(v) }
}
}
#[deriving(Clone, Eq, Hash)]
pub struct TyVid(uint);
#[deriving(Clone, Eq, Hash)]
pub struct IntVid(uint);
#[deriving(Clone, Eq, Hash)]
pub struct FloatVid(uint);
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
pub struct RegionVid {
id: uint
}
#[deriving(Clone, Eq, Hash)]
pub enum InferTy {
TyVar(TyVid),
IntVar(IntVid),
FloatVar(FloatVid)
}
#[deriving(Clone, Encodable, Decodable, Hash, Show)]
pub enum InferRegion {
ReVar(RegionVid),
ReSkolemized(uint, BoundRegion)
}
impl cmp::Eq for InferRegion {
fn eq(&self, other: &InferRegion) -> bool {
match ((*self), *other) {
(ReVar(rva), ReVar(rvb)) => {
rva == rvb
}
(ReSkolemized(rva, _), ReSkolemized(rvb, _)) => {
rva == rvb
}
_ => false
}
}
fn ne(&self, other: &InferRegion) -> bool {
!((*self) == (*other))
}
}
pub trait Vid {
fn to_uint(&self) -> uint;
}
impl Vid for TyVid {
fn to_uint(&self) -> uint { let TyVid(v) = *self; v }
}
impl fmt::Show for TyVid {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result{
write!(f.buf, "<generic \\#{}>", self.to_uint())
}
}
impl Vid for IntVid {
fn to_uint(&self) -> uint { let IntVid(v) = *self; v }
}
impl fmt::Show for IntVid {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f.buf, "<generic integer \\#{}>", self.to_uint())
}
}
impl Vid for FloatVid {
fn to_uint(&self) -> uint { let FloatVid(v) = *self; v }
}
impl fmt::Show for FloatVid {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f.buf, "<generic float \\#{}>", self.to_uint())
}
}
impl Vid for RegionVid {
fn to_uint(&self) -> uint { self.id }
}
impl fmt::Show for RegionVid {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.id.fmt(f)
}
}
impl fmt::Show for FnSig {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// grr, without tcx not much we can do.
write!(f.buf, "(...)")
}
}
impl fmt::Show for InferTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
TyVar(ref v) => v.fmt(f),
IntVar(ref v) => v.fmt(f),
FloatVar(ref v) => v.fmt(f),
}
}
}
impl fmt::Show for IntVarValue {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
IntType(ref v) => v.fmt(f),
UintType(ref v) => v.fmt(f),
}
}
}
#[deriving(Clone)]
pub struct TypeParameterDef {
ident: ast::Ident,
def_id: ast::DefId,
bounds: @ParamBounds,
default: Option<ty::t>
}
#[deriving(Encodable, Decodable, Clone)]
pub struct RegionParameterDef {
ident: ast::Name,
def_id: ast::DefId,
}
/// Information about the type/lifetime parameters associated with an item.
/// Analogous to ast::Generics.
#[deriving(Clone)]
pub struct Generics {
/// List of type parameters declared on the item.
type_param_defs: Rc<~[TypeParameterDef]>,
/// List of region parameters declared on the item.
region_param_defs: Rc<~[RegionParameterDef]>,
}
impl Generics {
pub fn has_type_params(&self) -> bool {
!self.type_param_defs.borrow().is_empty()
}
pub fn type_param_defs<'a>(&'a self) -> &'a [TypeParameterDef] {
self.type_param_defs.borrow().as_slice()
}
pub fn region_param_defs<'a>(&'a self) -> &'a [RegionParameterDef] {
self.region_param_defs.borrow().as_slice()
}
}
/// When type checking, we use the `ParameterEnvironment` to track
/// details about the type/lifetime parameters that are in scope.
/// It primarily stores the bounds information.
///
/// Note: This information might seem to be redundant with the data in
/// `tcx.ty_param_defs`, but it is not. That table contains the
/// parameter definitions from an "outside" perspective, but this
/// struct will contain the bounds for a parameter as seen from inside
/// the function body. Currently the only real distinction is that
/// bound lifetime parameters are replaced with free ones, but in the
/// future I hope to refine the representation of types so as to make
/// more distinctions clearer.
pub struct ParameterEnvironment {
/// A substitution that can be applied to move from
/// the "outer" view of a type or method to the "inner" view.
/// In general, this means converting from bound parameters to
/// free parameters. Since we currently represent bound/free type
/// parameters in the same way, this only has an affect on regions.
free_substs: ty::substs,
/// Bound on the Self parameter
self_param_bound: Option<@TraitRef>,
/// Bounds on each numbered type parameter
type_param_bounds: ~[ParamBounds],
}
/// A polytype.
///
/// - `bounds`: The list of bounds for each type parameter. The length of the
/// list also tells you how many type parameters there are.
///
/// - `rp`: true if the type is region-parameterized. Types can have at
/// most one region parameter, always called `&self`.
///
/// - `ty`: the base type. May have reference to the (unsubstituted) bound
/// region `&self` or to (unsubstituted) ty_param types
#[deriving(Clone)]
pub struct ty_param_bounds_and_ty {
generics: Generics,
ty: t
}
/// As `ty_param_bounds_and_ty` but for a trait ref.
pub struct TraitDef {
generics: Generics,
bounds: BuiltinBounds,
trait_ref: @ty::TraitRef,
}
pub struct ty_param_substs_and_ty {
substs: ty::substs,
ty: ty::t
}
type type_cache = RefCell<HashMap<ast::DefId, ty_param_bounds_and_ty>>;
pub type node_type_table = RefCell<HashMap<uint,t>>;
pub fn mk_ctxt(s: session::Session,
dm: resolve::DefMap,
named_region_map: @RefCell<resolve_lifetime::NamedRegionMap>,
map: ast_map::Map,
freevars: freevars::freevar_map,
region_maps: middle::region::RegionMaps,
lang_items: @middle::lang_items::LanguageItems)
-> ctxt {
@ctxt_ {
named_region_map: named_region_map,
item_variance_map: RefCell::new(HashMap::new()),
diag: s.diagnostic(),
interner: RefCell::new(HashMap::new()),
next_id: Cell::new(primitives::LAST_PRIMITIVE_ID),
cstore: s.cstore,
sess: s,
def_map: dm,
region_maps: region_maps,
node_types: RefCell::new(HashMap::new()),
node_type_substs: RefCell::new(HashMap::new()),
trait_refs: RefCell::new(HashMap::new()),
trait_defs: RefCell::new(HashMap::new()),
map: map,
intrinsic_defs: RefCell::new(HashMap::new()),
freevars: RefCell::new(freevars),
tcache: RefCell::new(HashMap::new()),
rcache: RefCell::new(HashMap::new()),
short_names_cache: RefCell::new(HashMap::new()),
needs_unwind_cleanup_cache: RefCell::new(HashMap::new()),
tc_cache: RefCell::new(HashMap::new()),
ast_ty_to_ty_cache: RefCell::new(HashMap::new()),
enum_var_cache: RefCell::new(HashMap::new()),
methods: RefCell::new(HashMap::new()),
trait_method_def_ids: RefCell::new(HashMap::new()),
trait_methods_cache: RefCell::new(HashMap::new()),
impl_trait_cache: RefCell::new(HashMap::new()),
ty_param_defs: RefCell::new(HashMap::new()),
adjustments: RefCell::new(HashMap::new()),
normalized_cache: RefCell::new(HashMap::new()),
lang_items: lang_items,
provided_method_sources: RefCell::new(HashMap::new()),
supertraits: RefCell::new(HashMap::new()),
destructor_for_type: RefCell::new(HashMap::new()),
destructors: RefCell::new(HashSet::new()),
trait_impls: RefCell::new(HashMap::new()),
inherent_impls: RefCell::new(HashMap::new()),
impls: RefCell::new(HashMap::new()),
used_unsafe: RefCell::new(HashSet::new()),
used_mut_nodes: RefCell::new(HashSet::new()),
impl_vtables: RefCell::new(HashMap::new()),
populated_external_types: RefCell::new(HashSet::new()),
populated_external_traits: RefCell::new(HashSet::new()),
upvar_borrow_map: RefCell::new(HashMap::new()),
extern_const_statics: RefCell::new(HashMap::new()),
extern_const_variants: RefCell::new(HashMap::new()),
}
}
// Type constructors
// Interns a type/name combination, stores the resulting box in cx.interner,
// and returns the box as cast to an unsafe ptr (see comments for t above).
pub fn mk_t(cx: ctxt, st: sty) -> t {
// Check for primitive types.
match st {
ty_nil => return mk_nil(),
ty_err => return mk_err(),
ty_bool => return mk_bool(),
ty_int(i) => return mk_mach_int(i),
ty_uint(u) => return mk_mach_uint(u),
ty_float(f) => return mk_mach_float(f),
ty_char => return mk_char(),
ty_bot => return mk_bot(),
_ => {}
};
let key = intern_key { sty: &st };
{
let mut interner = cx.interner.borrow_mut();
match interner.get().find(&key) {
Some(t) => unsafe { return cast::transmute(&t.sty); },
_ => ()
}
}
let mut flags = 0u;
fn rflags(r: Region) -> uint {
(has_regions as uint) | {
match r {
ty::ReInfer(_) => needs_infer as uint,
_ => 0u
}
}
}
fn sflags(substs: &substs) -> uint {
let mut f = 0u;
for tt in substs.tps.iter() { f |= get(*tt).flags; }
match substs.regions {
ErasedRegions => {}
NonerasedRegions(ref regions) => {
for r in regions.iter() {
f |= rflags(*r)
}
}
}
return f;
}
match &st {
&ty_str(vstore_slice(r)) => {
flags |= rflags(r);
}
&ty_vec(ref mt, vstore_slice(r)) => {
flags |= rflags(r);
flags |= get(mt.ty).flags;
}
&ty_nil | &ty_bool | &ty_char | &ty_int(_) | &ty_float(_) | &ty_uint(_) |
&ty_str(_) => {}
// You might think that we could just return ty_err for
// any type containing ty_err as a component, and get
// rid of the has_ty_err flag -- likewise for ty_bot (with
// the exception of function types that return bot).
// But doing so caused sporadic memory corruption, and
// neither I (tjc) nor nmatsakis could figure out why,
// so we're doing it this way.
&ty_bot => flags |= has_ty_bot as uint,
&ty_err => flags |= has_ty_err as uint,
&ty_param(_) => flags |= has_params as uint,
&ty_infer(_) => flags |= needs_infer as uint,
&ty_self(_) => flags |= has_self as uint,
&ty_enum(_, ref substs) | &ty_struct(_, ref substs) |
&ty_trait(_, ref substs, _, _, _) => {
flags |= sflags(substs);
match st {
ty_trait(_, _, RegionTraitStore(r), _, _) => {
flags |= rflags(r);
}
_ => {}
}
}
&ty_box(tt) | &ty_uniq(tt) => {
flags |= get(tt).flags
}
&ty_vec(ref m, _) | &ty_ptr(ref m) |
&ty_unboxed_vec(ref m) => {
flags |= get(m.ty).flags;
}
&ty_rptr(r, ref m) => {
flags |= rflags(r);
flags |= get(m.ty).flags;
}
&ty_tup(ref ts) => for tt in ts.iter() { flags |= get(*tt).flags; },
&ty_bare_fn(ref f) => {
for a in f.sig.inputs.iter() { flags |= get(*a).flags; }
flags |= get(f.sig.output).flags;
// T -> _|_ is *not* _|_ !
flags &= !(has_ty_bot as uint);
}
&ty_closure(ref f) => {
flags |= rflags(f.region);
for a in f.sig.inputs.iter() { flags |= get(*a).flags; }
flags |= get(f.sig.output).flags;
// T -> _|_ is *not* _|_ !
