3312 lines
131 KiB
Rust
3312 lines
131 KiB
Rust
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://!rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://!www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://!opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
// See doc.rs for documentation.
|
|
mod doc;
|
|
|
|
pub mod gdb;
|
|
mod utils;
|
|
|
|
use self::utils::{debug_context, DIB, span_start, bytes_to_bits, size_and_align_of,
|
|
assert_type_for_node_id, get_namespace_and_span_for_item, fn_should_be_ignored,
|
|
contains_nodebug_attribute, create_scope_map};
|
|
|
|
use self::VariableAccess::*;
|
|
use self::VariableKind::*;
|
|
use self::MemberOffset::*;
|
|
use self::MemberDescriptionFactory::*;
|
|
use self::RecursiveTypeDescription::*;
|
|
use self::EnumDiscriminantInfo::*;
|
|
use self::InternalDebugLocation::*;
|
|
|
|
use llvm;
|
|
use llvm::{ModuleRef, ContextRef, ValueRef};
|
|
use llvm::debuginfo::*;
|
|
use metadata::csearch;
|
|
use middle::subst::{self, Substs};
|
|
use trans::{self, adt, machine, type_of};
|
|
use trans::common::{self, NodeIdAndSpan, CrateContext, FunctionContext, Block,
|
|
NormalizingClosureTyper};
|
|
use trans::_match::{BindingInfo, TrByCopy, TrByMove, TrByRef};
|
|
use trans::monomorphize;
|
|
use trans::type_::Type;
|
|
use middle::ty::{self, Ty, ClosureTyper};
|
|
use middle::pat_util;
|
|
use session::config::{self, FullDebugInfo, LimitedDebugInfo, NoDebugInfo};
|
|
use util::nodemap::{DefIdMap, NodeMap, FnvHashMap, FnvHashSet};
|
|
use util::ppaux;
|
|
use util::common::path2cstr;
|
|
|
|
use libc::{c_uint, c_longlong};
|
|
use std::cell::{Cell, RefCell};
|
|
use std::ffi::CString;
|
|
use std::path::Path;
|
|
use std::ptr;
|
|
use std::rc::{Rc, Weak};
|
|
use syntax::util::interner::Interner;
|
|
use syntax::codemap::{Span, Pos};
|
|
use syntax::{ast, codemap, ast_util, ast_map};
|
|
use syntax::parse::token::{self, special_idents};
|
|
|
|
const DW_LANG_RUST: c_uint = 0x9000;
|
|
|
|
#[allow(non_upper_case_globals)]
|
|
const DW_TAG_auto_variable: c_uint = 0x100;
|
|
#[allow(non_upper_case_globals)]
|
|
const DW_TAG_arg_variable: c_uint = 0x101;
|
|
|
|
#[allow(non_upper_case_globals)]
|
|
const DW_ATE_boolean: c_uint = 0x02;
|
|
#[allow(non_upper_case_globals)]
|
|
const DW_ATE_float: c_uint = 0x04;
|
|
#[allow(non_upper_case_globals)]
|
|
const DW_ATE_signed: c_uint = 0x05;
|
|
#[allow(non_upper_case_globals)]
|
|
const DW_ATE_unsigned: c_uint = 0x07;
|
|
#[allow(non_upper_case_globals)]
|
|
const DW_ATE_unsigned_char: c_uint = 0x08;
|
|
|
|
const UNKNOWN_LINE_NUMBER: c_uint = 0;
|
|
const UNKNOWN_COLUMN_NUMBER: c_uint = 0;
|
|
|
|
// ptr::null() doesn't work :(
|
|
const UNKNOWN_FILE_METADATA: DIFile = (0 as DIFile);
|
|
const UNKNOWN_SCOPE_METADATA: DIScope = (0 as DIScope);
|
|
|
|
const FLAGS_NONE: c_uint = 0;
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Public Interface of debuginfo module
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
#[derive(Copy, Debug, Hash, Eq, PartialEq, Clone)]
|
|
struct UniqueTypeId(ast::Name);
|
|
|
|
// The TypeMap is where the CrateDebugContext holds the type metadata nodes
|
|
// created so far. The metadata nodes are indexed by UniqueTypeId, and, for
|
|
// faster lookup, also by Ty. The TypeMap is responsible for creating
|
|
// UniqueTypeIds.
|
|
struct TypeMap<'tcx> {
|
|
// The UniqueTypeIds created so far
|
|
unique_id_interner: Interner<Rc<String>>,
|
|
// A map from UniqueTypeId to debuginfo metadata for that type. This is a 1:1 mapping.
|
|
unique_id_to_metadata: FnvHashMap<UniqueTypeId, DIType>,
|
|
// A map from types to debuginfo metadata. This is a N:1 mapping.
|
|
type_to_metadata: FnvHashMap<Ty<'tcx>, DIType>,
|
|
// A map from types to UniqueTypeId. This is a N:1 mapping.
|
|
type_to_unique_id: FnvHashMap<Ty<'tcx>, UniqueTypeId>
|
|
}
|
|
|
|
impl<'tcx> TypeMap<'tcx> {
|
|
|
|
fn new() -> TypeMap<'tcx> {
|
|
TypeMap {
|
|
unique_id_interner: Interner::new(),
|
|
type_to_metadata: FnvHashMap(),
|
|
unique_id_to_metadata: FnvHashMap(),
|
|
type_to_unique_id: FnvHashMap(),
|
|
}
|
|
}
|
|
|
|
// Adds a Ty to metadata mapping to the TypeMap. The method will fail if
|
|
// the mapping already exists.
|
|
fn register_type_with_metadata<'a>(&mut self,
|
|
cx: &CrateContext<'a, 'tcx>,
|
|
type_: Ty<'tcx>,
|
|
metadata: DIType) {
|
|
if self.type_to_metadata.insert(type_, metadata).is_some() {
|
|
cx.sess().bug(&format!("Type metadata for Ty '{}' is already in the TypeMap!",
|
|
ppaux::ty_to_string(cx.tcx(), type_)));
|
|
}
|
|
}
|
|
|
|
// Adds a UniqueTypeId to metadata mapping to the TypeMap. The method will
|
|
// fail if the mapping already exists.
|
|
fn register_unique_id_with_metadata(&mut self,
|
|
cx: &CrateContext,
|
|
unique_type_id: UniqueTypeId,
|
|
metadata: DIType) {
|
|
if self.unique_id_to_metadata.insert(unique_type_id, metadata).is_some() {
|
|
let unique_type_id_str = self.get_unique_type_id_as_string(unique_type_id);
|
|
cx.sess().bug(&format!("Type metadata for unique id '{}' is already in the TypeMap!",
|
|
&unique_type_id_str[..]));
|
|
}
|
|
}
|
|
|
|
fn find_metadata_for_type(&self, type_: Ty<'tcx>) -> Option<DIType> {
|
|
self.type_to_metadata.get(&type_).cloned()
|
|
}
|
|
|
|
fn find_metadata_for_unique_id(&self, unique_type_id: UniqueTypeId) -> Option<DIType> {
|
|
self.unique_id_to_metadata.get(&unique_type_id).cloned()
|
|
}
|
|
|
|
// Get the string representation of a UniqueTypeId. This method will fail if
|
|
// the id is unknown.
|
|
fn get_unique_type_id_as_string(&self, unique_type_id: UniqueTypeId) -> Rc<String> {
|
|
let UniqueTypeId(interner_key) = unique_type_id;
|
|
self.unique_id_interner.get(interner_key)
|
|
}
|
|
|
|
// Get the UniqueTypeId for the given type. If the UniqueTypeId for the given
|
|
// type has been requested before, this is just a table lookup. Otherwise an
|
|
// ID will be generated and stored for later lookup.
|
|
fn get_unique_type_id_of_type<'a>(&mut self, cx: &CrateContext<'a, 'tcx>,
|
|
type_: Ty<'tcx>) -> UniqueTypeId {
|
|
|
|
// basic type -> {:name of the type:}
|
|
// tuple -> {tuple_(:param-uid:)*}
|
|
// struct -> {struct_:svh: / :node-id:_<(:param-uid:),*> }
|
|
// enum -> {enum_:svh: / :node-id:_<(:param-uid:),*> }
|
|
// enum variant -> {variant_:variant-name:_:enum-uid:}
|
|
// reference (&) -> {& :pointee-uid:}
|
|
// mut reference (&mut) -> {&mut :pointee-uid:}
|
|
// ptr (*) -> {* :pointee-uid:}
|
|
// mut ptr (*mut) -> {*mut :pointee-uid:}
|
|
// unique ptr (~) -> {~ :pointee-uid:}
|
|
// @-ptr (@) -> {@ :pointee-uid:}
|
|
// sized vec ([T; x]) -> {[:size:] :element-uid:}
|
|
// unsized vec ([T]) -> {[] :element-uid:}
|
|
// trait (T) -> {trait_:svh: / :node-id:_<(:param-uid:),*> }
|
|
// closure -> {<unsafe_> <once_> :store-sigil: |(:param-uid:),* <,_...>| -> \
|
|
// :return-type-uid: : (:bounds:)*}
|
|
// function -> {<unsafe_> <abi_> fn( (:param-uid:)* <,_...> ) -> \
|
|
// :return-type-uid:}
|
|
// unique vec box (~[]) -> {HEAP_VEC_BOX<:pointee-uid:>}
|
|
// gc box -> {GC_BOX<:pointee-uid:>}
|
|
|
|
match self.type_to_unique_id.get(&type_).cloned() {
|
|
Some(unique_type_id) => return unique_type_id,
|
|
None => { /* generate one */}
|
|
};
|
|
|
|
let mut unique_type_id = String::with_capacity(256);
|
|
unique_type_id.push('{');
|
|
|
|
match type_.sty {
|
|
ty::ty_bool |
|
|
ty::ty_char |
|
|
ty::ty_str |
|
|
ty::ty_int(_) |
|
|
ty::ty_uint(_) |
|
|
ty::ty_float(_) => {
|
|
push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
|
|
},
|
|
ty::ty_enum(def_id, substs) => {
|
|
unique_type_id.push_str("enum ");
|
|
from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id);
|
|
},
|
|
ty::ty_struct(def_id, substs) => {
|
|
unique_type_id.push_str("struct ");
|
|
from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id);
|
|
},
|
|
ty::ty_tup(ref component_types) if component_types.is_empty() => {
|
|
push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
|
|
},
|
|
ty::ty_tup(ref component_types) => {
|
|
unique_type_id.push_str("tuple ");
|
|
for &component_type in component_types {
|
|
let component_type_id =
|
|
self.get_unique_type_id_of_type(cx, component_type);
|
|
let component_type_id =
|
|
self.get_unique_type_id_as_string(component_type_id);
|
|
unique_type_id.push_str(&component_type_id[..]);
|
|
}
|
|
},
|
|
ty::ty_uniq(inner_type) => {
|
|
unique_type_id.push('~');
|
|
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
|
|
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
|
|
unique_type_id.push_str(&inner_type_id[..]);
|
|
},
|
|
ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => {
|
|
unique_type_id.push('*');
|
|
if mutbl == ast::MutMutable {
|
|
unique_type_id.push_str("mut");
|
|
}
|
|
|
|
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
|
|
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
|
|
unique_type_id.push_str(&inner_type_id[..]);
|
|
},
|
|
ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => {
|
|
unique_type_id.push('&');
|
|
if mutbl == ast::MutMutable {
|
|
unique_type_id.push_str("mut");
|
|
}
|
|
|
|
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
|
|
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
|
|
unique_type_id.push_str(&inner_type_id[..]);
|
|
},
|
|
ty::ty_vec(inner_type, optional_length) => {
|
|
match optional_length {
|
|
Some(len) => {
|
|
unique_type_id.push_str(&format!("[{}]", len));
|
|
}
|
|
None => {
|
|
unique_type_id.push_str("[]");
|
|
}
|
|
};
|
|
|
|
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
|
|
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
|
|
unique_type_id.push_str(&inner_type_id[..]);
|
|
},
|
|
ty::ty_trait(ref trait_data) => {
|
|
unique_type_id.push_str("trait ");
|
|
|
|
let principal =
|
|
ty::erase_late_bound_regions(cx.tcx(),
|
|
&trait_data.principal);
|
|
|
|
from_def_id_and_substs(self,
|
|
cx,
|
|
principal.def_id,
|
|
principal.substs,
|
|
&mut unique_type_id);
|
|
},
|
|
ty::ty_bare_fn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => {
|
|
if unsafety == ast::Unsafety::Unsafe {
|
|
unique_type_id.push_str("unsafe ");
|
|
}
|
|
|
|
unique_type_id.push_str(abi.name());
|
|
|
|
unique_type_id.push_str(" fn(");
|
|
|
|
let sig = ty::erase_late_bound_regions(cx.tcx(), sig);
|
|
|
|
for ¶meter_type in &sig.inputs {
|
|
let parameter_type_id =
|
|
self.get_unique_type_id_of_type(cx, parameter_type);
|
|
let parameter_type_id =
|
|
self.get_unique_type_id_as_string(parameter_type_id);
|
|
unique_type_id.push_str(¶meter_type_id[..]);
|
|
unique_type_id.push(',');
|
|
}
|
|
|
|
if sig.variadic {
|
|
unique_type_id.push_str("...");
|
|
}
|
|
|
|
unique_type_id.push_str(")->");
|
|
match sig.output {
|
|
ty::FnConverging(ret_ty) => {
|
|
let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty);
|
|
let return_type_id = self.get_unique_type_id_as_string(return_type_id);
|
|
unique_type_id.push_str(&return_type_id[..]);
|
|
}
|
|
ty::FnDiverging => {
|
|
unique_type_id.push_str("!");
|
|
}
|
|
}
|
|
},
|
|
ty::ty_closure(def_id, substs) => {
|
|
let typer = NormalizingClosureTyper::new(cx.tcx());
|
|
let closure_ty = typer.closure_type(def_id, substs);
|
|
self.get_unique_type_id_of_closure_type(cx,
|
|
closure_ty,
|
|
&mut unique_type_id);
|
|
},
|
|
_ => {
|
|
cx.sess().bug(&format!("get_unique_type_id_of_type() - unexpected type: {}, {:?}",
|
|
&ppaux::ty_to_string(cx.tcx(), type_),
|
|
type_.sty))
|
|
}
|
|
};
|
|
|
|
unique_type_id.push('}');
|
|
|
|
// Trim to size before storing permanently
|
|
unique_type_id.shrink_to_fit();
|
|
|
|
let key = self.unique_id_interner.intern(Rc::new(unique_type_id));
|
|
self.type_to_unique_id.insert(type_, UniqueTypeId(key));
|
|
|
|
return UniqueTypeId(key);
|
|
|
|
fn from_def_id_and_substs<'a, 'tcx>(type_map: &mut TypeMap<'tcx>,
|
|
cx: &CrateContext<'a, 'tcx>,
|
|
def_id: ast::DefId,
|
|
substs: &subst::Substs<'tcx>,
|
|
output: &mut String) {
|
|
// First, find out the 'real' def_id of the type. Items inlined from
|
|
// other crates have to be mapped back to their source.
|
|
let source_def_id = if def_id.krate == ast::LOCAL_CRATE {
|
|
match cx.external_srcs().borrow().get(&def_id.node).cloned() {
|
|
Some(source_def_id) => {
|
|
// The given def_id identifies the inlined copy of a
|
|
// type definition, let's take the source of the copy.