flags &= !(has_ty_bot as uint);
}
}
let t = ~t_box_ {
sty: st,
id: cx.next_id.get(),
flags: flags,
};
let sty_ptr = &t.sty as *sty;
let key = intern_key {
sty: sty_ptr,
};
let mut interner = cx.interner.borrow_mut();
interner.get().insert(key, t);
cx.next_id.set(cx.next_id.get() + 1);
unsafe {
cast::transmute::<*sty, t>(sty_ptr)
}
}
#[inline]
pub fn mk_prim_t(primitive: &'static t_box_) -> t {
unsafe {
cast::transmute::<&'static t_box_, t>(primitive)
}
}
#[inline]
pub fn mk_nil() -> t { mk_prim_t(&primitives::TY_NIL) }
#[inline]
pub fn mk_err() -> t { mk_prim_t(&primitives::TY_ERR) }
#[inline]
pub fn mk_bot() -> t { mk_prim_t(&primitives::TY_BOT) }
#[inline]
pub fn mk_bool() -> t { mk_prim_t(&primitives::TY_BOOL) }
#[inline]
pub fn mk_int() -> t { mk_prim_t(&primitives::TY_INT) }
#[inline]
pub fn mk_i8() -> t { mk_prim_t(&primitives::TY_I8) }
#[inline]
pub fn mk_i16() -> t { mk_prim_t(&primitives::TY_I16) }
#[inline]
pub fn mk_i32() -> t { mk_prim_t(&primitives::TY_I32) }
#[inline]
pub fn mk_i64() -> t { mk_prim_t(&primitives::TY_I64) }
#[inline]
pub fn mk_f32() -> t { mk_prim_t(&primitives::TY_F32) }
#[inline]
pub fn mk_f64() -> t { mk_prim_t(&primitives::TY_F64) }
#[inline]
pub fn mk_uint() -> t { mk_prim_t(&primitives::TY_UINT) }
#[inline]
pub fn mk_u8() -> t { mk_prim_t(&primitives::TY_U8) }
#[inline]
pub fn mk_u16() -> t { mk_prim_t(&primitives::TY_U16) }
#[inline]
pub fn mk_u32() -> t { mk_prim_t(&primitives::TY_U32) }
#[inline]
pub fn mk_u64() -> t { mk_prim_t(&primitives::TY_U64) }
pub fn mk_mach_int(tm: ast::IntTy) -> t {
match tm {
ast::TyI => mk_int(),
ast::TyI8 => mk_i8(),
ast::TyI16 => mk_i16(),
ast::TyI32 => mk_i32(),
ast::TyI64 => mk_i64(),
}
}
pub fn mk_mach_uint(tm: ast::UintTy) -> t {
match tm {
ast::TyU => mk_uint(),
ast::TyU8 => mk_u8(),
ast::TyU16 => mk_u16(),
ast::TyU32 => mk_u32(),
ast::TyU64 => mk_u64(),
}
}
pub fn mk_mach_float(tm: ast::FloatTy) -> t {
match tm {
ast::TyF32 => mk_f32(),
ast::TyF64 => mk_f64(),
}
}
#[inline]
pub fn mk_char() -> t { mk_prim_t(&primitives::TY_CHAR) }
pub fn mk_str(cx: ctxt, t: vstore) -> t {
mk_t(cx, ty_str(t))
}
pub fn mk_enum(cx: ctxt, did: ast::DefId, substs: substs) -> t {
// take a copy of substs so that we own the vectors inside
mk_t(cx, ty_enum(did, substs))
}
pub fn mk_box(cx: ctxt, ty: t) -> t { mk_t(cx, ty_box(ty)) }
pub fn mk_uniq(cx: ctxt, ty: t) -> t { mk_t(cx, ty_uniq(ty)) }
pub fn mk_ptr(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_ptr(tm)) }
pub fn mk_rptr(cx: ctxt, r: Region, tm: mt) -> t { mk_t(cx, ty_rptr(r, tm)) }
pub fn mk_mut_rptr(cx: ctxt, r: Region, ty: t) -> t {
mk_rptr(cx, r, mt {ty: ty, mutbl: ast::MutMutable})
}
pub fn mk_imm_rptr(cx: ctxt, r: Region, ty: t) -> t {
mk_rptr(cx, r, mt {ty: ty, mutbl: ast::MutImmutable})
}
pub fn mk_mut_ptr(cx: ctxt, ty: t) -> t {
mk_ptr(cx, mt {ty: ty, mutbl: ast::MutMutable})
}
pub fn mk_imm_ptr(cx: ctxt, ty: t) -> t {
mk_ptr(cx, mt {ty: ty, mutbl: ast::MutImmutable})
}
pub fn mk_nil_ptr(cx: ctxt) -> t {
mk_ptr(cx, mt {ty: mk_nil(), mutbl: ast::MutImmutable})
}
pub fn mk_vec(cx: ctxt, tm: mt, t: vstore) -> t {
mk_t(cx, ty_vec(tm, t))
}
pub fn mk_unboxed_vec(cx: ctxt, tm: mt) -> t {
mk_t(cx, ty_unboxed_vec(tm))
}
pub fn mk_mut_unboxed_vec(cx: ctxt, ty: t) -> t {
mk_t(cx, ty_unboxed_vec(mt {ty: ty, mutbl: ast::MutImmutable}))
}
pub fn mk_tup(cx: ctxt, ts: ~[t]) -> t { mk_t(cx, ty_tup(ts)) }
pub fn mk_closure(cx: ctxt, fty: ClosureTy) -> t {
mk_t(cx, ty_closure(fty))
}
pub fn mk_bare_fn(cx: ctxt, fty: BareFnTy) -> t {
mk_t(cx, ty_bare_fn(fty))
}
pub fn mk_ctor_fn(cx: ctxt,
binder_id: ast::NodeId,
input_tys: &[ty::t],
output: ty::t) -> t {
let input_args = input_tys.map(|t| *t);
mk_bare_fn(cx,
BareFnTy {
purity: ast::ImpureFn,
abis: AbiSet::Rust(),
sig: FnSig {
binder_id: binder_id,
inputs: input_args,
output: output,
variadic: false
}
})
}
pub fn mk_trait(cx: ctxt,
did: ast::DefId,
substs: substs,
store: TraitStore,
mutability: ast::Mutability,
bounds: BuiltinBounds)
-> t {
// take a copy of substs so that we own the vectors inside
mk_t(cx, ty_trait(did, substs, store, mutability, bounds))
}
pub fn mk_struct(cx: ctxt, struct_id: ast::DefId, substs: substs) -> t {
// take a copy of substs so that we own the vectors inside
mk_t(cx, ty_struct(struct_id, substs))
}
pub fn mk_var(cx: ctxt, v: TyVid) -> t { mk_infer(cx, TyVar(v)) }
pub fn mk_int_var(cx: ctxt, v: IntVid) -> t { mk_infer(cx, IntVar(v)) }
pub fn mk_float_var(cx: ctxt, v: FloatVid) -> t { mk_infer(cx, FloatVar(v)) }
pub fn mk_infer(cx: ctxt, it: InferTy) -> t { mk_t(cx, ty_infer(it)) }
pub fn mk_self(cx: ctxt, did: ast::DefId) -> t { mk_t(cx, ty_self(did)) }
pub fn mk_param(cx: ctxt, n: uint, k: DefId) -> t {
mk_t(cx, ty_param(param_ty { idx: n, def_id: k }))
}
pub fn walk_ty(ty: t, f: |t|) {
maybe_walk_ty(ty, |t| { f(t); true });
}
pub fn maybe_walk_ty(ty: t, f: |t| -> bool) {
if !f(ty) {
return;
}
match get(ty).sty {
ty_nil | ty_bot | ty_bool | ty_char | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_str(_) | ty_self(_) |
ty_infer(_) | ty_param(_) | ty_err => {}
ty_box(ty) | ty_uniq(ty) => maybe_walk_ty(ty, f),
ty_vec(ref tm, _) | ty_unboxed_vec(ref tm) | ty_ptr(ref tm) |
ty_rptr(_, ref tm) => {
maybe_walk_ty(tm.ty, f);
}
ty_enum(_, ref substs) | ty_struct(_, ref substs) |
ty_trait(_, ref substs, _, _, _) => {
for subty in (*substs).tps.iter() { maybe_walk_ty(*subty, |x| f(x)); }
}
ty_tup(ref ts) => { for tt in ts.iter() { maybe_walk_ty(*tt, |x| f(x)); } }
ty_bare_fn(ref ft) => {
for a in ft.sig.inputs.iter() { maybe_walk_ty(*a, |x| f(x)); }
maybe_walk_ty(ft.sig.output, f);
}
ty_closure(ref ft) => {
for a in ft.sig.inputs.iter() { maybe_walk_ty(*a, |x| f(x)); }
maybe_walk_ty(ft.sig.output, f);
}
}
}
// Folds types from the bottom up.
pub fn fold_ty(cx: ctxt, t0: t, fldop: |t| -> t) -> t {
let mut f = ty_fold::BottomUpFolder {tcx: cx, fldop: fldop};
f.fold_ty(t0)
}
pub fn walk_regions_and_ty(cx: ctxt, ty: t, fldr: |r: Region|, fldt: |t: t|)
-> t {
ty_fold::RegionFolder::general(cx,
|r| { fldr(r); r },
|t| { fldt(t); t }).fold_ty(ty)
}
pub fn fold_regions(cx: ctxt, ty: t, fldr: |r: Region| -> Region) -> t {
ty_fold::RegionFolder::regions(cx, fldr).fold_ty(ty)
}
// Substitute *only* type parameters. Used in trans where regions are erased.
pub fn subst_tps(tcx: ctxt, tps: &[t], self_ty_opt: Option<t>, typ: t) -> t {
let mut subst = TpsSubst { tcx: tcx, self_ty_opt: self_ty_opt, tps: tps };
return subst.fold_ty(typ);
struct TpsSubst<'a> {
tcx: ctxt,
self_ty_opt: Option<t>,
tps: &'a [t],
}
impl<'a> TypeFolder for TpsSubst<'a> {
fn tcx(&self) -> ty::ctxt { self.tcx }
fn fold_ty(&mut self, t: ty::t) -> ty::t {
if self.tps.len() == 0u && self.self_ty_opt.is_none() {
return t;
}
let tb = ty::get(t);
if self.self_ty_opt.is_none() && !tbox_has_flag(tb, has_params) {
return t;
}
match ty::get(t).sty {
ty_param(p) => {
self.tps[p.idx]
}
ty_self(_) => {
match self.self_ty_opt {
None => self.tcx.sess.bug("ty_self unexpected here"),
Some(self_ty) => self_ty
}
}
_ => {
ty_fold::super_fold_ty(self, t)
}
}
}
}
}
pub fn substs_is_noop(substs: &substs) -> bool {
let regions_is_noop = match substs.regions {
ErasedRegions => false, // may be used to canonicalize
NonerasedRegions(ref regions) => regions.is_empty()
};
substs.tps.len() == 0u &&
regions_is_noop &&
substs.self_ty.is_none()
}
pub fn substs_to_str(cx: ctxt, substs: &substs) -> ~str {
substs.repr(cx)
}
pub fn subst(cx: ctxt,
substs: &substs,
typ: t)
-> t {
typ.subst(cx, substs)
}
// Type utilities
pub fn type_is_nil(ty: t) -> bool { get(ty).sty == ty_nil }
pub fn type_is_bot(ty: t) -> bool {
(get(ty).flags & (has_ty_bot as uint)) != 0
}
pub fn type_is_error(ty: t) -> bool {
(get(ty).flags & (has_ty_err as uint)) != 0
}
pub fn type_needs_subst(ty: t) -> bool {
tbox_has_flag(get(ty), needs_subst)
}
pub fn trait_ref_contains_error(tref: &ty::TraitRef) -> bool {
tref.substs.self_ty.iter().any(|&t| type_is_error(t)) ||
tref.substs.tps.iter().any(|&t| type_is_error(t))
}
pub fn type_is_ty_var(ty: t) -> bool {
match get(ty).sty {
ty_infer(TyVar(_)) => true,
_ => false
}
}
pub fn type_is_bool(ty: t) -> bool { get(ty).sty == ty_bool }
pub fn type_is_self(ty: t) -> bool {
match get(ty).sty {
ty_self(..) => true,
_ => false
}
}
pub fn type_is_structural(ty: t) -> bool {
match get(ty).sty {
ty_struct(..) | ty_tup(_) | ty_enum(..) | ty_closure(_) | ty_trait(..) |
ty_vec(_, vstore_fixed(_)) | ty_str(vstore_fixed(_)) |
ty_vec(_, vstore_slice(_)) | ty_str(vstore_slice(_))
=> true,
_ => false
}
}
pub fn type_is_sequence(ty: t) -> bool {
match get(ty).sty {
ty_str(_) | ty_vec(_, _) => true,
_ => false
}
}
pub fn type_is_simd(cx: ctxt, ty: t) -> bool {
match get(ty).sty {
ty_struct(did, _) => lookup_simd(cx, did),
_ => false
}
}
pub fn type_is_str(ty: t) -> bool {
match get(ty).sty {
ty_str(_) => true,
_ => false
}
}
pub fn sequence_element_type(cx: ctxt, ty: t) -> t {
match get(ty).sty {
ty_str(_) => return mk_mach_uint(ast::TyU8),
ty_vec(mt, _) | ty_unboxed_vec(mt) => return mt.ty,
_ => cx.sess.bug("sequence_element_type called on non-sequence value"),
}
}
pub fn simd_type(cx: ctxt, ty: t) -> t {
match get(ty).sty {
ty_struct(did, ref substs) => {
let fields = lookup_struct_fields(cx, did);
lookup_field_type(cx, did, fields[0].id, substs)
}
_ => fail!("simd_type called on invalid type")
}
}
pub fn simd_size(cx: ctxt, ty: t) -> uint {
match get(ty).sty {
ty_struct(did, _) => {
let fields = lookup_struct_fields(cx, did);
fields.len()
}
_ => fail!("simd_size called on invalid type")
}
}
pub fn get_element_type(ty: t, i: uint) -> t {
match get(ty).sty {
ty_tup(ref ts) => return ts[i],
_ => fail!("get_element_type called on invalid type")
}
}
pub fn type_is_box(ty: t) -> bool {
match get(ty).sty {
ty_box(_) => return true,
_ => return false
}
}
pub fn type_is_boxed(ty: t) -> bool {
match get(ty).sty {
ty_box(_) => true,
_ => false
}
}
pub fn type_is_region_ptr(ty: t) -> bool {
match get(ty).sty {
ty_rptr(_, _) => true,
_ => false
}
}
pub fn type_is_slice(ty: t) -> bool {
match get(ty).sty {
ty_vec(_, vstore_slice(_)) | ty_str(vstore_slice(_)) => true,
_ => return false
}
}
pub fn type_is_unique_box(ty: t) -> bool {
match get(ty).sty {
ty_uniq(_) => return true,
_ => return false
}
}
pub fn type_is_unsafe_ptr(ty: t) -> bool {
match get(ty).sty {
ty_ptr(_) => return true,
_ => return false
}
}
pub fn type_is_vec(ty: t) -> bool {
return match get(ty).sty {
ty_vec(_, _) | ty_unboxed_vec(_) => true,
ty_str(_) => true,
_ => false
};
}
pub fn type_is_unique(ty: t) -> bool {
match get(ty).sty {
ty_uniq(_) | ty_vec(_, vstore_uniq) | ty_str(vstore_uniq) => true,
_ => false
}
}
/*
A scalar type is one that denotes an atomic datum, with no sub-components.
(A ty_ptr is scalar because it represents a non-managed pointer, so its
contents are abstract to rustc.)
*/
pub fn type_is_scalar(ty: t) -> bool {
match get(ty).sty {
ty_nil | ty_bool | ty_char | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_infer(IntVar(_)) | ty_infer(FloatVar(_)) |
ty_bare_fn(..) | ty_ptr(_) => true,
_ => false
}
}
pub fn type_needs_drop(cx: ctxt, ty: t) -> bool {
type_contents(cx, ty).needs_drop(cx)
}
// Some things don't need cleanups during unwinding because the
// task can free them all at once later. Currently only things
// that only contain scalars and shared boxes can avoid unwind
// cleanups.
pub fn type_needs_unwind_cleanup(cx: ctxt, ty: t) -> bool {
{
let needs_unwind_cleanup_cache = cx.needs_unwind_cleanup_cache
.borrow();
match needs_unwind_cleanup_cache.get().find(&ty) {
Some(&result) => return result,
None => ()
}
}
let mut tycache = HashSet::new();
let needs_unwind_cleanup =
type_needs_unwind_cleanup_(cx, ty, &mut tycache, false);
let mut needs_unwind_cleanup_cache = cx.needs_unwind_cleanup_cache
.borrow_mut();
needs_unwind_cleanup_cache.get().insert(ty, needs_unwind_cleanup);
return needs_unwind_cleanup;
}
fn type_needs_unwind_cleanup_(cx: ctxt, ty: t,
tycache: &mut HashSet<t>,
encountered_box: bool) -> bool {
// Prevent infinite recursion
if !tycache.insert(ty) {
return false;
}
let mut encountered_box = encountered_box;
let mut needs_unwind_cleanup = false;
maybe_walk_ty(ty, |ty| {
let old_encountered_box = encountered_box;
let result = match get(ty).sty {
ty_box(_) => {
encountered_box = true;
true
}
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_tup(_) | ty_ptr(_) => {
true
}
ty_enum(did, ref substs) => {
for v in (*enum_variants(cx, did)).iter() {
for aty in v.args.iter() {
let t = subst(cx, substs, *aty);
needs_unwind_cleanup |=
type_needs_unwind_cleanup_(cx, t, tycache,
encountered_box);
}
}
!needs_unwind_cleanup
}
ty_uniq(_) |
ty_str(vstore_uniq) |
ty_vec(_, vstore_uniq) => {
// Once we're inside a box, the annihilator will find
// it and destroy it.
if !encountered_box {
needs_unwind_cleanup = true;
false
} else {
true
}
}
_ => {
needs_unwind_cleanup = true;
false
}
};
encountered_box = old_encountered_box;
result
});
return needs_unwind_cleanup;
}
/**
* Type contents is how the type checker reasons about kinds.
* They track what kinds of things are found within a type. You can
* think of them as kind of an "anti-kind". They track the kinds of values
* and thinks that are contained in types. Having a larger contents for
* a type tends to rule that type *out* from various kinds. For example,
* a type that contains a reference is not sendable.
*
* The reason we compute type contents and not kinds is that it is
* easier for me (nmatsakis) to think about what is contained within
* a type than to think about what is *not* contained within a type.
*/
pub struct TypeContents {
bits: u64
}
macro_rules! def_type_content_sets(
(mod $mname:ident { $($name:ident = $bits:expr),+ }) => {
mod $mname {
use middle::ty::TypeContents;
$(pub static $name: TypeContents = TypeContents { bits: $bits };)+
}
}
)
def_type_content_sets!(
mod TC {
None = 0b0000__00000000__0000,
// Things that are interior to the value (first nibble):
InteriorUnsized = 0b0000__00000000__0001,
// InteriorAll = 0b0000__00000000__1111,
// Things that are owned by the value (second and third nibbles):
OwnsOwned = 0b0000__00000001__0000,
OwnsDtor = 0b0000__00000010__0000,
OwnsManaged /* see [1] below */ = 0b0000__00000100__0000,
OwnsAffine = 0b0000__00001000__0000,
OwnsAll = 0b0000__11111111__0000,
// Things that are reachable by the value in any way (fourth nibble):
ReachesNonsendAnnot = 0b0001__00000000__0000,
ReachesBorrowed = 0b0010__00000000__0000,
// ReachesManaged /* see [1] below */ = 0b0100__00000000__0000,
ReachesMutable = 0b1000__00000000__0000,
ReachesAll = 0b1111__00000000__0000,
// Things that cause values to *move* rather than *copy*
Moves = 0b0000__00001011__0000,
// Things that mean drop glue is necessary
NeedsDrop = 0b0000__00000111__0000,
// Things that prevent values from being sent
//
// Note: For checking whether something is sendable, it'd
// be sufficient to have ReachesManaged. However, we include
// both ReachesManaged and OwnsManaged so that when
// a parameter has a bound T:Send, we are able to deduce
// that it neither reaches nor owns a managed pointer.
Nonsendable = 0b0111__00000100__0000,
// Things that prevent values from being considered freezable
Nonfreezable = 0b1000__00000000__0000,
// Things that prevent values from being considered 'static
Nonstatic = 0b0010__00000000__0000,
// Things that prevent values from being considered sized
Nonsized = 0b0000__00000000__0001,
// Things that make values considered not POD (would be same
// as `Moves`, but for the fact that managed data `@` is
// not considered POD)
Nonpod = 0b0000__00001111__0000,
// Bits to set when a managed value is encountered
//
// [1] Do not set the bits TC::OwnsManaged or
// TC::ReachesManaged directly, instead reference
// TC::Managed to set them both at once.
Managed = 0b0100__00000100__0000,
// All bits
All = 0b1111__11111111__1111
}
)
impl TypeContents {
pub fn meets_bounds(&self, cx: ctxt, bbs: BuiltinBounds) -> bool {
bbs.iter().all(|bb| self.meets_bound(cx, bb))
}
pub fn meets_bound(&self, cx: ctxt, bb: BuiltinBound) -> bool {
match bb {
BoundStatic => self.is_static(cx),
BoundFreeze => self.is_freezable(cx),
BoundSend => self.is_sendable(cx),
BoundSized => self.is_sized(cx),
BoundPod => self.is_pod(cx),
}
}
pub fn when(&self, cond: bool) -> TypeContents {
if cond {*self} else {TC::None}
}
pub fn intersects(&self, tc: TypeContents) -> bool {
(self.bits & tc.bits) != 0
}
pub fn is_static(&self, _: ctxt) -> bool {
!self.intersects(TC::Nonstatic)
}
pub fn is_sendable(&self, _: ctxt) -> bool {
!self.intersects(TC::Nonsendable)
}
pub fn owns_managed(&self) -> bool {
self.intersects(TC::OwnsManaged)
}
pub fn owns_owned(&self) -> bool {
self.intersects(TC::OwnsOwned)
}
pub fn is_freezable(&self, _: ctxt) -> bool {
!self.intersects(TC::Nonfreezable)
}
pub fn is_sized(&self, _: ctxt) -> bool {
!self.intersects(TC::Nonsized)
}
pub fn is_pod(&self, _: ctxt) -> bool {
!self.intersects(TC::Nonpod)
}
pub fn moves_by_default(&self, _: ctxt) -> bool {
self.intersects(TC::Moves)
}
pub fn needs_drop(&self, _: ctxt) -> bool {
self.intersects(TC::NeedsDrop)
}
pub fn owned_pointer(&self) -> TypeContents {
/*!
* Includes only those bits that still apply
* when indirected through a `~` pointer
*/
TC::OwnsOwned | (
*self & (TC::OwnsAll | TC::ReachesAll))
}
pub fn reference(&self, bits: TypeContents) -> TypeContents {
/*!
* Includes only those bits that still apply
* when indirected through a reference (`&`)
*/
bits | (
*self & TC::ReachesAll)
}
pub fn managed_pointer(&self) -> TypeContents {
/*!
* Includes only those bits that still apply
* when indirected through a managed pointer (`@`)
*/
TC::Managed | (
*self & TC::ReachesAll)
}
pub fn unsafe_pointer(&self) -> TypeContents {
/*!
* Includes only those bits that still apply
* when indirected through an unsafe pointer (`*`)
*/
*self & TC::ReachesAll
}
pub fn union<T>(v: &[T], f: |&T| -> TypeContents) -> TypeContents {
v.iter().fold(TC::None, |tc, t| tc | f(t))
}
pub fn inverse(&self) -> TypeContents {
TypeContents { bits: !self.bits }
}
pub fn has_dtor(&self) -> bool {
self.intersects(TC::OwnsDtor)
}
}
impl ops::BitOr<TypeContents,TypeContents> for TypeContents {
fn bitor(&self, other: &TypeContents) -> TypeContents {
TypeContents {bits: self.bits | other.bits}
}
}
impl ops::BitAnd<TypeContents,TypeContents> for TypeContents {
fn bitand(&self, other: &TypeContents) -> TypeContents {
TypeContents {bits: self.bits & other.bits}
}
}
impl ops::Sub<TypeContents,TypeContents> for TypeContents {
fn sub(&self, other: &TypeContents) -> TypeContents {
TypeContents {bits: self.bits & !other.bits}
}
}
impl fmt::Show for TypeContents {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f.buf, "TypeContents({:t})", self.bits)
}
}
pub fn type_has_dtor(cx: ctxt, t: ty::t) -> bool {
type_contents(cx, t).has_dtor()
}
pub fn type_is_static(cx: ctxt, t: ty::t) -> bool {
type_contents(cx, t).is_static(cx)
}
pub fn type_is_sendable(cx: ctxt, t: ty::t) -> bool {
type_contents(cx, t).is_sendable(cx)
}
pub fn type_is_freezable(cx: ctxt, t: ty::t) -> bool {
type_contents(cx, t).is_freezable(cx)
}
pub fn type_contents(cx: ctxt, ty: t) -> TypeContents {
let ty_id = type_id(ty);
{
let tc_cache = cx.tc_cache.borrow();
match tc_cache.get().find(&ty_id) {
Some(tc) => { return *tc; }
None => {}
}
}
let mut cache = HashMap::new();
let result = tc_ty(cx, ty, &mut cache);
let mut tc_cache = cx.tc_cache.borrow_mut();
tc_cache.get().insert(ty_id, result);
return result;
fn tc_ty(cx: ctxt,
ty: t,
cache: &mut HashMap<uint, TypeContents>) -> TypeContents
{
// Subtle: Note that we are *not* using cx.tc_cache here but rather a
// private cache for this walk. This is needed in the case of cyclic
// types like:
//
// struct List { next: ~Option<List>, ... }
//
// When computing the type contents of such a type, we wind up deeply
// recursing as we go. So when we encounter the recursive reference
// to List, we temporarily use TC::None as its contents. Later we'll
// patch up the cache with the correct value, once we've computed it
// (this is basically a co-inductive process, if that helps). So in
// the end we'll compute TC::OwnsOwned, in this case.
//
// The problem is, as we are doing the computation, we will also
// compute an *intermediate* contents for, e.g., Option<List> of
// TC::None. This is ok during the computation of List itself, but if
// we stored this intermediate value into cx.tc_cache, then later
// requests for the contents of Option<List> would also yield TC::None
// which is incorrect. This value was computed based on the crutch
// value for the type contents of list. The correct value is
// TC::OwnsOwned. This manifested as issue #4821.
let ty_id = type_id(ty);
match cache.find(&ty_id) {
Some(tc) => { return *tc; }
None => {}
}
{
let tc_cache = cx.tc_cache.borrow();
match tc_cache.get().find(&ty_id) { // Must check both caches!
Some(tc) => { return *tc; }
None => {}
}
}
cache.insert(ty_id, TC::None);
let result = match get(ty).sty {
// Scalar and unique types are sendable, freezable, and durable
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_bare_fn(_) | ty::ty_char => {
TC::None
}
ty_str(vstore_uniq) => {
TC::OwnsOwned
}
ty_closure(ref c) => {
closure_contents(cx, c)
}
ty_box(typ) => {
tc_ty(cx, typ, cache).managed_pointer()
}
ty_uniq(typ) => {
tc_ty(cx, typ, cache).owned_pointer()
}
ty_trait(_, _, store, mutbl, bounds) => {
object_contents(cx, store, mutbl, bounds)
}
ty_ptr(ref mt) => {
tc_ty(cx, mt.ty, cache).unsafe_pointer()
}
ty_rptr(r, ref mt) => {
tc_ty(cx, mt.ty, cache).reference(
borrowed_contents(r, mt.mutbl))
}
ty_vec(mt, vstore_uniq) => {
tc_mt(cx, mt, cache).owned_pointer()
}
ty_vec(ref mt, vstore_slice(r)) => {
tc_ty(cx, mt.ty, cache).reference(
borrowed_contents(r, mt.mutbl))
}
ty_vec(mt, vstore_fixed(_)) => {
tc_mt(cx, mt, cache)
}
ty_str(vstore_slice(r)) => {
borrowed_contents(r, ast::MutImmutable)
}
ty_str(vstore_fixed(_)) => {
TC::None
}
ty_struct(did, ref substs) => {
let flds = struct_fields(cx, did, substs);
let mut res =
TypeContents::union(flds, |f| tc_mt(cx, f.mt, cache));
if ty::has_dtor(cx, did) {
res = res | TC::OwnsDtor;
}
apply_lang_items(cx, did, res)
}
ty_tup(ref tys) => {
TypeContents::union(*tys, |ty| tc_ty(cx, *ty, cache))
}
ty_enum(did, ref substs) => {
let variants = substd_enum_variants(cx, did, substs);
let res =
TypeContents::union(variants, |variant| {
TypeContents::union(variant.args, |arg_ty| {
tc_ty(cx, *arg_ty, cache)
})
});
apply_lang_items(cx, did, res)
}
ty_param(p) => {
// We only ever ask for the kind of types that are defined in
// the current crate; therefore, the only type parameters that
// could be in scope are those defined in the current crate.
// If this assertion failures, it is likely because of a
// failure in the cross-crate inlining code to translate a
// def-id.
assert_eq!(p.def_id.krate, ast::LOCAL_CRATE);
let ty_param_defs = cx.ty_param_defs.borrow();
let tp_def = ty_param_defs.get().get(&p.def_id.node);
kind_bounds_to_contents(cx,
tp_def.bounds.builtin_bounds,
tp_def.bounds.trait_bounds)
}
ty_self(def_id) => {
// FIXME(#4678)---self should just be a ty param
// Self may be bounded if the associated trait has builtin kinds
// for supertraits. If so we can use those bounds.
let trait_def = lookup_trait_def(cx, def_id);
let traits = [trait_def.trait_ref];
kind_bounds_to_contents(cx, trait_def.bounds, traits)
}
ty_infer(_) => {
// This occurs during coherence, but shouldn't occur at other
// times.
TC::All
}
ty_unboxed_vec(mt) => TC::InteriorUnsized | tc_mt(cx, mt, cache),
ty_err => {
cx.sess.bug("asked to compute contents of error type");
}
};
cache.insert(ty_id, result);
return result;
}
fn tc_mt(cx: ctxt,
mt: mt,
cache: &mut HashMap<uint, TypeContents>) -> TypeContents
{
let mc = TC::ReachesMutable.when(mt.mutbl == MutMutable);
mc | tc_ty(cx, mt.ty, cache)
}
fn apply_lang_items(cx: ctxt,
did: ast::DefId,
tc: TypeContents)
-> TypeContents {
if Some(did) == cx.lang_items.no_freeze_bound() {
tc | TC::ReachesMutable
} else if Some(did) == cx.lang_items.no_send_bound() {
tc | TC::ReachesNonsendAnnot
} else if Some(did) == cx.lang_items.managed_bound() {
tc | TC::Managed
} else if Some(did) == cx.lang_items.no_pod_bound() {
tc | TC::OwnsAffine
} else {
tc
}
}
fn borrowed_contents(region: ty::Region,
mutbl: ast::Mutability)
-> TypeContents {
/*!
* Type contents due to containing a reference
* with the region `region` and borrow kind `bk`
*/
let b = match mutbl {
ast::MutMutable => TC::ReachesMutable | TC::OwnsAffine,
ast::MutImmutable => TC::None,
};
b | (TC::ReachesBorrowed).when(region != ty::ReStatic)
}
fn closure_contents(cx: ctxt, cty: &ClosureTy) -> TypeContents {
// Closure contents are just like trait contents, but with potentially
// even more stuff.
let st = match cty.sigil {
ast::BorrowedSigil =>
object_contents(cx, RegionTraitStore(cty.region), MutMutable, cty.bounds),
ast::OwnedSigil =>
object_contents(cx, UniqTraitStore, MutImmutable, cty.bounds),
ast::ManagedSigil => unreachable!()
};
// FIXME(#3569): This borrowed_contents call should be taken care of in
// object_contents, after ~Traits and @Traits can have region bounds too.
// This one here is redundant for &fns but important for ~fns and @fns.
let rt = borrowed_contents(cty.region, ast::MutImmutable);
// This also prohibits "@once fn" from being copied, which allows it to
// be called. Neither way really makes much sense.
let ot = match cty.onceness {
ast::Once => TC::OwnsAffine,
ast::Many => TC::None,
};
st | rt | ot
}
fn object_contents(cx: ctxt,
store: TraitStore,
mutbl: ast::Mutability,
bounds: BuiltinBounds)
-> TypeContents {
// These are the type contents of the (opaque) interior
let contents = TC::ReachesMutable.when(mutbl == ast::MutMutable) |
kind_bounds_to_contents(cx, bounds, []);
match store {
UniqTraitStore => {
contents.owned_pointer()
}
RegionTraitStore(r) => {
contents.reference(borrowed_contents(r, mutbl))
}
}
}
fn kind_bounds_to_contents(cx: ctxt,
bounds: BuiltinBounds,
traits: &[@TraitRef])
-> TypeContents {
let _i = indenter();
let mut tc = TC::All;
each_inherited_builtin_bound(cx, bounds, traits, |bound| {
tc = tc - match bound {
BoundStatic => TC::Nonstatic,
BoundSend => TC::Nonsendable,
BoundFreeze => TC::Nonfreezable,
BoundSized => TC::Nonsized,
BoundPod => TC::Nonpod,
};
});
return tc;
// Iterates over all builtin bounds on the type parameter def, including
// those inherited from traits with builtin-kind-supertraits.
fn each_inherited_builtin_bound(cx: ctxt,
bounds: BuiltinBounds,
traits: &[@TraitRef],
f: |BuiltinBound|) {
for bound in bounds.iter() {
f(bound);
}
each_bound_trait_and_supertraits(cx, traits, |trait_ref| {
let trait_def = lookup_trait_def(cx, trait_ref.def_id);
for bound in trait_def.bounds.iter() {
f(bound);
}
true
});
}
}
}
pub fn type_moves_by_default(cx: ctxt, ty: t) -> bool {
type_contents(cx, ty).moves_by_default(cx)
}
// True if instantiating an instance of `r_ty` requires an instance of `r_ty`.
pub fn is_instantiable(cx: ctxt, r_ty: t) -> bool {
fn type_requires(cx: ctxt, seen: &mut ~[DefId],
r_ty: t, ty: t) -> bool {
debug!("type_requires({}, {})?",
::util::ppaux::ty_to_str(cx, r_ty),
::util::ppaux::ty_to_str(cx, ty));
let r = {
get(r_ty).sty == get(ty).sty ||
subtypes_require(cx, seen, r_ty, ty)
};
debug!("type_requires({}, {})? {}",
::util::ppaux::ty_to_str(cx, r_ty),
::util::ppaux::ty_to_str(cx, ty),
r);
return r;
}
fn subtypes_require(cx: ctxt, seen: &mut ~[DefId],
r_ty: t, ty: t) -> bool {
debug!("subtypes_require({}, {})?",
::util::ppaux::ty_to_str(cx, r_ty),
::util::ppaux::ty_to_str(cx, ty));
let r = match get(ty).sty {
// fixed length vectors need special treatment compared to
// normal vectors, since they don't necessarily have the
// possibilty to have length zero.
ty_vec(_, vstore_fixed(0)) => false, // don't need no contents
ty_vec(mt, vstore_fixed(_)) => type_requires(cx, seen, r_ty, mt.ty),
ty_nil |
ty_bot |
ty_bool |
ty_char |
ty_int(_) |
ty_uint(_) |
ty_float(_) |
ty_str(_) |
ty_bare_fn(_) |
ty_closure(_) |
ty_infer(_) |
ty_err |
ty_param(_) |
ty_self(_) |
ty_vec(_, _) |
ty_unboxed_vec(_) => {
false
}
ty_box(typ) | ty_uniq(typ) => {
type_requires(cx, seen, r_ty, typ)
}
ty_rptr(_, ref mt) => {
type_requires(cx, seen, r_ty, mt.ty)
}
ty_ptr(..) => {
false // unsafe ptrs can always be NULL
}
ty_trait(_, _, _, _, _) => {
false
}
ty_struct(ref did, _) if seen.contains(did) => {
false
}
ty_struct(did, ref substs) => {
seen.push(did);
let fields = struct_fields(cx, did, substs);
let r = fields.iter().any(|f| type_requires(cx, seen, r_ty, f.mt.ty));
seen.pop().unwrap();
r
}
ty_tup(ref ts) => {
ts.iter().any(|t| type_requires(cx, seen, r_ty, *t))
}
ty_enum(ref did, _) if seen.contains(did) => {
false
}
ty_enum(did, ref substs) => {
seen.push(did);
let vs = enum_variants(cx, did);
let r = !vs.is_empty() && vs.iter().all(|variant| {
variant.args.iter().any(|aty| {
let sty = subst(cx, substs, *aty);
type_requires(cx, seen, r_ty, sty)
})
});
seen.pop().unwrap();
r
}
};
debug!("subtypes_require({}, {})? {}",
::util::ppaux::ty_to_str(cx, r_ty),
::util::ppaux::ty_to_str(cx, ty),
r);
return r;
}
let mut seen = ~[];
!subtypes_require(cx, &mut seen, r_ty, r_ty)
}
/// Describes whether a type is representable. For types that are not
/// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
/// distinguish between types that are recursive with themselves and types that
/// contain a different recursive type. These cases can therefore be treated
/// differently when reporting errors.