|
|
source_def_id
|
|
}
|
|
None => def_id
|
|
}
|
|
} else {
|
|
def_id
|
|
};
|
|
|
|
// Get the crate hash as first part of the identifier.
|
|
let crate_hash = if source_def_id.krate == ast::LOCAL_CRATE {
|
|
cx.link_meta().crate_hash.clone()
|
|
} else {
|
|
cx.sess().cstore.get_crate_hash(source_def_id.krate)
|
|
};
|
|
|
|
output.push_str(crate_hash.as_str());
|
|
output.push_str("/");
|
|
output.push_str(&format!("{:x}", def_id.node));
|
|
|
|
// Maybe check that there is no self type here.
|
|
|
|
let tps = substs.types.get_slice(subst::TypeSpace);
|
|
if !tps.is_empty() {
|
|
output.push('<');
|
|
|
|
for &type_parameter in tps {
|
|
let param_type_id =
|
|
type_map.get_unique_type_id_of_type(cx, type_parameter);
|
|
let param_type_id =
|
|
type_map.get_unique_type_id_as_string(param_type_id);
|
|
output.push_str(¶m_type_id[..]);
|
|
output.push(',');
|
|
}
|
|
|
|
output.push('>');
|
|
}
|
|
}
|
|
}
|
|
|
|
fn get_unique_type_id_of_closure_type<'a>(&mut self,
|
|
cx: &CrateContext<'a, 'tcx>,
|
|
closure_ty: ty::ClosureTy<'tcx>,
|
|
unique_type_id: &mut String) {
|
|
let ty::ClosureTy { unsafety,
|
|
ref sig,
|
|
abi: _ } = closure_ty;
|
|
|
|
if unsafety == ast::Unsafety::Unsafe {
|
|
unique_type_id.push_str("unsafe ");
|
|
}
|
|
|
|
unique_type_id.push_str("|");
|
|
|
|
let sig = ty::erase_late_bound_regions(cx.tcx(), sig);
|
|
|
|
for ¶meter_type in &sig.inputs {
|
|
let parameter_type_id =
|
|
self.get_unique_type_id_of_type(cx, parameter_type);
|
|
let parameter_type_id =
|
|
self.get_unique_type_id_as_string(parameter_type_id);
|
|
unique_type_id.push_str(¶meter_type_id[..]);
|
|
unique_type_id.push(',');
|
|
}
|
|
|
|
if sig.variadic {
|
|
unique_type_id.push_str("...");
|
|
}
|
|
|
|
unique_type_id.push_str("|->");
|
|
|
|
match sig.output {
|
|
ty::FnConverging(ret_ty) => {
|
|
let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty);
|
|
let return_type_id = self.get_unique_type_id_as_string(return_type_id);
|
|
unique_type_id.push_str(&return_type_id[..]);
|
|
}
|
|
ty::FnDiverging => {
|
|
unique_type_id.push_str("!");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get the UniqueTypeId for an enum variant. Enum variants are not really
|
|
// types of their own, so they need special handling. We still need a
|
|
// UniqueTypeId for them, since to debuginfo they *are* real types.
|
|
fn get_unique_type_id_of_enum_variant<'a>(&mut self,
|
|
cx: &CrateContext<'a, 'tcx>,
|
|
enum_type: Ty<'tcx>,
|
|
variant_name: &str)
|
|
-> UniqueTypeId {
|
|
let enum_type_id = self.get_unique_type_id_of_type(cx, enum_type);
|
|
let enum_variant_type_id = format!("{}::{}",
|
|
&self.get_unique_type_id_as_string(enum_type_id),
|
|
variant_name);
|
|
let interner_key = self.unique_id_interner.intern(Rc::new(enum_variant_type_id));
|
|
UniqueTypeId(interner_key)
|
|
}
|
|
}
|
|
|
|
// Returns from the enclosing function if the type metadata with the given
|
|
// unique id can be found in the type map
|
|
macro_rules! return_if_metadata_created_in_meantime {
|
|
($cx: expr, $unique_type_id: expr) => (
|
|
match debug_context($cx).type_map
|
|
.borrow()
|
|
.find_metadata_for_unique_id($unique_type_id) {
|
|
Some(metadata) => return MetadataCreationResult::new(metadata, true),
|
|
None => { /* proceed normally */ }
|
|
};
|
|
)
|
|
}
|
|
|
|
|
|
/// A context object for maintaining all state needed by the debuginfo module.
|
|
pub struct CrateDebugContext<'tcx> {
|
|
llcontext: ContextRef,
|
|
builder: DIBuilderRef,
|
|
current_debug_location: Cell<InternalDebugLocation>,
|
|
created_files: RefCell<FnvHashMap<String, DIFile>>,
|
|
created_enum_disr_types: RefCell<DefIdMap<DIType>>,
|
|
|
|
type_map: RefCell<TypeMap<'tcx>>,
|
|
namespace_map: RefCell<FnvHashMap<Vec<ast::Name>, Rc<NamespaceTreeNode>>>,
|
|
|
|
// This collection is used to assert that composite types (structs, enums,
|
|
// ...) have their members only set once:
|
|
composite_types_completed: RefCell<FnvHashSet<DIType>>,
|
|
}
|
|
|
|
impl<'tcx> CrateDebugContext<'tcx> {
|
|
pub fn new(llmod: ModuleRef) -> CrateDebugContext<'tcx> {
|
|
debug!("CrateDebugContext::new");
|
|
let builder = unsafe { llvm::LLVMDIBuilderCreate(llmod) };
|
|
// DIBuilder inherits context from the module, so we'd better use the same one
|
|
let llcontext = unsafe { llvm::LLVMGetModuleContext(llmod) };
|
|
return CrateDebugContext {
|
|
llcontext: llcontext,
|
|
builder: builder,
|
|
current_debug_location: Cell::new(UnknownLocation),
|
|
created_files: RefCell::new(FnvHashMap()),
|
|
created_enum_disr_types: RefCell::new(DefIdMap()),
|
|
type_map: RefCell::new(TypeMap::new()),
|
|
namespace_map: RefCell::new(FnvHashMap()),
|
|
composite_types_completed: RefCell::new(FnvHashSet()),
|
|
};
|
|
}
|
|
}
|
|
|
|
pub enum FunctionDebugContext {
|
|
RegularContext(Box<FunctionDebugContextData>),
|
|
DebugInfoDisabled,
|
|
FunctionWithoutDebugInfo,
|
|
}
|
|
|
|
impl FunctionDebugContext {
|
|
fn get_ref<'a>(&'a self,
|
|
cx: &CrateContext,
|
|
span: Span)
|
|
-> &'a FunctionDebugContextData {
|
|
match *self {
|
|
FunctionDebugContext::RegularContext(box ref data) => data,
|
|
FunctionDebugContext::DebugInfoDisabled => {
|
|
cx.sess().span_bug(span,
|
|
FunctionDebugContext::debuginfo_disabled_message());
|
|
}
|
|
FunctionDebugContext::FunctionWithoutDebugInfo => {
|
|
cx.sess().span_bug(span,
|
|
FunctionDebugContext::should_be_ignored_message());
|
|
}
|
|
}
|
|
}
|
|
|
|
fn debuginfo_disabled_message() -> &'static str {
|
|
"debuginfo: Error trying to access FunctionDebugContext although debug info is disabled!"
|
|
}
|
|
|
|
fn should_be_ignored_message() -> &'static str {
|
|
"debuginfo: Error trying to access FunctionDebugContext for function that should be \
|
|
ignored by debug info!"
|
|
}
|
|
}
|
|
|
|
struct FunctionDebugContextData {
|
|
scope_map: RefCell<NodeMap<DIScope>>,
|
|
fn_metadata: DISubprogram,
|
|
argument_counter: Cell<usize>,
|
|
source_locations_enabled: Cell<bool>,
|
|
source_location_override: Cell<bool>,
|
|
}
|
|
|
|
enum VariableAccess<'a> {
|
|
// The llptr given is an alloca containing the variable's value
|
|
DirectVariable { alloca: ValueRef },
|
|
// The llptr given is an alloca containing the start of some pointer chain
|
|
// leading to the variable's content.