#[deriving(Eq)]
pub enum Representability {
Representable,
SelfRecursive,
ContainsRecursive,
}
/// Check whether a type is representable. This means it cannot contain unboxed
/// structural recursion. This check is needed for structs and enums.
pub fn is_type_representable(cx: ctxt, ty: t) -> Representability {
// Iterate until something non-representable is found
fn find_nonrepresentable<It: Iterator<t>>(cx: ctxt, seen: &mut ~[DefId],
mut iter: It) -> Representability {
for ty in iter {
let r = type_structurally_recursive(cx, seen, ty);
if r != Representable {
return r
}
}
Representable
}
// Does the type `ty` directly (without indirection through a pointer)
// contain any types on stack `seen`?
fn type_structurally_recursive(cx: ctxt, seen: &mut ~[DefId],
ty: t) -> Representability {
debug!("type_structurally_recursive: {}",
::util::ppaux::ty_to_str(cx, ty));
// Compare current type to previously seen types
match get(ty).sty {
ty_struct(did, _) |
ty_enum(did, _) => {
for (i, &seen_did) in seen.iter().enumerate() {
if did == seen_did {
return if i == 0 { SelfRecursive }
else { ContainsRecursive }
}
}
}
_ => (),
}
// Check inner types
match get(ty).sty {
// Tuples
ty_tup(ref ts) => {
find_nonrepresentable(cx, seen, ts.iter().map(|t| *t))
}
// Fixed-length vectors.
// FIXME(#11924) Behavior undecided for zero-length vectors.
ty_vec(mt, vstore_fixed(_)) => {
type_structurally_recursive(cx, seen, mt.ty)
}
// Push struct and enum def-ids onto `seen` before recursing.
ty_struct(did, ref substs) => {
seen.push(did);
let fields = struct_fields(cx, did, substs);
let r = find_nonrepresentable(cx, seen,
fields.iter().map(|f| f.mt.ty));
seen.pop();
r
}
ty_enum(did, ref substs) => {
seen.push(did);
let vs = enum_variants(cx, did);
let mut r = Representable;
for variant in vs.iter() {
let iter = variant.args.iter().map(|aty| subst(cx, substs, *aty));
r = find_nonrepresentable(cx, seen, iter);
if r != Representable { break }
}
seen.pop();
r
}
_ => Representable,
}
}
debug!("is_type_representable: {}",
::util::ppaux::ty_to_str(cx, ty));
// To avoid a stack overflow when checking an enum variant or struct that
// contains a different, structurally recursive type, maintain a stack
// of seen types and check recursion for each of them (issues #3008, #3779).
let mut seen: ~[DefId] = ~[];
type_structurally_recursive(cx, &mut seen, ty)
}
pub fn type_is_trait(ty: t) -> bool {
match get(ty).sty {
ty_trait(..) => true,
_ => false
}
}
pub fn type_is_integral(ty: t) -> bool {
match get(ty).sty {
ty_infer(IntVar(_)) | ty_int(_) | ty_uint(_) => true,
_ => false
}
}
pub fn type_is_char(ty: t) -> bool {
match get(ty).sty {
ty_char => true,
_ => false
}
}
pub fn type_is_bare_fn(ty: t) -> bool {
match get(ty).sty {
ty_bare_fn(..) => true,
_ => false
}
}
pub fn type_is_fp(ty: t) -> bool {
match get(ty).sty {
ty_infer(FloatVar(_)) | ty_float(_) => true,
_ => false
}
}
pub fn type_is_numeric(ty: t) -> bool {
return type_is_integral(ty) || type_is_fp(ty);
}
pub fn type_is_signed(ty: t) -> bool {
match get(ty).sty {
ty_int(_) => true,
_ => false
}
}
pub fn type_is_machine(ty: t) -> bool {
match get(ty).sty {
ty_int(ast::TyI) | ty_uint(ast::TyU) => false,
ty_int(..) | ty_uint(..) | ty_float(..) => true,
_ => false
}
}
pub fn type_is_enum(ty: t) -> bool {
match get(ty).sty {
ty_enum(_, _) => return true,
_ => return false
}
}
// Is the type's representation size known at compile time?
pub fn type_is_sized(cx: ctxt, ty: ty::t) -> bool {
match get(ty).sty {
// FIXME(#6308) add trait, vec, str, etc here.
ty_param(p) => {
let ty_param_defs = cx.ty_param_defs.borrow();
let param_def = ty_param_defs.get().get(&p.def_id.node);
if param_def.bounds.builtin_bounds.contains_elem(BoundSized) {
return true;
}
return false;
},
_ => return true,
}
}
// Whether a type is enum like, that is an enum type with only nullary
// constructors
pub fn type_is_c_like_enum(cx: ctxt, ty: t) -> bool {
match get(ty).sty {
ty_enum(did, _) => {
let variants = enum_variants(cx, did);
if variants.len() == 0 {
false
} else {
variants.iter().all(|v| v.args.len() == 0)
}
}
_ => false
}
}
pub fn type_param(ty: t) -> Option<uint> {
match get(ty).sty {
ty_param(p) => return Some(p.idx),
_ => {/* fall through */ }
}
return None;
}
// Returns the type and mutability of *t.
//
// The parameter `explicit` indicates if this is an *explicit* dereference.
// Some types---notably unsafe ptrs---can only be dereferenced explicitly.
pub fn deref(t: t, explicit: bool) -> Option<mt> {
deref_sty(&get(t).sty, explicit)
}
pub fn deref_sty(sty: &sty, explicit: bool) -> Option<mt> {
match *sty {
ty_box(typ) | ty_uniq(typ) => {
Some(mt {
ty: typ,
mutbl: ast::MutImmutable,
})
}
ty_rptr(_, mt) => {
Some(mt)
}
ty_ptr(mt) if explicit => {
Some(mt)
}
_ => None
}
}
pub fn type_autoderef(t: t) -> t {
let mut t = t;
loop {
match deref(t, false) {
None => return t,
Some(mt) => t = mt.ty
}
}
}
// Returns the type and mutability of t[i]
pub fn index(t: t) -> Option<mt> {
index_sty(&get(t).sty)
}
pub fn index_sty(sty: &sty) -> Option<mt> {
match *sty {
ty_vec(mt, _) => Some(mt),
ty_str(_) => Some(mt {ty: mk_u8(), mutbl: ast::MutImmutable}),
_ => None
}
}
pub fn node_id_to_trait_ref(cx: ctxt, id: ast::NodeId) -> @ty::TraitRef {
let trait_refs = cx.trait_refs.borrow();
match trait_refs.get().find(&id) {
Some(&t) => t,
None => cx.sess.bug(
format!("node_id_to_trait_ref: no trait ref for node `{}`",
cx.map.node_to_str(id)))
}
}
pub fn try_node_id_to_type(cx: ctxt, id: ast::NodeId) -> Option<t> {
let node_types = cx.node_types.borrow();
node_types.get().find_copy(&(id as uint))
}
pub fn node_id_to_type(cx: ctxt, id: ast::NodeId) -> t {
match try_node_id_to_type(cx, id) {
Some(t) => t,
None => cx.sess.bug(
format!("node_id_to_type: no type for node `{}`",
cx.map.node_to_str(id)))
}
}
pub fn node_id_to_type_opt(cx: ctxt, id: ast::NodeId) -> Option<t> {
let node_types = cx.node_types.borrow();
debug!("id: {:?}, node_types: {:?}", id, node_types);
match node_types.get().find(&(id as uint)) {
Some(&t) => Some(t),
None => None
}
}
// FIXME(pcwalton): Makes a copy, bleh. Probably better to not do that.
pub fn node_id_to_type_params(cx: ctxt, id: ast::NodeId) -> ~[t] {
let node_type_substs = cx.node_type_substs.borrow();
match node_type_substs.get().find(&id) {
None => return ~[],
Some(ts) => return (*ts).clone(),
}
}
fn node_id_has_type_params(cx: ctxt, id: ast::NodeId) -> bool {
let node_type_substs = cx.node_type_substs.borrow();
node_type_substs.get().contains_key(&id)
}
pub fn fn_is_variadic(fty: t) -> bool {
match get(fty).sty {
ty_bare_fn(ref f) => f.sig.variadic,
ty_closure(ref f) => f.sig.variadic,
ref s => {
fail!("fn_is_variadic() called on non-fn type: {:?}", s)
}
}
}
pub fn ty_fn_sig(fty: t) -> FnSig {
match get(fty).sty {
ty_bare_fn(ref f) => f.sig.clone(),
ty_closure(ref f) => f.sig.clone(),
ref s => {
fail!("ty_fn_sig() called on non-fn type: {:?}", s)
}
}
}
// Type accessors for substructures of types
pub fn ty_fn_args(fty: t) -> ~[t] {
match get(fty).sty {
ty_bare_fn(ref f) => f.sig.inputs.clone(),
ty_closure(ref f) => f.sig.inputs.clone(),
ref s => {
fail!("ty_fn_args() called on non-fn type: {:?}", s)
}
}
}
pub fn ty_closure_sigil(fty: t) -> Sigil {
match get(fty).sty {
ty_closure(ref f) => f.sigil,
ref s => {
fail!("ty_closure_sigil() called on non-closure type: {:?}", s)
}
}
}
pub fn ty_fn_purity(fty: t) -> ast::Purity {
match get(fty).sty {
ty_bare_fn(ref f) => f.purity,
ty_closure(ref f) => f.purity,
ref s => {
fail!("ty_fn_purity() called on non-fn type: {:?}", s)
}
}
}
pub fn ty_fn_ret(fty: t) -> t {
match get(fty).sty {
ty_bare_fn(ref f) => f.sig.output,
ty_closure(ref f) => f.sig.output,
ref s => {
fail!("ty_fn_ret() called on non-fn type: {:?}", s)
}
}
}
pub fn is_fn_ty(fty: t) -> bool {
match get(fty).sty {
ty_bare_fn(_) => true,
ty_closure(_) => true,
_ => false
}
}
pub fn ty_vstore(ty: t) -> vstore {
match get(ty).sty {
ty_vec(_, vstore) => vstore,
ty_str(vstore) => vstore,
ref s => fail!("ty_vstore() called on invalid sty: {:?}", s)
}
}
pub fn ty_region(tcx: ctxt,
span: Span,
ty: t) -> Region {
match get(ty).sty {
ty_rptr(r, _) => r,
ty_vec(_, vstore_slice(r)) => r,
ty_str(vstore_slice(r)) => r,
ref s => {
tcx.sess.span_bug(
span,
format!("ty_region() invoked on in appropriate ty: {:?}", s));
}
}
}
pub fn replace_fn_sig(cx: ctxt, fsty: &sty, new_sig: FnSig) -> t {
match *fsty {
ty_bare_fn(ref f) => mk_bare_fn(cx, BareFnTy {sig: new_sig, ..*f}),
ty_closure(ref f) => mk_closure(cx, ClosureTy {sig: new_sig, ..*f}),
ref s => {
cx.sess.bug(
format!("ty_fn_sig() called on non-fn type: {:?}", s));
}
}
}
pub fn replace_closure_return_type(tcx: ctxt, fn_type: t, ret_type: t) -> t {
/*!
*
* Returns a new function type based on `fn_type` but returning a value of
* type `ret_type` instead. */
match ty::get(fn_type).sty {
ty::ty_closure(ref fty) => {
ty::mk_closure(tcx, ClosureTy {
sig: FnSig {output: ret_type, ..fty.sig.clone()},
..(*fty).clone()
})
}
_ => {
tcx.sess.bug(format!(
"replace_fn_ret() invoked with non-fn-type: {}",
ty_to_str(tcx, fn_type)));
}
}
}
// Returns a vec of all the input and output types of fty.
pub fn tys_in_fn_sig(sig: &FnSig) -> ~[t] {
vec::append_one(sig.inputs.map(|a| *a), sig.output)
}
// Type accessors for AST nodes
pub fn block_ty(cx: ctxt, b: &ast::Block) -> t {
return node_id_to_type(cx, b.id);
}
// Returns the type of a pattern as a monotype. Like @expr_ty, this function
// doesn't provide type parameter substitutions.
pub fn pat_ty(cx: ctxt, pat: &ast::Pat) -> t {
return node_id_to_type(cx, pat.id);
}
// Returns the type of an expression as a monotype.
//
// NB (1): This is the PRE-ADJUSTMENT TYPE for the expression. That is, in
// some cases, we insert `AutoAdjustment` annotations such as auto-deref or
// auto-ref. The type returned by this function does not consider such
// adjustments. See `expr_ty_adjusted()` instead.
//
// NB (2): This type doesn't provide type parameter substitutions; e.g. if you
// ask for the type of "id" in "id(3)", it will return "fn(&int) -> int"
// instead of "fn(t) -> T with T = int". If this isn't what you want, see
// expr_ty_params_and_ty() below.
pub fn expr_ty(cx: ctxt, expr: &ast::Expr) -> t {
return node_id_to_type(cx, expr.id);
}
pub fn expr_ty_opt(cx: ctxt, expr: &ast::Expr) -> Option<t> {
return node_id_to_type_opt(cx, expr.id);
}
pub fn expr_ty_adjusted(cx: ctxt, expr: &ast::Expr) -> t {
/*!
*
* Returns the type of `expr`, considering any `AutoAdjustment`
* entry recorded for that expression.
*
* It would almost certainly be better to store the adjusted ty in with
* the `AutoAdjustment`, but I opted not to do this because it would
* require serializing and deserializing the type and, although that's not
* hard to do, I just hate that code so much I didn't want to touch it
* unless it was to fix it properly, which seemed a distraction from the
* task at hand! -nmatsakis
*/
let unadjusted_ty = expr_ty(cx, expr);
let adjustment = {
let adjustments = cx.adjustments.borrow();
adjustments.get().find_copy(&expr.id)
};
adjust_ty(cx, expr.span, unadjusted_ty, adjustment)
}
pub fn expr_span(cx: ctxt, id: NodeId) -> Span {
match cx.map.find(id) {
Some(ast_map::NodeExpr(e)) => {
e.span
}
Some(f) => {
cx.sess.bug(format!("Node id {} is not an expr: {:?}",
id, f));
}
None => {
cx.sess.bug(format!("Node id {} is not present \
in the node map", id));
}
}
}
pub fn local_var_name_str(cx: ctxt, id: NodeId) -> InternedString {
match cx.map.find(id) {
Some(ast_map::NodeLocal(pat)) => {
match pat.node {
ast::PatIdent(_, ref path, _) => {
token::get_ident(ast_util::path_to_ident(path))
}
_ => {
cx.sess.bug(
format!("Variable id {} maps to {:?}, not local",
id, pat));
}
}
}
r => {
cx.sess.bug(
format!("Variable id {} maps to {:?}, not local",
id, r));
}
}
}
pub fn adjust_ty(cx: ctxt,
span: Span,
unadjusted_ty: ty::t,
adjustment: Option<@AutoAdjustment>)
-> ty::t {
/*! See `expr_ty_adjusted` */
return match adjustment {
None => unadjusted_ty,
Some(adjustment) => {
match *adjustment {
AutoAddEnv(r, s) => {
match ty::get(unadjusted_ty).sty {
ty::ty_bare_fn(ref b) => {
ty::mk_closure(
cx,
ty::ClosureTy {purity: b.purity,
sigil: s,
onceness: ast::Many,
region: r,
bounds: ty::AllBuiltinBounds(),
sig: b.sig.clone()})
}
ref b => {
cx.sess.bug(
format!("add_env adjustment on non-bare-fn: \
{:?}",
b));
}
}
}
AutoDerefRef(ref adj) => {
let mut adjusted_ty = unadjusted_ty;
if !ty::type_is_error(adjusted_ty) {
for i in range(0, adj.autoderefs) {
match ty::deref(adjusted_ty, true) {
Some(mt) => { adjusted_ty = mt.ty; }
None => {
cx.sess.span_bug(
span,
format!("the {}th autoderef failed: \
{}",
i,
ty_to_str(cx, adjusted_ty)));
}
}
}
}
match adj.autoref {
None => adjusted_ty,
Some(ref autoref) => {
match *autoref {
AutoPtr(r, m) => {
mk_rptr(cx, r, mt {
ty: adjusted_ty,
mutbl: m
})
}
AutoBorrowVec(r, m) => {
borrow_vec(cx, span, r, m, adjusted_ty)
}
AutoBorrowVecRef(r, m) => {
adjusted_ty = borrow_vec(cx,
span,
r,
m,
adjusted_ty);
mk_rptr(cx, r, mt {
ty: adjusted_ty,
mutbl: ast::MutImmutable
})
}
AutoBorrowFn(r) => {
borrow_fn(cx, span, r, adjusted_ty)
}
AutoUnsafe(m) => {
mk_ptr(cx, mt {ty: adjusted_ty, mutbl: m})
}
AutoBorrowObj(r, m) => {
borrow_obj(cx, span, r, m, adjusted_ty)
}
}
}
}
}
AutoObject(ref sigil, ref region, m, b, def_id, ref substs) => {
trait_adjustment_to_ty(cx,
sigil,
region,
def_id,
substs,
m,
b)
}
}
}
};
fn borrow_vec(cx: ctxt, span: Span,
r: Region, m: ast::Mutability,
ty: ty::t) -> ty::t {
match get(ty).sty {
ty_vec(mt, _) => {
ty::mk_vec(cx, mt {ty: mt.ty, mutbl: m}, vstore_slice(r))
}
ty_str(_) => {
ty::mk_str(cx, vstore_slice(r))
}
ref s => {
cx.sess.span_bug(
span,
format!("borrow-vec associated with bad sty: {:?}",
s));
}
}
}
fn borrow_fn(cx: ctxt, span: Span, r: Region, ty: ty::t) -> ty::t {
match get(ty).sty {
ty_closure(ref fty) => {
ty::mk_closure(cx, ClosureTy {
sigil: BorrowedSigil,
region: r,
..(*fty).clone()
})
}
ref s => {
cx.sess.span_bug(
span,
format!("borrow-fn associated with bad sty: {:?}",
s));
}
}
}
fn borrow_obj(cx: ctxt, span: Span, r: Region,
m: ast::Mutability, ty: ty::t) -> ty::t {
match get(ty).sty {
ty_trait(trt_did, ref trt_substs, _, _, b) => {
ty::mk_trait(cx, trt_did, trt_substs.clone(),
RegionTraitStore(r), m, b)
}
ref s => {
cx.sess.span_bug(
span,
format!("borrow-trait-obj associated with bad sty: {:?}",
s));
}
}
}
}
pub fn trait_adjustment_to_ty(cx: ctxt, sigil: &ast::Sigil, region: &Option<Region>,
def_id: ast::DefId, substs: &substs, m: ast::Mutability,
bounds: BuiltinBounds) -> t {
let trait_store = match *sigil {
BorrowedSigil => RegionTraitStore(region.expect("expected valid region")),
OwnedSigil => UniqTraitStore,
ManagedSigil => unreachable!()
};
mk_trait(cx, def_id, substs.clone(), trait_store, m, bounds)
}
impl AutoRef {
pub fn map_region(&self, f: |Region| -> Region) -> AutoRef {
match *self {
ty::AutoPtr(r, m) => ty::AutoPtr(f(r), m),
ty::AutoBorrowVec(r, m) => ty::AutoBorrowVec(f(r), m),
ty::AutoBorrowVecRef(r, m) => ty::AutoBorrowVecRef(f(r), m),
ty::AutoBorrowFn(r) => ty::AutoBorrowFn(f(r)),
ty::AutoUnsafe(m) => ty::AutoUnsafe(m),
ty::AutoBorrowObj(r, m) => ty::AutoBorrowObj(f(r), m),
}
}
}
pub struct ParamsTy {
params: ~[t],
ty: t
}
pub fn expr_ty_params_and_ty(cx: ctxt,
expr: &ast::Expr)
-> ParamsTy {
ParamsTy {
params: node_id_to_type_params(cx, expr.id),
ty: node_id_to_type(cx, expr.id)
}
}
pub fn expr_has_ty_params(cx: ctxt, expr: &ast::Expr) -> bool {
return node_id_has_type_params(cx, expr.id);
}
pub fn method_call_type_param_defs(tcx: ctxt, origin: typeck::MethodOrigin)
-> Rc<~[TypeParameterDef]> {
match origin {
typeck::MethodStatic(did) => {
// n.b.: When we encode impl methods, the bounds
// that we encode include both the impl bounds
// and then the method bounds themselves...
ty::lookup_item_type(tcx, did).generics.type_param_defs
}
typeck::MethodParam(typeck::MethodParam {
trait_id: trt_id,
method_num: n_mth, ..}) |
typeck::MethodObject(typeck::MethodObject {
trait_id: trt_id,
method_num: n_mth, ..}) => {
// ...trait methods bounds, in contrast, include only the
// method bounds, so we must preprend the tps from the
// trait itself. This ought to be harmonized.
let trait_type_param_defs =
lookup_trait_def(tcx, trt_id).generics.type_param_defs();
Rc::new(vec::append(
trait_type_param_defs.to_owned(),
ty::trait_method(tcx,
trt_id,
n_mth).generics.type_param_defs()))
}
}
}
pub fn resolve_expr(tcx: ctxt, expr: &ast::Expr) -> ast::Def {
let def_map = tcx.def_map.borrow();
match def_map.get().find(&expr.id) {
Some(&def) => def,
None => {
tcx.sess.span_bug(expr.span, format!(
"no def-map entry for expr {:?}", expr.id));
}
}
}
pub fn expr_is_lval(tcx: ctxt,
method_map: typeck::MethodMap,
e: &ast::Expr) -> bool {
match expr_kind(tcx, method_map, e) {
LvalueExpr => true,
RvalueDpsExpr | RvalueDatumExpr | RvalueStmtExpr => false
}
}
/// We categorize expressions into three kinds. The distinction between
/// lvalue/rvalue is fundamental to the language. The distinction between the
/// two kinds of rvalues is an artifact of trans which reflects how we will
/// generate code for that kind of expression. See trans/expr.rs for more
/// information.
pub enum ExprKind {
LvalueExpr,
RvalueDpsExpr,
RvalueDatumExpr,
RvalueStmtExpr
}
pub fn expr_kind(tcx: ctxt,
method_map: typeck::MethodMap,
expr: &ast::Expr) -> ExprKind {
{
let method_map = method_map.borrow();
if method_map.get().contains_key(&expr.id) {
// Overloaded operations are generally calls, and hence they are
// generated via DPS. However, assign_op (e.g., `x += y`) is an
// exception, as its result is always unit.
return match expr.node {
ast::ExprAssignOp(..) => RvalueStmtExpr,
_ => RvalueDpsExpr
};
}
}
match expr.node {
ast::ExprPath(..) => {
match resolve_expr(tcx, expr) {
ast::DefVariant(tid, vid, _) => {
let variant_info = enum_variant_with_id(tcx, tid, vid);
if variant_info.args.len() > 0u {
// N-ary variant.
RvalueDatumExpr
} else {
// Nullary variant.
RvalueDpsExpr
}
}
ast::DefStruct(_) => {
match get(expr_ty(tcx, expr)).sty {
ty_bare_fn(..) => RvalueDatumExpr,
_ => RvalueDpsExpr
}
}
// Fn pointers are just scalar values.
ast::DefFn(..) | ast::DefStaticMethod(..) => RvalueDatumExpr,
// Note: there is actually a good case to be made that
// DefArg's, particularly those of immediate type, ought to
// considered rvalues.
ast::DefStatic(..) |
ast::DefBinding(..) |
ast::DefUpvar(..) |
ast::DefArg(..) |
ast::DefLocal(..) => LvalueExpr,
def => {
tcx.sess.span_bug(expr.span, format!(
"uncategorized def for expr {:?}: {:?}",
expr.id, def));
}
}
}
ast::ExprUnary(ast::UnDeref, _) |
ast::ExprField(..) |
ast::ExprIndex(..) => {
LvalueExpr
}
ast::ExprCall(..) |
ast::ExprMethodCall(..) |
ast::ExprStruct(..) |
ast::ExprTup(..) |
ast::ExprIf(..) |
ast::ExprMatch(..) |
ast::ExprFnBlock(..) |
ast::ExprProc(..) |
ast::ExprBlock(..) |
ast::ExprRepeat(..) |
ast::ExprVstore(_, ast::ExprVstoreSlice) |
ast::ExprVstore(_, ast::ExprVstoreMutSlice) |
ast::ExprVec(..) => {
RvalueDpsExpr
}
ast::ExprLit(lit) if lit_is_str(lit) => {
RvalueDpsExpr
}
ast::ExprCast(..) => {
let node_types = tcx.node_types.borrow();
match node_types.get().find(&(expr.id as uint)) {
Some(&t) => {
if type_is_trait(t) {
RvalueDpsExpr
} else {
RvalueDatumExpr
}
}
None => {
// Technically, it should not happen that the expr is not
// present within the table. However, it DOES happen
// during type check, because the final types from the
// expressions are not yet recorded in the tcx. At that
// time, though, we are only interested in knowing lvalue
// vs rvalue. It would be better to base this decision on
// the AST type in cast node---but (at the time of this
// writing) it's not easy to distinguish casts to traits
// from other casts based on the AST. This should be
// easier in the future, when casts to traits would like
// like @Foo, ~Foo, or &Foo.
RvalueDatumExpr
}
}
}
ast::ExprBreak(..) |
ast::ExprAgain(..) |
ast::ExprRet(..) |
ast::ExprWhile(..) |
ast::ExprLoop(..) |
ast::ExprAssign(..) |
ast::ExprInlineAsm(..) |
ast::ExprAssignOp(..) => {
RvalueStmtExpr
}
ast::ExprForLoop(..) => fail!("non-desugared expr_for_loop"),
ast::ExprLogLevel |
ast::ExprLit(_) | // Note: LitStr is carved out above
ast::ExprUnary(..) |
ast::ExprAddrOf(..) |
ast::ExprBinary(..) |
ast::ExprVstore(_, ast::ExprVstoreUniq) => {
RvalueDatumExpr
}
ast::ExprBox(place, _) => {
// Special case `~T` for now:
let def_map = tcx.def_map.borrow();
let definition = match def_map.get().find(&place.id) {
Some(&def) => def,
None => fail!("no def for place"),
};
let def_id = ast_util::def_id_of_def(definition);
match tcx.lang_items.items[ExchangeHeapLangItem as uint] {
Some(item_def_id) if def_id == item_def_id => RvalueDatumExpr,
Some(_) | None => RvalueDpsExpr,
}
}
ast::ExprParen(e) => expr_kind(tcx, method_map, e),
ast::ExprMac(..) => {
tcx.sess.span_bug(
expr.span,
"macro expression remains after expansion");
}
}
}
pub fn stmt_node_id(s: &ast::Stmt) -> ast::NodeId {
match s.node {
ast::StmtDecl(_, id) | StmtExpr(_, id) | StmtSemi(_, id) => {
return id;
}
ast::StmtMac(..) => fail!("unexpanded macro in trans")
}
}
pub fn field_idx(name: ast::Name, fields: &[field]) -> Option<uint> {
let mut i = 0u;
for f in fields.iter() { if f.ident.name == name { return Some(i); } i += 1u; }
return None;
}
pub fn field_idx_strict(tcx: ty::ctxt, name: ast::Name, fields: &[field])
-> uint {
let mut i = 0u;
for f in fields.iter() { if f.ident.name == name { return i; } i += 1u; }
tcx.sess.bug(format!(
"no field named `{}` found in the list of fields `{:?}`",
token::get_name(name),
fields.map(|f| token::get_ident(f.ident).get().to_str())));
}
pub fn method_idx(id: ast::Ident, meths: &[@Method]) -> Option<uint> {
meths.iter().position(|m| m.ident == id)
}
/// Returns a vector containing the indices of all type parameters that appear
/// in `ty`. The vector may contain duplicates. Probably should be converted
/// to a bitset or some other representation.
pub fn param_tys_in_type(ty: t) -> ~[param_ty] {
let mut rslt = ~[];
walk_ty(ty, |ty| {
match get(ty).sty {
ty_param(p) => {
rslt.push(p);
}
_ => ()
}
});
rslt
}
pub fn occurs_check(tcx: ctxt, sp: Span, vid: TyVid, rt: t) {
// Returns a vec of all the type variables occurring in `ty`. It may
// contain duplicates. (Integral type vars aren't counted.)
fn vars_in_type(ty: t) -> ~[TyVid] {
let mut rslt = ~[];
walk_ty(ty, |ty| {
match get(ty).sty {
ty_infer(TyVar(v)) => rslt.push(v),
_ => ()
}
});
rslt
}
// Fast path
if !type_needs_infer(rt) { return; }
// Occurs check!
if vars_in_type(rt).contains(&vid) {
// Maybe this should be span_err -- however, there's an
// assertion later on that the type doesn't contain
// variables, so in this case we have to be sure to die.
tcx.sess.span_fatal
(sp, ~"type inference failed because I \
could not find a type\n that's both of the form "
+ ::util::ppaux::ty_to_str(tcx, mk_var(tcx, vid)) +
" and of the form " + ::util::ppaux::ty_to_str(tcx, rt) +
" - such a type would have to be infinitely large.");
}
}
pub fn ty_sort_str(cx: ctxt, t: t) -> ~str {
match get(t).sty {
ty_nil | ty_bot | ty_bool | ty_char | ty_int(_) |
ty_uint(_) | ty_float(_) | ty_str(_) => {
::util::ppaux::ty_to_str(cx, t)
}
ty_enum(id, _) => format!("enum {}", item_path_str(cx, id)),
ty_box(_) => ~"@-ptr",
ty_uniq(_) => ~"~-ptr",
ty_vec(_, _) => ~"vector",
ty_unboxed_vec(_) => ~"unboxed vector",
ty_ptr(_) => ~"*-ptr",
ty_rptr(_, _) => ~"&-ptr",
ty_bare_fn(_) => ~"extern fn",
ty_closure(_) => ~"fn",
ty_trait(id, _, _, _, _) => format!("trait {}", item_path_str(cx, id)),
ty_struct(id, _) => format!("struct {}", item_path_str(cx, id)),
ty_tup(_) => ~"tuple",
ty_infer(TyVar(_)) => ~"inferred type",
ty_infer(IntVar(_)) => ~"integral variable",
ty_infer(FloatVar(_)) => ~"floating-point variable",
ty_param(_) => ~"type parameter",
ty_self(_) => ~"self",
ty_err => ~"type error"
}
}
pub fn type_err_to_str(cx: ctxt, err: &type_err) -> ~str {
/*!