|
|
IndirectVariable { alloca: ValueRef, address_operations: &'a [i64] }
|
|
}
|
|
|
|
enum VariableKind {
|
|
ArgumentVariable(usize /*index*/),
|
|
LocalVariable,
|
|
CapturedVariable,
|
|
}
|
|
|
|
/// Create any deferred debug metadata nodes
|
|
pub fn finalize(cx: &CrateContext) {
|
|
if cx.dbg_cx().is_none() {
|
|
return;
|
|
}
|
|
|
|
debug!("finalize");
|
|
let _ = compile_unit_metadata(cx);
|
|
|
|
if gdb::needs_gdb_debug_scripts_section(cx) {
|
|
// Add a .debug_gdb_scripts section to this compile-unit. This will
|
|
// cause GDB to try and load the gdb_load_rust_pretty_printers.py file,
|
|
// which activates the Rust pretty printers for binary this section is
|
|
// contained in.
|
|
gdb::get_or_insert_gdb_debug_scripts_section_global(cx);
|
|
}
|
|
|
|
unsafe {
|
|
llvm::LLVMDIBuilderFinalize(DIB(cx));
|
|
llvm::LLVMDIBuilderDispose(DIB(cx));
|
|
// Debuginfo generation in LLVM by default uses a higher
|
|
// version of dwarf than OS X currently understands. We can
|
|
// instruct LLVM to emit an older version of dwarf, however,
|
|
// for OS X to understand. For more info see #11352
|
|
// This can be overridden using --llvm-opts -dwarf-version,N.
|
|
// Android has the same issue (#22398)
|
|
if cx.sess().target.target.options.is_like_osx ||
|
|
cx.sess().target.target.options.is_like_android {
|
|
llvm::LLVMRustAddModuleFlag(cx.llmod(),
|
|
"Dwarf Version\0".as_ptr() as *const _,
|
|
2)
|
|
}
|
|
|
|
// Prevent bitcode readers from deleting the debug info.
|
|
let ptr = "Debug Info Version\0".as_ptr();
|
|
llvm::LLVMRustAddModuleFlag(cx.llmod(), ptr as *const _,
|
|
llvm::LLVMRustDebugMetadataVersion);
|
|
};
|
|
}
|
|
|
|
/// Creates debug information for the given global variable.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_global_var_metadata(cx: &CrateContext,
|
|
node_id: ast::NodeId,
|
|
global: ValueRef) {
|
|
if cx.dbg_cx().is_none() {
|
|
return;
|
|
}
|
|
|
|
// Don't create debuginfo for globals inlined from other crates. The other
|
|
// crate should already contain debuginfo for it. More importantly, the
|
|
// global might not even exist in un-inlined form anywhere which would lead
|
|
// to a linker errors.
|
|
if cx.external_srcs().borrow().contains_key(&node_id) {
|
|
return;
|
|
}
|
|
|
|
let var_item = cx.tcx().map.get(node_id);
|
|
|
|
let (name, span) = match var_item {
|
|
ast_map::NodeItem(item) => {
|
|
match item.node {
|
|
ast::ItemStatic(..) => (item.ident.name, item.span),
|
|
ast::ItemConst(..) => (item.ident.name, item.span),
|
|
_ => {
|
|
cx.sess()
|
|
.span_bug(item.span,
|
|
&format!("debuginfo::\
|
|
create_global_var_metadata() -
|
|
Captured var-id refers to \
|
|
unexpected ast_item variant: {:?}",
|
|
var_item))
|
|
}
|
|
}
|
|
},
|
|
_ => cx.sess().bug(&format!("debuginfo::create_global_var_metadata() \
|
|
- Captured var-id refers to unexpected \
|
|
ast_map variant: {:?}",
|
|
var_item))
|
|
};
|
|
|
|
let (file_metadata, line_number) = if span != codemap::DUMMY_SP {
|
|
let loc = span_start(cx, span);
|
|
(file_metadata(cx, &loc.file.name), loc.line as c_uint)
|
|
} else {
|
|
(UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER)
|
|
};
|
|
|
|
let is_local_to_unit = is_node_local_to_unit(cx, node_id);
|
|
let variable_type = ty::node_id_to_type(cx.tcx(), node_id);
|
|
let type_metadata = type_metadata(cx, variable_type, span);
|
|
let namespace_node = namespace_for_item(cx, ast_util::local_def(node_id));
|
|
let var_name = token::get_name(name).to_string();
|
|
let linkage_name =
|
|
namespace_node.mangled_name_of_contained_item(&var_name[..]);
|
|
let var_scope = namespace_node.scope;
|
|
|
|
let var_name = CString::new(var_name).unwrap();
|
|
let linkage_name = CString::new(linkage_name).unwrap();
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateStaticVariable(DIB(cx),
|
|
var_scope,
|
|
var_name.as_ptr(),
|
|
linkage_name.as_ptr(),
|
|
file_metadata,
|
|
line_number,
|
|
type_metadata,
|
|
is_local_to_unit,
|
|
global,
|
|
ptr::null_mut());
|
|
}
|
|
}
|
|
|
|
/// Creates debug information for the given local variable.
|
|
///
|
|
/// This function assumes that there's a datum for each pattern component of the
|
|
/// local in `bcx.fcx.lllocals`.
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_local_var_metadata(bcx: Block, local: &ast::Local) {
|
|
if bcx.unreachable.get() ||
|
|
fn_should_be_ignored(bcx.fcx) ||
|
|
bcx.sess().opts.debuginfo != FullDebugInfo {
|
|
return;
|
|
}
|
|
|
|
let cx = bcx.ccx();
|
|
let def_map = &cx.tcx().def_map;
|
|
let locals = bcx.fcx.lllocals.borrow();
|
|
|
|
pat_util::pat_bindings(def_map, &*local.pat, |_, node_id, span, var_ident| {
|
|
let datum = match locals.get(&node_id) {
|
|
Some(datum) => datum,
|
|
None => {
|
|
bcx.sess().span_bug(span,
|
|
&format!("no entry in lllocals table for {}",
|
|
node_id));
|
|
}
|
|
};
|
|
|
|
if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
|
|
cx.sess().span_bug(span, "debuginfo::create_local_var_metadata() - \
|
|
Referenced variable location is not an alloca!");
|
|
}
|
|
|
|
let scope_metadata = scope_metadata(bcx.fcx, node_id, span);
|
|
|
|
declare_local(bcx,
|
|
var_ident.node.name,
|
|
datum.ty,
|
|
scope_metadata,
|
|
DirectVariable { alloca: datum.val },
|
|
LocalVariable,
|
|
span);
|
|
})
|
|
}
|
|
|
|
/// Creates debug information for a variable captured in a closure.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_captured_var_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
node_id: ast::NodeId,
|
|
env_pointer: ValueRef,
|
|
env_index: usize,
|
|
captured_by_ref: bool,
|
|
span: Span) {
|
|
if bcx.unreachable.get() ||
|
|
fn_should_be_ignored(bcx.fcx) ||
|
|
bcx.sess().opts.debuginfo != FullDebugInfo {
|
|
return;
|
|
}
|
|
|
|
let cx = bcx.ccx();
|
|
|
|
let ast_item = cx.tcx().map.find(node_id);
|
|
|
|
let variable_name = match ast_item {
|
|
None => {
|
|
cx.sess().span_bug(span, "debuginfo::create_captured_var_metadata: node not found");
|
|
}
|
|
Some(ast_map::NodeLocal(pat)) | Some(ast_map::NodeArg(pat)) => {
|
|
match pat.node {
|
|
ast::PatIdent(_, ref path1, _) => {
|
|
path1.node.name
|
|
}
|
|
_ => {
|
|
cx.sess()
|
|
.span_bug(span,
|
|
&format!(
|
|
"debuginfo::create_captured_var_metadata() - \
|
|
Captured var-id refers to unexpected \
|
|
ast_map variant: {:?}",
|
|
ast_item));
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
cx.sess()
|
|
.span_bug(span,
|
|
&format!("debuginfo::create_captured_var_metadata() - \
|
|
Captured var-id refers to unexpected \
|
|
ast_map variant: {:?}",
|
|
ast_item));
|
|
}
|
|
};
|
|
|
|
let variable_type = common::node_id_type(bcx, node_id);
|
|
let scope_metadata = bcx.fcx.debug_context.get_ref(cx, span).fn_metadata;
|
|
|
|
// env_pointer is the alloca containing the pointer to the environment,
|
|
// so it's type is **EnvironmentType. In order to find out the type of
|
|
// the environment we have to "dereference" two times.