*
* Explains the source of a type err in a short,
* human readable way. This is meant to be placed in
* parentheses after some larger message. You should
* also invoke `note_and_explain_type_err()` afterwards
* to present additional details, particularly when
* it comes to lifetime-related errors. */
fn terr_vstore_kind_to_str(k: terr_vstore_kind) -> ~str {
match k {
terr_vec => ~"[]",
terr_str => ~"str",
terr_fn => ~"fn",
terr_trait => ~"trait"
}
}
match *err {
terr_mismatch => ~"types differ",
terr_purity_mismatch(values) => {
format!("expected {} fn but found {} fn",
values.expected.to_str(), values.found.to_str())
}
terr_abi_mismatch(values) => {
format!("expected {} fn but found {} fn",
values.expected.to_str(), values.found.to_str())
}
terr_onceness_mismatch(values) => {
format!("expected {} fn but found {} fn",
values.expected.to_str(), values.found.to_str())
}
terr_sigil_mismatch(values) => {
format!("expected {} closure, found {} closure",
values.expected.to_str(),
values.found.to_str())
}
terr_mutability => ~"values differ in mutability",
terr_box_mutability => ~"boxed values differ in mutability",
terr_vec_mutability => ~"vectors differ in mutability",
terr_ptr_mutability => ~"pointers differ in mutability",
terr_ref_mutability => ~"references differ in mutability",
terr_ty_param_size(values) => {
format!("expected a type with {} type params \
but found one with {} type params",
values.expected, values.found)
}
terr_tuple_size(values) => {
format!("expected a tuple with {} elements \
but found one with {} elements",
values.expected, values.found)
}
terr_record_size(values) => {
format!("expected a record with {} fields \
but found one with {} fields",
values.expected, values.found)
}
terr_record_mutability => {
~"record elements differ in mutability"
}
terr_record_fields(values) => {
format!("expected a record with field `{}` but found one with field \
`{}`",
token::get_ident(values.expected),
token::get_ident(values.found))
}
terr_arg_count => ~"incorrect number of function parameters",
terr_regions_does_not_outlive(..) => {
format!("lifetime mismatch")
}
terr_regions_not_same(..) => {
format!("lifetimes are not the same")
}
terr_regions_no_overlap(..) => {
format!("lifetimes do not intersect")
}
terr_regions_insufficiently_polymorphic(br, _) => {
format!("expected bound lifetime parameter {}, \
but found concrete lifetime",
bound_region_ptr_to_str(cx, br))
}
terr_regions_overly_polymorphic(br, _) => {
format!("expected concrete lifetime, \
but found bound lifetime parameter {}",
bound_region_ptr_to_str(cx, br))
}
terr_vstores_differ(k, ref values) => {
format!("{} storage differs: expected `{}` but found `{}`",
terr_vstore_kind_to_str(k),
vstore_to_str(cx, (*values).expected),
vstore_to_str(cx, (*values).found))
}
terr_trait_stores_differ(_, ref values) => {
format!("trait storage differs: expected `{}` but found `{}`",
trait_store_to_str(cx, (*values).expected),
trait_store_to_str(cx, (*values).found))
}
terr_in_field(err, fname) => {
format!("in field `{}`, {}", token::get_ident(fname),
type_err_to_str(cx, err))
}
terr_sorts(values) => {
format!("expected {} but found {}",
ty_sort_str(cx, values.expected),
ty_sort_str(cx, values.found))
}
terr_traits(values) => {
format!("expected trait `{}` but found trait `{}`",
item_path_str(cx, values.expected),
item_path_str(cx, values.found))
}
terr_builtin_bounds(values) => {
if values.expected.is_empty() {
format!("expected no bounds but found `{}`",
values.found.user_string(cx))
} else if values.found.is_empty() {
format!("expected bounds `{}` but found no bounds",
values.expected.user_string(cx))
} else {
format!("expected bounds `{}` but found bounds `{}`",
values.expected.user_string(cx),
values.found.user_string(cx))
}
}
terr_integer_as_char => {
format!("expected an integral type but found `char`")
}
terr_int_mismatch(ref values) => {
format!("expected `{}` but found `{}`",
values.expected.to_str(),
values.found.to_str())
}
terr_float_mismatch(ref values) => {
format!("expected `{}` but found `{}`",
values.expected.to_str(),
values.found.to_str())
}
terr_variadic_mismatch(ref values) => {
format!("expected {} fn but found {} function",
if values.expected { "variadic" } else { "non-variadic" },
if values.found { "variadic" } else { "non-variadic" })
}
}
}
pub fn note_and_explain_type_err(cx: ctxt, err: &type_err) {
match *err {
terr_regions_does_not_outlive(subregion, superregion) => {
note_and_explain_region(cx, "", subregion, "...");
note_and_explain_region(cx, "...does not necessarily outlive ",
superregion, "");
}
terr_regions_not_same(region1, region2) => {
note_and_explain_region(cx, "", region1, "...");
note_and_explain_region(cx, "...is not the same lifetime as ",
region2, "");
}
terr_regions_no_overlap(region1, region2) => {
note_and_explain_region(cx, "", region1, "...");
note_and_explain_region(cx, "...does not overlap ",
region2, "");
}
terr_regions_insufficiently_polymorphic(_, conc_region) => {
note_and_explain_region(cx,
"concrete lifetime that was found is ",
conc_region, "");
}
terr_regions_overly_polymorphic(_, conc_region) => {
note_and_explain_region(cx,
"expected concrete lifetime is ",
conc_region, "");
}
_ => {}
}
}
pub fn def_has_ty_params(def: ast::Def) -> bool {
match def {
ast::DefFn(_, _) | ast::DefVariant(_, _, _) | ast::DefStruct(_)
=> true,
_ => false
}
}
pub fn provided_source(cx: ctxt, id: ast::DefId) -> Option<ast::DefId> {
let provided_method_sources = cx.provided_method_sources.borrow();
provided_method_sources.get().find(&id).map(|x| *x)
}
pub fn provided_trait_methods(cx: ctxt, id: ast::DefId) -> ~[@Method] {
if is_local(id) {
{
match cx.map.find(id.node) {
Some(ast_map::NodeItem(item)) => {
match item.node {
ItemTrait(_, _, ref ms) => {
let (_, p) = ast_util::split_trait_methods(*ms);
p.map(|m| method(cx, ast_util::local_def(m.id)))
}
_ => {
cx.sess.bug(format!("provided_trait_methods: \
`{:?}` is not a trait",
id))
}
}
}
_ => {
cx.sess.bug(format!("provided_trait_methods: `{:?}` is not \
a trait",
id))
}
}
}
} else {
csearch::get_provided_trait_methods(cx, id)
}
}
pub fn trait_supertraits(cx: ctxt, id: ast::DefId) -> @~[@TraitRef] {
// Check the cache.
{
let supertraits = cx.supertraits.borrow();
match supertraits.get().find(&id) {
Some(&trait_refs) => { return trait_refs; }
None => {} // Continue.
}
}
// Not in the cache. It had better be in the metadata, which means it
// shouldn't be local.
assert!(!is_local(id));
// Get the supertraits out of the metadata and create the
// TraitRef for each.
let result = @csearch::get_supertraits(cx, id);
let mut supertraits = cx.supertraits.borrow_mut();
supertraits.get().insert(id, result);
return result;
}
pub fn trait_ref_supertraits(cx: ctxt, trait_ref: &ty::TraitRef) -> ~[@TraitRef] {
let supertrait_refs = trait_supertraits(cx, trait_ref.def_id);
supertrait_refs.map(
|supertrait_ref| supertrait_ref.subst(cx, &trait_ref.substs))
}
fn lookup_locally_or_in_crate_store<V:Clone>(
descr: &str,
def_id: ast::DefId,
map: &mut HashMap<ast::DefId, V>,
load_external: || -> V) -> V {
/*!
* Helper for looking things up in the various maps
* that are populated during typeck::collect (e.g.,
* `cx.methods`, `cx.tcache`, etc). All of these share
* the pattern that if the id is local, it should have
* been loaded into the map by the `typeck::collect` phase.
* If the def-id is external, then we have to go consult
* the crate loading code (and cache the result for the future).
*/
match map.find_copy(&def_id) {
Some(v) => { return v; }
None => { }
}
if def_id.krate == ast::LOCAL_CRATE {
fail!("No def'n found for {:?} in tcx.{}", def_id, descr);
}
let v = load_external();
map.insert(def_id, v.clone());
v
}
pub fn trait_method(cx: ctxt, trait_did: ast::DefId, idx: uint) -> @Method {
let method_def_id = ty::trait_method_def_ids(cx, trait_did)[idx];
ty::method(cx, method_def_id)
}
pub fn trait_methods(cx: ctxt, trait_did: ast::DefId) -> @~[@Method] {
let mut trait_methods_cache = cx.trait_methods_cache.borrow_mut();
match trait_methods_cache.get().find(&trait_did) {
Some(&methods) => methods,
None => {
let def_ids = ty::trait_method_def_ids(cx, trait_did);
let methods = @def_ids.map(|d| ty::method(cx, *d));
trait_methods_cache.get().insert(trait_did, methods);
methods
}
}
}
pub fn method(cx: ctxt, id: ast::DefId) -> @Method {
let mut methods = cx.methods.borrow_mut();
lookup_locally_or_in_crate_store("methods", id, methods.get(), || {
@csearch::get_method(cx, id)
})
}
pub fn trait_method_def_ids(cx: ctxt, id: ast::DefId) -> @~[DefId] {
let mut trait_method_def_ids = cx.trait_method_def_ids.borrow_mut();
lookup_locally_or_in_crate_store("trait_method_def_ids",
id,
trait_method_def_ids.get(),
|| {
@csearch::get_trait_method_def_ids(cx.cstore, id)
})
}
pub fn impl_trait_ref(cx: ctxt, id: ast::DefId) -> Option<@TraitRef> {
{
let mut impl_trait_cache = cx.impl_trait_cache.borrow_mut();
match impl_trait_cache.get().find(&id) {
Some(&ret) => { return ret; }
None => {}
}
}
let ret = if id.krate == ast::LOCAL_CRATE {
debug!("(impl_trait_ref) searching for trait impl {:?}", id);
match cx.map.find(id.node) {
Some(ast_map::NodeItem(item)) => {
match item.node {
ast::ItemImpl(_, ref opt_trait, _, _) => {
match opt_trait {
&Some(ref t) => {
Some(ty::node_id_to_trait_ref(cx, t.ref_id))
}
&None => None
}
}
_ => None
}
}
_ => None
}
} else {
csearch::get_impl_trait(cx, id)
};
let mut impl_trait_cache = cx.impl_trait_cache.borrow_mut();
impl_trait_cache.get().insert(id, ret);
return ret;
}
pub fn trait_ref_to_def_id(tcx: ctxt, tr: &ast::TraitRef) -> ast::DefId {
let def_map = tcx.def_map.borrow();
let def = def_map.get()
.find(&tr.ref_id)
.expect("no def-map entry for trait");
ast_util::def_id_of_def(*def)
}
pub fn try_add_builtin_trait(tcx: ctxt,
trait_def_id: ast::DefId,
builtin_bounds: &mut BuiltinBounds) -> bool {
//! Checks whether `trait_ref` refers to one of the builtin
//! traits, like `Send`, and adds the corresponding
//! bound to the set `builtin_bounds` if so. Returns true if `trait_ref`
//! is a builtin trait.
match tcx.lang_items.to_builtin_kind(trait_def_id) {
Some(bound) => { builtin_bounds.add(bound); true }
None => false
}
}
pub fn ty_to_def_id(ty: t) -> Option<ast::DefId> {
match get(ty).sty {
ty_trait(id, _, _, _, _) | ty_struct(id, _) | ty_enum(id, _) => Some(id),
_ => None
}
}
// Enum information
#[deriving(Clone)]
pub struct VariantInfo {
args: ~[t],
arg_names: Option<~[ast::Ident]>,
ctor_ty: t,
name: ast::Ident,
id: ast::DefId,
disr_val: Disr,
vis: Visibility
}
impl VariantInfo {
/// Creates a new VariantInfo from the corresponding ast representation.
///
/// Does not do any caching of the value in the type context.
pub fn from_ast_variant(cx: ctxt,
ast_variant: &ast::Variant,
discriminant: Disr) -> VariantInfo {
let ctor_ty = node_id_to_type(cx, ast_variant.node.id);
match ast_variant.node.kind {
ast::TupleVariantKind(ref args) => {
let arg_tys = if args.len() > 0 { ty_fn_args(ctor_ty).map(|a| *a) } else { ~[] };
return VariantInfo {
args: arg_tys,
arg_names: None,
ctor_ty: ctor_ty,
name: ast_variant.node.name,
id: ast_util::local_def(ast_variant.node.id),
disr_val: discriminant,
vis: ast_variant.node.vis
};
},
ast::StructVariantKind(ref struct_def) => {
let fields: &[StructField] = struct_def.fields;
assert!(fields.len() > 0);
let arg_tys = ty_fn_args(ctor_ty).map(|a| *a);
let arg_names = fields.map(|field| {
match field.node.kind {
NamedField(ident, _) => ident,
UnnamedField => cx.sess.bug(
"enum_variants: all fields in struct must have a name")
}
});
return VariantInfo {
args: arg_tys,
arg_names: Some(arg_names),
ctor_ty: ctor_ty,
name: ast_variant.node.name,
id: ast_util::local_def(ast_variant.node.id),
disr_val: discriminant,
vis: ast_variant.node.vis
};
}
}
}
}
pub fn substd_enum_variants(cx: ctxt,
id: ast::DefId,
substs: &substs)
-> ~[@VariantInfo] {
enum_variants(cx, id).iter().map(|variant_info| {
let substd_args = variant_info.args.iter()
.map(|aty| subst(cx, substs, *aty)).collect();
let substd_ctor_ty = subst(cx, substs, variant_info.ctor_ty);
@VariantInfo {
args: substd_args,
ctor_ty: substd_ctor_ty,
..(**variant_info).clone()
}
}).collect()
}
pub fn item_path_str(cx: ctxt, id: ast::DefId) -> ~str {
with_path(cx, id, |path| ast_map::path_to_str(path))
}
pub enum DtorKind {
NoDtor,
TraitDtor(DefId, bool)
}
impl DtorKind {
pub fn is_not_present(&self) -> bool {
match *self {
NoDtor => true,
_ => false
}
}
pub fn is_present(&self) -> bool {
!self.is_not_present()
}
pub fn has_drop_flag(&self) -> bool {
match self {
&NoDtor => false,
&TraitDtor(_, flag) => flag
}
}
}
/* If struct_id names a struct with a dtor, return Some(the dtor's id).