|
|
let llvm_env_data_type = common::val_ty(env_pointer).element_type()
|
|
.element_type();
|
|
let byte_offset_of_var_in_env = machine::llelement_offset(cx,
|
|
llvm_env_data_type,
|
|
env_index);
|
|
|
|
let address_operations = unsafe {
|
|
[llvm::LLVMDIBuilderCreateOpDeref(),
|
|
llvm::LLVMDIBuilderCreateOpPlus(),
|
|
byte_offset_of_var_in_env as i64,
|
|
llvm::LLVMDIBuilderCreateOpDeref()]
|
|
};
|
|
|
|
let address_op_count = if captured_by_ref {
|
|
address_operations.len()
|
|
} else {
|
|
address_operations.len() - 1
|
|
};
|
|
|
|
let variable_access = IndirectVariable {
|
|
alloca: env_pointer,
|
|
address_operations: &address_operations[..address_op_count]
|
|
};
|
|
|
|
declare_local(bcx,
|
|
variable_name,
|
|
variable_type,
|
|
scope_metadata,
|
|
variable_access,
|
|
CapturedVariable,
|
|
span);
|
|
}
|
|
|
|
/// Creates debug information for a local variable introduced in the head of a
|
|
/// match-statement arm.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_match_binding_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
variable_name: ast::Name,
|
|
binding: BindingInfo<'tcx>) {
|
|
if bcx.unreachable.get() ||
|
|
fn_should_be_ignored(bcx.fcx) ||
|
|
bcx.sess().opts.debuginfo != FullDebugInfo {
|
|
return;
|
|
}
|
|
|
|
let scope_metadata = scope_metadata(bcx.fcx, binding.id, binding.span);
|
|
let aops = unsafe {
|
|
[llvm::LLVMDIBuilderCreateOpDeref()]
|
|
};
|
|
// Regardless of the actual type (`T`) we're always passed the stack slot
|
|
// (alloca) for the binding. For ByRef bindings that's a `T*` but for ByMove
|
|
// bindings we actually have `T**`. So to get the actual variable we need to
|
|
// dereference once more. For ByCopy we just use the stack slot we created
|
|
// for the binding.
|
|
let var_access = match binding.trmode {
|
|
TrByCopy(llbinding) => DirectVariable {
|
|
alloca: llbinding
|
|
},
|
|
TrByMove => IndirectVariable {
|
|
alloca: binding.llmatch,
|
|
address_operations: &aops
|
|
},
|
|
TrByRef => DirectVariable {
|
|
alloca: binding.llmatch
|
|
}
|
|
};
|
|
|
|
declare_local(bcx,
|
|
variable_name,
|
|
binding.ty,
|
|
scope_metadata,
|
|
var_access,
|
|
LocalVariable,
|
|
binding.span);
|
|
}
|
|
|
|
/// Creates debug information for the given function argument.
|
|
///
|
|
/// This function assumes that there's a datum for each pattern component of the
|
|
/// argument in `bcx.fcx.lllocals`.
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_argument_metadata(bcx: Block, arg: &ast::Arg) {
|
|
if bcx.unreachable.get() ||
|
|
fn_should_be_ignored(bcx.fcx) ||
|
|
bcx.sess().opts.debuginfo != FullDebugInfo {
|
|
return;
|
|
}
|
|
|
|
let def_map = &bcx.tcx().def_map;
|
|
let scope_metadata = bcx
|
|
.fcx
|
|
.debug_context
|
|
.get_ref(bcx.ccx(), arg.pat.span)
|
|
.fn_metadata;
|
|
let locals = bcx.fcx.lllocals.borrow();
|
|
|
|
pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, span, var_ident| {
|
|
let datum = match locals.get(&node_id) {
|
|
Some(v) => v,
|
|
None => {
|
|
bcx.sess().span_bug(span,
|
|
&format!("no entry in lllocals table for {}",
|
|
node_id));
|
|
}
|
|
};
|
|
|
|
if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
|
|
bcx.sess().span_bug(span, "debuginfo::create_argument_metadata() - \
|
|
Referenced variable location is not an alloca!");
|
|
}
|
|
|
|
let argument_index = {
|
|
let counter = &bcx
|
|
.fcx
|
|
.debug_context
|
|
.get_ref(bcx.ccx(), span)
|
|
.argument_counter;
|
|
let argument_index = counter.get();
|
|
counter.set(argument_index + 1);
|
|
argument_index
|
|
};
|
|
|
|
declare_local(bcx,
|
|
var_ident.node.name,
|
|
datum.ty,
|
|
scope_metadata,
|
|
DirectVariable { alloca: datum.val },
|
|
ArgumentVariable(argument_index),
|
|
span);
|
|
})
|
|
}
|
|
|
|
pub fn get_cleanup_debug_loc_for_ast_node<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
node_id: ast::NodeId,
|
|
node_span: Span,
|
|
is_block: bool)
|
|
-> NodeIdAndSpan {
|
|
// A debug location needs two things:
|
|
// (1) A span (of which only the beginning will actually be used)
|
|
// (2) An AST node-id which will be used to look up the lexical scope
|
|
// for the location in the functions scope-map
|
|
//
|
|
// This function will calculate the debug location for compiler-generated
|
|
// cleanup calls that are executed when control-flow leaves the
|
|
// scope identified by `node_id`.
|
|
//
|
|
// For everything but block-like things we can simply take id and span of
|
|
// the given expression, meaning that from a debugger's view cleanup code is
|
|
// executed at the same source location as the statement/expr itself.
|
|
//
|
|
// Blocks are a special case. Here we want the cleanup to be linked to the
|
|
// closing curly brace of the block. The *scope* the cleanup is executed in
|
|
// is up to debate: It could either still be *within* the block being
|
|
// cleaned up, meaning that locals from the block are still visible in the
|
|
// debugger.
|
|
// Or it could be in the scope that the block is contained in, so any locals
|
|
// from within the block are already considered out-of-scope and thus not
|
|
// accessible in the debugger anymore.
|
|
//
|
|
// The current implementation opts for the second option: cleanup of a block
|
|
// already happens in the parent scope of the block. The main reason for
|
|
// this decision is that scoping becomes controlflow dependent when variable
|
|
// shadowing is involved and it's impossible to decide statically which
|
|
// scope is actually left when the cleanup code is executed.
|
|
// In practice it shouldn't make much of a difference.
|
|
|
|
let mut cleanup_span = node_span;
|
|
|
|
if is_block {
|
|
// Not all blocks actually have curly braces (e.g. simple closure
|
|
// bodies), in which case we also just want to return the span of the
|
|
// whole expression.