Otherwise return none. */
pub fn ty_dtor(cx: ctxt, struct_id: DefId) -> DtorKind {
let destructor_for_type = cx.destructor_for_type.borrow();
match destructor_for_type.get().find(&struct_id) {
Some(&method_def_id) => {
let flag = !has_attr(cx, struct_id, "unsafe_no_drop_flag");
TraitDtor(method_def_id, flag)
}
None => NoDtor,
}
}
pub fn has_dtor(cx: ctxt, struct_id: DefId) -> bool {
ty_dtor(cx, struct_id).is_present()
}
pub fn with_path<T>(cx: ctxt, id: ast::DefId, f: |ast_map::PathElems| -> T) -> T {
if id.krate == ast::LOCAL_CRATE {
cx.map.with_path(id.node, f)
} else {
f(ast_map::Values(csearch::get_item_path(cx, id).iter()).chain(None))
}
}
pub fn enum_is_univariant(cx: ctxt, id: ast::DefId) -> bool {
enum_variants(cx, id).len() == 1
}
pub fn type_is_empty(cx: ctxt, t: t) -> bool {
match ty::get(t).sty {
ty_enum(did, _) => (*enum_variants(cx, did)).is_empty(),
_ => false
}
}
pub fn enum_variants(cx: ctxt, id: ast::DefId) -> @~[@VariantInfo] {
{
let enum_var_cache = cx.enum_var_cache.borrow();
match enum_var_cache.get().find(&id) {
Some(&variants) => return variants,
_ => { /* fallthrough */ }
}
}
let result = if ast::LOCAL_CRATE != id.krate {
@csearch::get_enum_variants(cx, id)
} else {
/*
Although both this code and check_enum_variants in typeck/check
call eval_const_expr, it should never get called twice for the same
expr, since check_enum_variants also updates the enum_var_cache
*/
{
match cx.map.get(id.node) {
ast_map::NodeItem(item) => {
match item.node {
ast::ItemEnum(ref enum_definition, _) => {
let mut last_discriminant: Option<Disr> = None;
@enum_definition.variants.iter().map(|&variant| {
let mut discriminant = match last_discriminant {
Some(val) => val + 1,
None => INITIAL_DISCRIMINANT_VALUE
};
match variant.node.disr_expr {
Some(e) => match const_eval::eval_const_expr_partial(&cx, e) {
Ok(const_eval::const_int(val)) => {
discriminant = val as Disr
}
Ok(const_eval::const_uint(val)) => {
discriminant = val as Disr
}
Ok(_) => {
cx.sess
.span_err(e.span,
"expected signed integer \
constant");
}
Err(ref err) => {
cx.sess
.span_err(e.span,
format!("expected \
constant: {}",
*err));
}
},
None => {}
};
let variant_info =
@VariantInfo::from_ast_variant(cx,
variant,
discriminant);
last_discriminant = Some(discriminant);
variant_info
}).collect()
}
_ => {
cx.sess.bug("enum_variants: id not bound to an enum")
}
}
}
_ => cx.sess.bug("enum_variants: id not bound to an enum")
}
}
};
{
let mut enum_var_cache = cx.enum_var_cache.borrow_mut();
enum_var_cache.get().insert(id, result);
result
}
}
// Returns information about the enum variant with the given ID:
pub fn enum_variant_with_id(cx: ctxt,
enum_id: ast::DefId,
variant_id: ast::DefId)
-> @VariantInfo {
let variants = enum_variants(cx, enum_id);
let mut i = 0;
while i < variants.len() {
let variant = variants[i];
if variant.id == variant_id { return variant; }
i += 1;
}
cx.sess.bug("enum_variant_with_id(): no variant exists with that ID");
}
// If the given item is in an external crate, looks up its type and adds it to
// the type cache. Returns the type parameters and type.
pub fn lookup_item_type(cx: ctxt,
did: ast::DefId)
-> ty_param_bounds_and_ty {
let mut tcache = cx.tcache.borrow_mut();
lookup_locally_or_in_crate_store(
"tcache", did, tcache.get(),
|| csearch::get_type(cx, did))
}
pub fn lookup_impl_vtables(cx: ctxt,
did: ast::DefId)
-> typeck::impl_res {
let mut impl_vtables = cx.impl_vtables.borrow_mut();
lookup_locally_or_in_crate_store(
"impl_vtables", did, impl_vtables.get(),
|| csearch::get_impl_vtables(cx, did) )
}
/// Given the did of a trait, returns its canonical trait ref.
pub fn lookup_trait_def(cx: ctxt, did: ast::DefId) -> @ty::TraitDef {
let mut trait_defs = cx.trait_defs.borrow_mut();
match trait_defs.get().find(&did) {
Some(&trait_def) => {
// The item is in this crate. The caller should have added it to the
// type cache already
return trait_def;
}
None => {
assert!(did.krate != ast::LOCAL_CRATE);
let trait_def = @csearch::get_trait_def(cx, did);
trait_defs.get().insert(did, trait_def);
return trait_def;
}
}
}
/// Iterate over meta_items of a definition.
// (This should really be an iterator, but that would require csearch and
// decoder to use iterators instead of higher-order functions.)
pub fn each_attr(tcx: ctxt, did: DefId, f: |@MetaItem| -> bool) -> bool {
if is_local(did) {
let item = tcx.map.expect_item(did.node);
item.attrs.iter().advance(|attr| f(attr.node.value))
} else {
let mut cont = true;
csearch::get_item_attrs(tcx.cstore, did, |meta_items| {
if cont {
cont = meta_items.iter().advance(|ptrptr| f(*ptrptr));
}
});
cont
}
}
/// Determine whether an item is annotated with an attribute
pub fn has_attr(tcx: ctxt, did: DefId, attr: &str) -> bool {
let mut found = false;
each_attr(tcx, did, |item| {
if item.name().equiv(&attr) {
found = true;
false
} else {
true
}
});
found
}
/// Determine whether an item is annotated with `#[packed]`
pub fn lookup_packed(tcx: ctxt, did: DefId) -> bool {
has_attr(tcx, did, "packed")
}
/// Determine whether an item is annotated with `#[simd]`
pub fn lookup_simd(tcx: ctxt, did: DefId) -> bool {
has_attr(tcx, did, "simd")
}
// Obtain the the representation annotation for a definition.
pub fn lookup_repr_hint(tcx: ctxt, did: DefId) -> attr::ReprAttr {
let mut acc = attr::ReprAny;
ty::each_attr(tcx, did, |meta| {
acc = attr::find_repr_attr(tcx.sess.diagnostic(), meta, acc);
true
});
return acc;
}
// Look up a field ID, whether or not it's local
// Takes a list of type substs in case the struct is generic
pub fn lookup_field_type(tcx: ctxt,
struct_id: DefId,
id: DefId,
substs: &substs)
-> ty::t {
let t = if id.krate == ast::LOCAL_CRATE {
node_id_to_type(tcx, id.node)
} else {
{
let mut tcache = tcx.tcache.borrow_mut();
match tcache.get().find(&id) {
Some(&ty_param_bounds_and_ty {ty, ..}) => ty,
None => {
let tpt = csearch::get_field_type(tcx, struct_id, id);
tcache.get().insert(id, tpt.clone());
tpt.ty
}
}
}
};
subst(tcx, substs, t)
}
// Look up the list of field names and IDs for a given struct
// Fails if the id is not bound to a struct.
pub fn lookup_struct_fields(cx: ctxt, did: ast::DefId) -> ~[field_ty] {
if did.krate == ast::LOCAL_CRATE {
{
match cx.map.find(did.node) {
Some(ast_map::NodeItem(i)) => {
match i.node {
ast::ItemStruct(struct_def, _) => {
struct_field_tys(struct_def.fields)
}
_ => cx.sess.bug("struct ID bound to non-struct")
}
}
Some(ast_map::NodeVariant(ref variant)) => {
match (*variant).node.kind {
ast::StructVariantKind(struct_def) => {
struct_field_tys(struct_def.fields)
}
_ => {
cx.sess.bug("struct ID bound to enum variant that isn't \
struct-like")
}
}
}
_ => {
cx.sess.bug(
format!("struct ID not bound to an item: {}",
cx.map.node_to_str(did.node)));
}
}
}
} else {
return csearch::get_struct_fields(cx.sess.cstore, did);
}
}
pub fn lookup_struct_field(cx: ctxt,
parent: ast::DefId,
field_id: ast::DefId)
-> field_ty {
let r = lookup_struct_fields(cx, parent);
match r.iter().find(
|f| f.id.node == field_id.node) {
Some(t) => *t,
None => cx.sess.bug("struct ID not found in parent's fields")
}
}
fn struct_field_tys(fields: &[StructField]) -> ~[field_ty] {
fields.map(|field| {
match field.node.kind {
NamedField(ident, visibility) => {
field_ty {
name: ident.name,
id: ast_util::local_def(field.node.id),
vis: visibility,
}
}
UnnamedField => {
field_ty {
name: syntax::parse::token::special_idents::unnamed_field.name,
id: ast_util::local_def(field.node.id),
vis: ast::Public,
}
}
}
})
}
// Returns a list of fields corresponding to the struct's items. trans uses
// this. Takes a list of substs with which to instantiate field types.
pub fn struct_fields(cx: ctxt, did: ast::DefId, substs: &substs)
-> ~[field] {
lookup_struct_fields(cx, did).map(|f| {
field {
// FIXME #6993: change type of field to Name and get rid of new()
ident: ast::Ident::new(f.name),
mt: mt {
ty: lookup_field_type(cx, did, f.id, substs),
mutbl: MutImmutable
}
}
})
}
pub fn is_binopable(cx: ctxt, ty: t, op: ast::BinOp) -> bool {
static tycat_other: int = 0;
static tycat_bool: int = 1;
static tycat_char: int = 2;
static tycat_int: int = 3;
static tycat_float: int = 4;
static tycat_bot: int = 5;
static tycat_raw_ptr: int = 6;
static opcat_add: int = 0;
static opcat_sub: int = 1;
static opcat_mult: int = 2;
static opcat_shift: int = 3;
static opcat_rel: int = 4;
static opcat_eq: int = 5;
static opcat_bit: int = 6;
static opcat_logic: int = 7;
fn opcat(op: ast::BinOp) -> int {
match op {
ast::BiAdd => opcat_add,
ast::BiSub => opcat_sub,
ast::BiMul => opcat_mult,
ast::BiDiv => opcat_mult,
ast::BiRem => opcat_mult,
ast::BiAnd => opcat_logic,
ast::BiOr => opcat_logic,
ast::BiBitXor => opcat_bit,
ast::BiBitAnd => opcat_bit,
ast::BiBitOr => opcat_bit,
ast::BiShl => opcat_shift,
ast::BiShr => opcat_shift,
ast::BiEq => opcat_eq,
ast::BiNe => opcat_eq,
ast::BiLt => opcat_rel,
ast::BiLe => opcat_rel,
ast::BiGe => opcat_rel,
ast::BiGt => opcat_rel
}
}
fn tycat(cx: ctxt, ty: t) -> int {
if type_is_simd(cx, ty) {
return tycat(cx, simd_type(cx, ty))
}
match get(ty).sty {
ty_char => tycat_char,
ty_bool => tycat_bool,
ty_int(_) | ty_uint(_) | ty_infer(IntVar(_)) => tycat_int,
ty_float(_) | ty_infer(FloatVar(_)) => tycat_float,
ty_bot => tycat_bot,
ty_ptr(_) => tycat_raw_ptr,
_ => tycat_other
}
}
static t: bool = true;
static f: bool = false;
let tbl = [
// +, -, *, shift, rel, ==, bit, logic
/*other*/ [f, f, f, f, f, f, f, f],
/*bool*/ [f, f, f, f, t, t, t, t],
/*char*/ [f, f, f, f, t, t, f, f],
/*int*/ [t, t, t, t, t, t, t, f],
/*float*/ [t, t, t, f, t, t, f, f],
/*bot*/ [t, t, t, t, t, t, t, t],
/*raw ptr*/ [f, f, f, f, t, t, f, f]];
return tbl[tycat(cx, ty)][opcat(op)];
}
pub fn ty_params_to_tys(tcx: ty::ctxt, generics: &ast::Generics) -> ~[t] {
vec::from_fn(generics.ty_params.len(), |i| {
let id = generics.ty_params.get(i).id;
ty::mk_param(tcx, i, ast_util::local_def(id))
})
}
/// Returns an equivalent type with all the typedefs and self regions removed.
pub fn normalize_ty(cx: ctxt, t: t) -> t {
let u = TypeNormalizer(cx).fold_ty(t);
return u;
struct TypeNormalizer(ctxt);
impl TypeFolder for TypeNormalizer {
fn tcx(&self) -> ty::ctxt { let TypeNormalizer(c) = *self; c }
fn fold_ty(&mut self, t: ty::t) -> ty::t {
let normalized_opt = {
let normalized_cache = self.tcx().normalized_cache.borrow();
normalized_cache.get().find_copy(&t)
};
match normalized_opt {
Some(u) => {
return u;
}
None => {
let t_norm = ty_fold::super_fold_ty(self, t);
let mut normalized_cache = self.tcx()
.normalized_cache
.borrow_mut();
normalized_cache.get().insert(t, t_norm);
return t_norm;
}
}
}
fn fold_vstore(&mut self, vstore: vstore) -> vstore {
match vstore {
vstore_fixed(..) | vstore_uniq => vstore,
vstore_slice(_) => vstore_slice(ReStatic)
}
}
fn fold_region(&mut self, _: ty::Region) -> ty::Region {
ty::ReStatic
}
fn fold_substs(&mut self,
substs: &substs)
-> substs {
substs { regions: ErasedRegions,
self_ty: ty_fold::fold_opt_ty(self, substs.self_ty),
tps: ty_fold::fold_ty_vec(self, substs.tps) }
}
fn fold_sig(&mut self,
sig: &ty::FnSig)
-> ty::FnSig {
// The binder-id is only relevant to bound regions, which
// are erased at trans time.
ty::FnSig { binder_id: ast::DUMMY_NODE_ID,
inputs: ty_fold::fold_ty_vec(self, sig.inputs),
output: self.fold_ty(sig.output),
variadic: sig.variadic }
}
}
}
pub trait ExprTyProvider {
fn expr_ty(&self, ex: &ast::Expr) -> t;
fn ty_ctxt(&self) -> ctxt;
}
impl ExprTyProvider for ctxt {
fn expr_ty(&self, ex: &ast::Expr) -> t {
expr_ty(*self, ex)
}
fn ty_ctxt(&self) -> ctxt {
*self
}
}
// Returns the repeat count for a repeating vector expression.
pub fn eval_repeat_count<T: ExprTyProvider>(tcx: &T, count_expr: &ast::Expr) -> uint {
match const_eval::eval_const_expr_partial(tcx, count_expr) {
Ok(ref const_val) => match *const_val {
const_eval::const_int(count) => if count < 0 {
tcx.ty_ctxt().sess.span_err(count_expr.span,
"expected positive integer for \
repeat count but found negative integer");
return 0;
} else {
return count as uint
},
const_eval::const_uint(count) => return count as uint,
const_eval::const_float(count) => {
tcx.ty_ctxt().sess.span_err(count_expr.span,
"expected positive integer for \
repeat count but found float");
return count as uint;
}
const_eval::const_str(_) => {
tcx.ty_ctxt().sess.span_err(count_expr.span,
"expected positive integer for \
repeat count but found string");
return 0;
}
const_eval::const_bool(_) => {
tcx.ty_ctxt().sess.span_err(count_expr.span,
"expected positive integer for \
repeat count but found boolean");
return 0;
}
const_eval::const_binary(_) => {
tcx.ty_ctxt().sess.span_err(count_expr.span,
"expected positive integer for \
repeat count but found binary array");
return 0;
}
},
Err(..) => {
tcx.ty_ctxt().sess.span_err(count_expr.span,
"expected constant integer for repeat count \
but found variable");
return 0;
}
}
}
// Determine what purity to check a nested function under
pub fn determine_inherited_purity(parent: (ast::Purity, ast::NodeId),
child: (ast::Purity, ast::NodeId),
child_sigil: ast::Sigil)
-> (ast::Purity, ast::NodeId) {
// If the closure is a stack closure and hasn't had some non-standard
// purity inferred for it, then check it under its parent's purity.