|
|
let code_snippet = cx.sess().codemap().span_to_snippet(node_span);
|
|
if let Ok(code_snippet) = code_snippet {
|
|
let bytes = code_snippet.as_bytes();
|
|
|
|
if !bytes.is_empty() && &bytes[bytes.len()-1..] == b"}" {
|
|
cleanup_span = Span {
|
|
lo: node_span.hi - codemap::BytePos(1),
|
|
hi: node_span.hi,
|
|
expn_id: node_span.expn_id
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
NodeIdAndSpan {
|
|
id: node_id,
|
|
span: cleanup_span
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub enum DebugLoc {
|
|
At(ast::NodeId, Span),
|
|
None
|
|
}
|
|
|
|
impl DebugLoc {
|
|
pub fn apply(&self, fcx: &FunctionContext) {
|
|
match *self {
|
|
DebugLoc::At(node_id, span) => {
|
|
set_source_location(fcx, node_id, span);
|
|
}
|
|
DebugLoc::None => {
|
|
clear_source_location(fcx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub trait ToDebugLoc {
|
|
fn debug_loc(&self) -> DebugLoc;
|
|
}
|
|
|
|
impl ToDebugLoc for ast::Expr {
|
|
fn debug_loc(&self) -> DebugLoc {
|
|
DebugLoc::At(self.id, self.span)
|
|
}
|
|
}
|
|
|
|
impl ToDebugLoc for NodeIdAndSpan {
|
|
fn debug_loc(&self) -> DebugLoc {
|
|
DebugLoc::At(self.id, self.span)
|
|
}
|
|
}
|
|
|
|
impl ToDebugLoc for Option<NodeIdAndSpan> {
|
|
fn debug_loc(&self) -> DebugLoc {
|
|
match *self {
|
|
Some(NodeIdAndSpan { id, span }) => DebugLoc::At(id, span),
|
|
None => DebugLoc::None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Sets the current debug location at the beginning of the span.
|
|
///
|
|
/// Maps to a call to llvm::LLVMSetCurrentDebugLocation(...). The node_id
|
|
/// parameter is used to reliably find the correct visibility scope for the code
|
|
/// position.
|
|
pub fn set_source_location(fcx: &FunctionContext,
|
|
node_id: ast::NodeId,
|
|
span: Span) {
|
|
match fcx.debug_context {
|
|
FunctionDebugContext::DebugInfoDisabled => return,
|
|
FunctionDebugContext::FunctionWithoutDebugInfo => {
|
|
set_debug_location(fcx.ccx, UnknownLocation);
|
|
return;
|
|
}
|
|
FunctionDebugContext::RegularContext(box ref function_debug_context) => {
|
|
if function_debug_context.source_location_override.get() {
|
|
// Just ignore any attempts to set a new debug location while
|
|
// the override is active.
|
|
return;
|
|
}
|
|
|
|
let cx = fcx.ccx;
|
|
|
|
debug!("set_source_location: {}", cx.sess().codemap().span_to_string(span));
|
|
|
|
if function_debug_context.source_locations_enabled.get() {
|
|
let loc = span_start(cx, span);
|
|
let scope = scope_metadata(fcx, node_id, span);
|
|
|
|
set_debug_location(cx, InternalDebugLocation::new(scope,
|
|
loc.line,
|
|
loc.col.to_usize()));
|
|
} else {
|
|
set_debug_location(cx, UnknownLocation);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This function makes sure that all debug locations emitted while executing
|
|
/// `wrapped_function` are set to the given `debug_loc`.
|
|
pub fn with_source_location_override<F, R>(fcx: &FunctionContext,
|
|
debug_loc: DebugLoc,
|
|
wrapped_function: F) -> R
|
|
where F: FnOnce() -> R
|
|
{
|
|
match fcx.debug_context {
|
|
FunctionDebugContext::DebugInfoDisabled => {
|
|
wrapped_function()
|
|
}
|
|
FunctionDebugContext::FunctionWithoutDebugInfo => {
|
|
set_debug_location(fcx.ccx, UnknownLocation);
|
|
wrapped_function()
|
|
}
|
|
FunctionDebugContext::RegularContext(box ref function_debug_context) => {
|
|
if function_debug_context.source_location_override.get() {
|
|
wrapped_function()
|
|
} else {
|
|
debug_loc.apply(fcx);
|
|
function_debug_context.source_location_override.set(true);
|
|
let result = wrapped_function();
|
|
function_debug_context.source_location_override.set(false);
|
|
result
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Clears the current debug location.
|
|
///
|
|
/// Instructions generated hereafter won't be assigned a source location.
|
|
pub fn clear_source_location(fcx: &FunctionContext) {
|
|
if fn_should_be_ignored(fcx) {
|
|
return;
|
|
}
|
|
|
|
set_debug_location(fcx.ccx, UnknownLocation);
|
|
}
|
|
|
|
/// Enables emitting source locations for the given functions.
|
|
///
|
|
/// Since we don't want source locations to be emitted for the function prelude,
|
|
/// they are disabled when beginning to translate a new function. This functions
|
|
/// switches source location emitting on and must therefore be called before the
|
|
/// first real statement/expression of the function is translated.
|
|
pub fn start_emitting_source_locations(fcx: &FunctionContext) {
|
|
match fcx.debug_context {
|
|
FunctionDebugContext::RegularContext(box ref data) => {
|
|
data.source_locations_enabled.set(true)
|
|
},
|
|
_ => { /* safe to ignore */ }
|
|
}
|
|
}
|
|
|
|
/// Creates the function-specific debug context.
|
|
///
|
|
/// Returns the FunctionDebugContext for the function which holds state needed
|
|
/// for debug info creation. The function may also return another variant of the
|
|
/// FunctionDebugContext enum which indicates why no debuginfo should be created
|
|
/// for the function.
|
|
pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
fn_ast_id: ast::NodeId,
|
|
param_substs: &Substs<'tcx>,
|
|
llfn: ValueRef) -> FunctionDebugContext {
|
|
if cx.sess().opts.debuginfo == NoDebugInfo {
|
|
return FunctionDebugContext::DebugInfoDisabled;
|
|
}
|
|
|
|
// Clear the debug location so we don't assign them in the function prelude.
|
|
// Do this here already, in case we do an early exit from this function.
|
|
set_debug_location(cx, UnknownLocation);
|
|
|
|
if fn_ast_id == ast::DUMMY_NODE_ID {
|
|
// This is a function not linked to any source location, so don't
|
|
// generate debuginfo for it.
|
|
return FunctionDebugContext::FunctionWithoutDebugInfo;
|
|
}
|
|
|
|
let empty_generics = ast_util::empty_generics();
|
|
|
|
let fnitem = cx.tcx().map.get(fn_ast_id);
|
|
|
|
let (name, fn_decl, generics, top_level_block, span, has_path) = match fnitem {
|
|
ast_map::NodeItem(ref item) => {
|
|
if contains_nodebug_attribute(&item.attrs) {
|
|
return FunctionDebugContext::FunctionWithoutDebugInfo;
|
|
}
|
|
|
|
match item.node {
|
|
ast::ItemFn(ref fn_decl, _, _, ref generics, ref top_level_block) => {
|
|
(item.ident.name, fn_decl, generics, top_level_block, item.span, true)
|
|
}
|
|
_ => {
|
|
cx.sess().span_bug(item.span,
|
|
"create_function_debug_context: item bound to non-function");
|
|
}
|
|
}
|
|
}
|
|
ast_map::NodeImplItem(impl_item) => {
|
|
match impl_item.node {
|
|
ast::MethodImplItem(ref sig, ref body) => {
|
|
if contains_nodebug_attribute(&impl_item.attrs) {
|
|
return FunctionDebugContext::FunctionWithoutDebugInfo;
|
|
}
|
|
|
|
(impl_item.ident.name,
|
|
&sig.decl,
|
|
&sig.generics,
|
|
body,
|
|
impl_item.span,
|
|
true)
|
|
}
|
|
_ => {
|
|
cx.sess().span_bug(impl_item.span,
|
|
"create_function_debug_context() \
|
|
called on non-method impl item?!")
|
|
}
|
|
}
|
|
}
|
|
ast_map::NodeExpr(ref expr) => {
|
|
match expr.node {
|
|
ast::ExprClosure(_, ref fn_decl, ref top_level_block) => {
|
|
let name = format!("fn{}", token::gensym("fn"));
|
|
let name = token::intern(&name[..]);
|
|
(name, fn_decl,
|
|
// This is not quite right. It should actually inherit
|
|
// the generics of the enclosing function.
|
|
&empty_generics,
|
|
top_level_block,
|
|
expr.span,
|
|
// Don't try to lookup the item path:
|
|
false)
|
|
}
|
|
_ => cx.sess().span_bug(expr.span,
|
|
"create_function_debug_context: expected an expr_fn_block here")
|
|
}
|
|
}
|
|
ast_map::NodeTraitItem(trait_item) => {
|
|
match trait_item.node {
|
|
ast::MethodTraitItem(ref sig, Some(ref body)) => {
|
|
if contains_nodebug_attribute(&trait_item.attrs) {
|
|
return FunctionDebugContext::FunctionWithoutDebugInfo;
|
|
}
|
|
|
|
(trait_item.ident.name,
|
|
&sig.decl,
|
|
&sig.generics,
|
|
body,
|
|
trait_item.span,
|
|
true)
|
|
}
|
|
_ => {
|
|
cx.sess()
|
|
.bug(&format!("create_function_debug_context: \
|
|
unexpected sort of node: {:?}",
|
|
fnitem))
|
|
}
|
|
}
|
|
}
|
|
ast_map::NodeForeignItem(..) |
|
|
ast_map::NodeVariant(..) |
|
|
ast_map::NodeStructCtor(..) => {
|
|
return FunctionDebugContext::FunctionWithoutDebugInfo;
|
|
}
|
|
_ => cx.sess().bug(&format!("create_function_debug_context: \
|
|
unexpected sort of node: {:?}",
|
|
fnitem))
|
|
};
|
|
|
|
// This can be the case for functions inlined from another crate
|
|
if span == codemap::DUMMY_SP {
|
|
return FunctionDebugContext::FunctionWithoutDebugInfo;
|
|
}
|
|
|
|
let loc = span_start(cx, span);
|
|
let file_metadata = file_metadata(cx, &loc.file.name);
|
|
|
|
let function_type_metadata = unsafe {
|
|
let fn_signature = get_function_signature(cx,
|
|
fn_ast_id,
|
|
&*fn_decl,
|
|
param_substs,
|
|
span);
|
|
llvm::LLVMDIBuilderCreateSubroutineType(DIB(cx), file_metadata, fn_signature)
|
|
};
|
|
|
|
// Get_template_parameters() will append a `<...>` clause to the function
|
|
// name if necessary.
|
|
let mut function_name = String::from_str(&token::get_name(name));
|
|
let template_parameters = get_template_parameters(cx,
|
|
generics,
|
|
param_substs,
|
|
file_metadata,
|
|
&mut function_name);
|
|
|
|
// There is no ast_map::Path for ast::ExprClosure-type functions. For now,
|
|
// just don't put them into a namespace. In the future this could be improved
|
|
// somehow (storing a path in the ast_map, or construct a path using the
|
|
// enclosing function).
|
|
let (linkage_name, containing_scope) = if has_path {
|
|
let namespace_node = namespace_for_item(cx, ast_util::local_def(fn_ast_id));
|
|
let linkage_name = namespace_node.mangled_name_of_contained_item(
|
|
&function_name[..]);
|
|
let containing_scope = namespace_node.scope;
|
|
(linkage_name, containing_scope)
|
|
} else {
|
|
(function_name.clone(), file_metadata)
|
|
};
|
|
|
|
// Clang sets this parameter to the opening brace of the function's block,
|
|
// so let's do this too.
|
|
let scope_line = span_start(cx, top_level_block.span).line;
|
|
|
|
let is_local_to_unit = is_node_local_to_unit(cx, fn_ast_id);
|
|
|
|
let function_name = CString::new(function_name).unwrap();
|
|
let linkage_name = CString::new(linkage_name).unwrap();
|
|
let fn_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateFunction(
|
|
DIB(cx),
|
|
containing_scope,
|
|
function_name.as_ptr(),
|
|
linkage_name.as_ptr(),
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
function_type_metadata,
|
|
is_local_to_unit,
|
|
true,
|
|
scope_line as c_uint,
|
|
FlagPrototyped as c_uint,
|
|
cx.sess().opts.optimize != config::No,
|
|
llfn,
|
|
template_parameters,
|
|
ptr::null_mut())
|
|
};
|
|
|
|
let scope_map = create_scope_map(cx,
|
|
&fn_decl.inputs,
|
|
&*top_level_block,
|
|
fn_metadata,
|
|
fn_ast_id);
|
|
|
|
// Initialize fn debug context (including scope map and namespace map)
|
|
let fn_debug_context = box FunctionDebugContextData {
|
|
scope_map: RefCell::new(scope_map),
|
|
fn_metadata: fn_metadata,
|
|
argument_counter: Cell::new(1),
|
|
source_locations_enabled: Cell::new(false),
|
|
source_location_override: Cell::new(false),
|
|
};
|
|
|
|
|
|
|
|
return FunctionDebugContext::RegularContext(fn_debug_context);
|
|
|
|
fn get_function_signature<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
fn_ast_id: ast::NodeId,
|
|
fn_decl: &ast::FnDecl,
|
|
param_substs: &Substs<'tcx>,
|
|
error_reporting_span: Span) -> DIArray {
|
|
if cx.sess().opts.debuginfo == LimitedDebugInfo {
|
|
return create_DIArray(DIB(cx), &[]);
|
|
}
|
|
|
|
let mut signature = Vec::with_capacity(fn_decl.inputs.len() + 1);
|
|
|
|
// Return type -- llvm::DIBuilder wants this at index 0
|
|
assert_type_for_node_id(cx, fn_ast_id, error_reporting_span);
|
|
let return_type = ty::node_id_to_type(cx.tcx(), fn_ast_id);
|
|
let return_type = monomorphize::apply_param_substs(cx.tcx(),
|
|
param_substs,
|
|
&return_type);
|
|
if ty::type_is_nil(return_type) {
|
|
signature.push(ptr::null_mut())
|
|
} else {
|
|
signature.push(type_metadata(cx, return_type, codemap::DUMMY_SP));
|
|
}
|
|
|
|
// Arguments types
|
|
for arg in &fn_decl.inputs {
|
|
assert_type_for_node_id(cx, arg.pat.id, arg.pat.span);
|
|
let arg_type = ty::node_id_to_type(cx.tcx(), arg.pat.id);
|
|
let arg_type = monomorphize::apply_param_substs(cx.tcx(),
|
|
param_substs,
|
|
&arg_type);
|
|
signature.push(type_metadata(cx, arg_type, codemap::DUMMY_SP));
|
|
}
|
|
|
|
return create_DIArray(DIB(cx), &signature[..]);
|
|
}
|
|
|
|
fn get_template_parameters<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
generics: &ast::Generics,
|
|
param_substs: &Substs<'tcx>,
|
|
file_metadata: DIFile,
|
|
name_to_append_suffix_to: &mut String)
|
|
-> DIArray
|
|
{
|
|
let self_type = param_substs.self_ty();
|
|
let self_type = monomorphize::normalize_associated_type(cx.tcx(), &self_type);
|
|
|
|
// Only true for static default methods:
|
|
let has_self_type = self_type.is_some();
|
|
|
|
if !generics.is_type_parameterized() && !has_self_type {
|
|
return create_DIArray(DIB(cx), &[]);
|
|
}
|
|
|
|
name_to_append_suffix_to.push('<');
|
|
|
|
// The list to be filled with template parameters:
|
|
let mut template_params: Vec<DIDescriptor> =
|
|
Vec::with_capacity(generics.ty_params.len() + 1);
|
|
|
|
// Handle self type