// Otherwise, use its own
match child_sigil {
ast::BorrowedSigil if child.val0() == ast::ImpureFn => parent,
_ => child
}
}
// Iterate over a type parameter's bounded traits and any supertraits
// of those traits, ignoring kinds.
// Here, the supertraits are the transitive closure of the supertrait
// relation on the supertraits from each bounded trait's constraint
// list.
pub fn each_bound_trait_and_supertraits(tcx: ctxt,
bounds: &[@TraitRef],
f: |@TraitRef| -> bool)
-> bool {
for &bound_trait_ref in bounds.iter() {
let mut supertrait_set = HashMap::new();
let mut trait_refs = ~[];
let mut i = 0;
// Seed the worklist with the trait from the bound
supertrait_set.insert(bound_trait_ref.def_id, ());
trait_refs.push(bound_trait_ref);
// Add the given trait ty to the hash map
while i < trait_refs.len() {
debug!("each_bound_trait_and_supertraits(i={:?}, trait_ref={})",
i, trait_refs[i].repr(tcx));
if !f(trait_refs[i]) {
return false;
}
// Add supertraits to supertrait_set
let supertrait_refs = trait_ref_supertraits(tcx, trait_refs[i]);
for &supertrait_ref in supertrait_refs.iter() {
debug!("each_bound_trait_and_supertraits(supertrait_ref={})",
supertrait_ref.repr(tcx));
let d_id = supertrait_ref.def_id;
if !supertrait_set.contains_key(&d_id) {
// FIXME(#5527) Could have same trait multiple times
supertrait_set.insert(d_id, ());
trait_refs.push(supertrait_ref);
}
}
i += 1;
}
}
return true;
}
pub fn count_traits_and_supertraits(tcx: ctxt,
type_param_defs: &[TypeParameterDef]) -> uint {
let mut total = 0;
for type_param_def in type_param_defs.iter() {
each_bound_trait_and_supertraits(
tcx, type_param_def.bounds.trait_bounds, |_| {
total += 1;
true
});
}
return total;
}
pub fn get_tydesc_ty(tcx: ctxt) -> Result<t, ~str> {
tcx.lang_items.require(TyDescStructLangItem).map(|tydesc_lang_item| {
let intrinsic_defs = tcx.intrinsic_defs.borrow();
intrinsic_defs.get().find_copy(&tydesc_lang_item)
.expect("Failed to resolve TyDesc")
})
}
pub fn get_opaque_ty(tcx: ctxt) -> Result<t, ~str> {
tcx.lang_items.require(OpaqueStructLangItem).map(|opaque_lang_item| {
let intrinsic_defs = tcx.intrinsic_defs.borrow();
intrinsic_defs.get().find_copy(&opaque_lang_item)
.expect("Failed to resolve Opaque")
})
}
pub fn visitor_object_ty(tcx: ctxt,
region: ty::Region) -> Result<(@TraitRef, t), ~str> {
let trait_lang_item = match tcx.lang_items.require(TyVisitorTraitLangItem) {
Ok(id) => id,
Err(s) => { return Err(s); }
};
let substs = substs {
regions: ty::NonerasedRegions(opt_vec::Empty),
self_ty: None,
tps: ~[]
};
let trait_ref = @TraitRef { def_id: trait_lang_item, substs: substs };
Ok((trait_ref,
mk_trait(tcx,
trait_ref.def_id,
trait_ref.substs.clone(),
RegionTraitStore(region),
ast::MutMutable,
EmptyBuiltinBounds())))
}
pub fn item_variances(tcx: ctxt, item_id: ast::DefId) -> @ItemVariances {
let mut item_variance_map = tcx.item_variance_map.borrow_mut();
lookup_locally_or_in_crate_store(
"item_variance_map", item_id, item_variance_map.get(),
|| @csearch::get_item_variances(tcx.cstore, item_id))
}
/// Records a trait-to-implementation mapping.
fn record_trait_implementation(tcx: ctxt,
trait_def_id: DefId,
implementation: @Impl) {
let implementation_list;
let mut trait_impls = tcx.trait_impls.borrow_mut();
match trait_impls.get().find(&trait_def_id) {
None => {
implementation_list = @RefCell::new(~[]);
trait_impls.get().insert(trait_def_id, implementation_list);
}
Some(&existing_implementation_list) => {
implementation_list = existing_implementation_list
}
}
let mut implementation_list = implementation_list.borrow_mut();
implementation_list.get().push(implementation);
}
/// Populates the type context with all the implementations for the given type
/// if necessary.
pub fn populate_implementations_for_type_if_necessary(tcx: ctxt,
type_id: ast::DefId) {
if type_id.krate == LOCAL_CRATE {
return
}
{
let populated_external_types = tcx.populated_external_types.borrow();
if populated_external_types.get().contains(&type_id) {
return
}
}
csearch::each_implementation_for_type(tcx.sess.cstore, type_id,
|implementation_def_id| {
let implementation = @csearch::get_impl(tcx, implementation_def_id);
// Record the trait->implementation mappings, if applicable.
let associated_traits = csearch::get_impl_trait(tcx,
implementation.did);
for trait_ref in associated_traits.iter() {
record_trait_implementation(tcx,
trait_ref.def_id,
implementation);
}
// For any methods that use a default implementation, add them to
// the map. This is a bit unfortunate.
for method in implementation.methods.iter() {
for source in method.provided_source.iter() {
let mut provided_method_sources =
tcx.provided_method_sources.borrow_mut();
provided_method_sources.get().insert(method.def_id, *source);
}
}
// If this is an inherent implementation, record it.
if associated_traits.is_none() {
let implementation_list;
let mut inherent_impls = tcx.inherent_impls.borrow_mut();
match inherent_impls.get().find(&type_id) {
None => {
implementation_list = @RefCell::new(~[]);
inherent_impls.get().insert(type_id, implementation_list);
}
Some(&existing_implementation_list) => {
implementation_list = existing_implementation_list;
}
}
{
let mut implementation_list =
implementation_list.borrow_mut();
implementation_list.get().push(implementation);
}
}
// Store the implementation info.
let mut impls = tcx.impls.borrow_mut();
impls.get().insert(implementation_def_id, implementation);
});
let mut populated_external_types = tcx.populated_external_types
.borrow_mut();
populated_external_types.get().insert(type_id);
}
/// Populates the type context with all the implementations for the given
/// trait if necessary.
pub fn populate_implementations_for_trait_if_necessary(
tcx: ctxt,
trait_id: ast::DefId) {
if trait_id.krate == LOCAL_CRATE {
return
}
{
let populated_external_traits = tcx.populated_external_traits
.borrow();
if populated_external_traits.get().contains(&trait_id) {
return
}
}
csearch::each_implementation_for_trait(tcx.sess.cstore, trait_id,
|implementation_def_id| {
let implementation = @csearch::get_impl(tcx, implementation_def_id);
// Record the trait->implementation mapping.
record_trait_implementation(tcx, trait_id, implementation);
// For any methods that use a default implementation, add them to
// the map. This is a bit unfortunate.
for method in implementation.methods.iter() {
for source in method.provided_source.iter() {
let mut provided_method_sources =
tcx.provided_method_sources.borrow_mut();
provided_method_sources.get().insert(method.def_id, *source);
}
}
// Store the implementation info.
let mut impls = tcx.impls.borrow_mut();
impls.get().insert(implementation_def_id, implementation);
});
let mut populated_external_traits = tcx.populated_external_traits
.borrow_mut();
populated_external_traits.get().insert(trait_id);
}
/// Given the def_id of an impl, return the def_id of the trait it implements.
/// If it implements no trait, return `None`.
pub fn trait_id_of_impl(tcx: ctxt,
def_id: ast::DefId) -> Option<ast::DefId> {
let node = match tcx.map.find(def_id.node) {
Some(node) => node,
None => return None
};
match node {
ast_map::NodeItem(item) => {
match item.node {
ast::ItemImpl(_, Some(ref trait_ref), _, _) => {
Some(node_id_to_trait_ref(tcx, trait_ref.ref_id).def_id)
}
_ => None
}
}
_ => None
}
}
/// If the given def ID describes a method belonging to a trait (either a
/// default method or an implementation of a trait method), return the ID of
/// the trait that the method belongs to. Otherwise, return `None`.
pub fn trait_of_method(tcx: ctxt, def_id: ast::DefId)
-> Option<ast::DefId> {
if def_id.krate != LOCAL_CRATE {
return csearch::get_trait_of_method(tcx.cstore, def_id, tcx);
}
let method;
{
let methods = tcx.methods.borrow();
method = methods.get().find(&def_id).map(|method| *method);
}
match method {
Some(method) => {
match method.container {
TraitContainer(def_id) => Some(def_id),
ImplContainer(def_id) => trait_id_of_impl(tcx, def_id),
}
}
None => None
}
}
/// If the given def ID describes a method belonging to a trait, (either a
/// default method or an implementation of a trait method), return the ID of
/// the method inside trait definition (this means that if the given def ID
/// is already that of the original trait method, then the return value is
/// the same).
/// Otherwise, return `None`.
pub fn trait_method_of_method(tcx: ctxt,
def_id: ast::DefId) -> Option<ast::DefId> {
let method;
{
let methods = tcx.methods.borrow();
match methods.get().find(&def_id) {
Some(m) => method = *m,
None => return None,
}
}
let name = method.ident.name;
match trait_of_method(tcx, def_id) {
Some(trait_did) => {
let trait_methods = ty::trait_methods(tcx, trait_did);
trait_methods.iter()
.position(|m| m.ident.name == name)
.map(|idx| ty::trait_method(tcx, trait_did, idx).def_id)
}
None => None
}
}
/// Creates a hash of the type `t` which will be the same no matter what crate
/// context it's calculated within. This is used by the `type_id` intrinsic.
pub fn hash_crate_independent(tcx: ctxt, t: t, svh: &Svh) -> u64 {
let mut state = sip::SipState::new();
macro_rules! byte( ($b:expr) => { ($b as u8).hash(&mut state) } );
macro_rules! hash( ($e:expr) => { $e.hash(&mut state) } );
let region = |_state: &mut sip::SipState, r: Region| {
match r {
ReStatic => {}
ReEmpty |
ReEarlyBound(..) |
ReLateBound(..) |
ReFree(..) |
ReScope(..) |
ReInfer(..) => {
tcx.sess.bug("non-static region found when hashing a type")
}
}
};
let vstore = |state: &mut sip::SipState, v: vstore| {
match v {
vstore_fixed(_) => 0u8.hash(state),
vstore_uniq => 1u8.hash(state),
vstore_slice(r) => {
2u8.hash(state);
region(state, r);
}
}
};
let did = |state: &mut sip::SipState, did: DefId| {
let h = if ast_util::is_local(did) {
svh.clone()
} else {
tcx.sess.cstore.get_crate_hash(did.krate)
};
h.as_str().hash(state);
did.node.hash(state);
};
let mt = |state: &mut sip::SipState, mt: mt| {
mt.mutbl.hash(state);
};
ty::walk_ty(t, |t| {
match ty::get(t).sty {
ty_nil => byte!(0),
ty_bot => byte!(1),
ty_bool => byte!(2),
ty_char => byte!(3),
ty_int(i) => {
byte!(4);
hash!(i);
}
ty_uint(u) => {
byte!(5);
hash!(u);
}
ty_float(f) => {
byte!(6);
hash!(f);
}
ty_str(v) => {
byte!(7);
hash!(v);
}
ty_enum(d, _) => {
byte!(8);
hash!(d)
}
ty_box(_) => {
byte!(9);
}
ty_uniq(_) => {
byte!(10);
}
ty_vec(m, v) => {
byte!(11);
mt(&mut state, m);
vstore(&mut state, v);
}
ty_ptr(m) => {
byte!(12);
mt(&mut state, m);
}
ty_rptr(r, m) => {
byte!(13);
region(&mut state, r);
mt(&mut state, m);
}
ty_bare_fn(ref b) => {
byte!(14);
hash!(b.purity);
hash!(b.abis);
}
ty_closure(ref c) => {
byte!(15);
hash!(c.purity);
hash!(c.sigil);
hash!(c.onceness);
hash!(c.bounds);
region(&mut state, c.region);
}
ty_trait(d, _, store, m, bounds) => {
byte!(17);
did(&mut state, d);
match store {
UniqTraitStore => byte!(0),
RegionTraitStore(r) => {
byte!(1)
region(&mut state, r);
}
}
hash!(m);
hash!(bounds);
}
ty_struct(d, _) => {
byte!(18);
did(&mut state, d);
}
ty_tup(ref inner) => {
byte!(19);
hash!(inner.len());
}
ty_param(p) => {
byte!(20);
hash!(p.idx);
did(&mut state, p.def_id);
}
ty_self(d) => {
byte!(21);
did(&mut state, d);
}
ty_infer(_) => unreachable!(),
ty_err => byte!(23),
ty_unboxed_vec(m) => {
byte!(24);
mt(&mut state, m);
}
}
});
state.result()
}
impl Variance {
pub fn to_str(self) -> &'static str {
match self {
Covariant => "+",
Contravariant => "-",
Invariant => "o",
Bivariant => "*",
}
}
}
pub fn construct_parameter_environment(
tcx: ctxt,
self_bound: Option<@TraitRef>,
item_type_params: &[TypeParameterDef],
method_type_params: &[TypeParameterDef],
item_region_params: &[RegionParameterDef],
free_id: ast::NodeId)
-> ParameterEnvironment
{
/*! See `ParameterEnvironment` struct def'n for details */
//
// Construct the free substs.
//
// map Self => Self
let self_ty = self_bound.map(|t| ty::mk_self(tcx, t.def_id));
// map A => A
let num_item_type_params = item_type_params.len();
let num_method_type_params = method_type_params.len();
let num_type_params = num_item_type_params + num_method_type_params;
let type_params = vec::from_fn(num_type_params, |i| {
let def_id = if i < num_item_type_params {
item_type_params[i].def_id
} else {
method_type_params[i - num_item_type_params].def_id
};
ty::mk_param(tcx, i, def_id)
});
// map bound 'a => free 'a
let region_params = item_region_params.iter().
map(|r| ty::ReFree(ty::FreeRegion {
scope_id: free_id,
bound_region: ty::BrNamed(r.def_id, r.ident)})).
collect();
let free_substs = substs {
self_ty: self_ty,
tps: type_params,
regions: ty::NonerasedRegions(region_params)
};
//
// Compute the bounds on Self and the type parameters.
//
let self_bound_substd = self_bound.map(|b| b.subst(tcx, &free_substs));
let type_param_bounds_substd = vec::from_fn(num_type_params, |i| {
if i < num_item_type_params {
(*item_type_params[i].bounds).subst(tcx, &free_substs)
} else {
let j = i - num_item_type_params;
(*method_type_params[j].bounds).subst(tcx, &free_substs)
}
});
ty::ParameterEnvironment {
free_substs: free_substs,
self_param_bound: self_bound_substd,
type_param_bounds: type_param_bounds_substd,
}
}
impl substs {
pub fn empty() -> substs {
substs {
self_ty: None,
tps: ~[],
regions: NonerasedRegions(opt_vec::Empty)
}
}
}
impl BorrowKind {
pub fn from_mutbl(m: ast::Mutability) -> BorrowKind {
match m {
ast::MutMutable => MutBorrow,
ast::MutImmutable => ImmBorrow,
}
}
pub fn to_user_str(&self) -> &'static str {
match *self {
MutBorrow => "mutable",
ImmBorrow => "immutable",
UniqueImmBorrow => "uniquely immutable",
}
}
pub fn to_short_str(&self) -> &'static str {
match *self {
MutBorrow => "mut",
ImmBorrow => "imm",
UniqueImmBorrow => "own",
}
}
}