|
|
if has_self_type {
|
|
let actual_self_type = self_type.unwrap();
|
|
// Add self type name to <...> clause of function name
|
|
let actual_self_type_name = compute_debuginfo_type_name(
|
|
cx,
|
|
actual_self_type,
|
|
true);
|
|
|
|
name_to_append_suffix_to.push_str(&actual_self_type_name[..]);
|
|
|
|
if generics.is_type_parameterized() {
|
|
name_to_append_suffix_to.push_str(",");
|
|
}
|
|
|
|
// Only create type information if full debuginfo is enabled
|
|
if cx.sess().opts.debuginfo == FullDebugInfo {
|
|
let actual_self_type_metadata = type_metadata(cx,
|
|
actual_self_type,
|
|
codemap::DUMMY_SP);
|
|
|
|
let name = token::get_name(special_idents::type_self.name);
|
|
|
|
let name = CString::new(name.as_bytes()).unwrap();
|
|
let param_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateTemplateTypeParameter(
|
|
DIB(cx),
|
|
file_metadata,
|
|
name.as_ptr(),
|
|
actual_self_type_metadata,
|
|
ptr::null_mut(),
|
|
0,
|
|
0)
|
|
};
|
|
|
|
template_params.push(param_metadata);
|
|
}
|
|
}
|
|
|
|
// Handle other generic parameters
|
|
let actual_types = param_substs.types.get_slice(subst::FnSpace);
|
|
for (index, &ast::TyParam{ ident, .. }) in generics.ty_params.iter().enumerate() {
|
|
let actual_type = actual_types[index];
|
|
// Add actual type name to <...> clause of function name
|
|
let actual_type_name = compute_debuginfo_type_name(cx,
|
|
actual_type,
|
|
true);
|
|
name_to_append_suffix_to.push_str(&actual_type_name[..]);
|
|
|
|
if index != generics.ty_params.len() - 1 {
|
|
name_to_append_suffix_to.push_str(",");
|
|
}
|
|
|
|
// Again, only create type information if full debuginfo is enabled
|
|
if cx.sess().opts.debuginfo == FullDebugInfo {
|
|
let actual_type_metadata = type_metadata(cx, actual_type, codemap::DUMMY_SP);
|
|
let ident = token::get_ident(ident);
|
|
let name = CString::new(ident.as_bytes()).unwrap();
|
|
let param_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateTemplateTypeParameter(
|
|
DIB(cx),
|
|
file_metadata,
|
|
name.as_ptr(),
|
|
actual_type_metadata,
|
|
ptr::null_mut(),
|
|
0,
|
|
0)
|
|
};
|
|
template_params.push(param_metadata);
|
|
}
|
|
}
|
|
|
|
name_to_append_suffix_to.push('>');
|
|
|
|
return create_DIArray(DIB(cx), &template_params[..]);
|
|
}
|
|
}
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Module-Internal debug info creation functions
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
fn is_node_local_to_unit(cx: &CrateContext, node_id: ast::NodeId) -> bool
|
|
{
|
|
// The is_local_to_unit flag indicates whether a function is local to the
|
|
// current compilation unit (i.e. if it is *static* in the C-sense). The
|
|
// *reachable* set should provide a good approximation of this, as it
|
|
// contains everything that might leak out of the current crate (by being
|
|
// externally visible or by being inlined into something externally
|
|
// visible). It might better to use the `exported_items` set from
|
|
// `driver::CrateAnalysis` in the future, but (atm) this set is not
|
|
// available in the translation pass.
|
|
!cx.reachable().contains(&node_id)
|
|
}
|
|
|
|
#[allow(non_snake_case)]
|
|
fn create_DIArray(builder: DIBuilderRef, arr: &[DIDescriptor]) -> DIArray {
|
|
return unsafe {
|
|
llvm::LLVMDIBuilderGetOrCreateArray(builder, arr.as_ptr(), arr.len() as u32)
|
|
};
|
|
}
|
|
|
|
fn compile_unit_metadata(cx: &CrateContext) -> DIDescriptor {
|
|
let work_dir = &cx.sess().working_dir;
|
|
let compile_unit_name = match cx.sess().local_crate_source_file {
|
|
None => fallback_path(cx),
|
|
Some(ref abs_path) => {
|
|
if abs_path.is_relative() {
|
|
cx.sess().warn("debuginfo: Invalid path to crate's local root source file!");
|
|
fallback_path(cx)
|
|
} else {
|
|
match abs_path.relative_from(work_dir) {
|
|
Some(ref p) if p.is_relative() => {
|
|
if p.starts_with(Path::new("./")) {
|
|
path2cstr(p)
|
|
} else {
|
|
path2cstr(&Path::new(".").join(p))
|
|
}
|
|
}
|
|
_ => fallback_path(cx)
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
debug!("compile_unit_metadata: {:?}", compile_unit_name);
|
|
let producer = format!("rustc version {}",
|
|
(option_env!("CFG_VERSION")).expect("CFG_VERSION"));
|
|
|
|
let compile_unit_name = compile_unit_name.as_ptr();
|
|
let work_dir = path2cstr(&work_dir);
|
|
let producer = CString::new(producer).unwrap();
|
|
let flags = "\0";
|
|
let split_name = "\0";
|
|
return unsafe {
|
|
llvm::LLVMDIBuilderCreateCompileUnit(
|
|
debug_context(cx).builder,
|
|
DW_LANG_RUST,
|
|
compile_unit_name,
|
|
work_dir.as_ptr(),
|
|
producer.as_ptr(),
|
|
cx.sess().opts.optimize != config::No,
|
|
flags.as_ptr() as *const _,
|
|
0,
|
|
split_name.as_ptr() as *const _)
|
|
};
|
|
|
|
fn fallback_path(cx: &CrateContext) -> CString {
|
|
CString::new(cx.link_meta().crate_name.clone()).unwrap()
|
|
}
|
|
}
|
|
|
|
fn declare_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
variable_name: ast::Name,
|
|
variable_type: Ty<'tcx>,
|
|
scope_metadata: DIScope,
|
|
variable_access: VariableAccess,
|
|
variable_kind: VariableKind,
|
|
span: Span) {
|
|
let cx: &CrateContext = bcx.ccx();
|
|
|
|
let filename = span_start(cx, span).file.name.clone();
|
|
let file_metadata = file_metadata(cx, &filename[..]);
|
|
|
|
let name = token::get_name(variable_name);
|
|
let loc = span_start(cx, span);
|
|
let type_metadata = type_metadata(cx, variable_type, span);
|
|
|
|
let (argument_index, dwarf_tag) = match variable_kind {
|
|
ArgumentVariable(index) => (index as c_uint, DW_TAG_arg_variable),
|
|
LocalVariable |
|
|
CapturedVariable => (0, DW_TAG_auto_variable)
|
|
};
|
|
|
|
let name = CString::new(name.as_bytes()).unwrap();
|
|
match (variable_access, &[][..]) {
|
|
(DirectVariable { alloca }, address_operations) |
|
|
(IndirectVariable {alloca, address_operations}, _) => {
|
|
let metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateVariable(
|
|
DIB(cx),
|
|
dwarf_tag,
|
|
scope_metadata,
|
|
name.as_ptr(),
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
type_metadata,
|
|
cx.sess().opts.optimize != config::No,
|
|
0,
|
|
address_operations.as_ptr(),
|
|
address_operations.len() as c_uint,
|
|
argument_index)
|
|
};
|
|
set_debug_location(cx, InternalDebugLocation::new(scope_metadata,
|
|
loc.line,
|
|
loc.col.to_usize()));
|
|
unsafe {
|
|
let instr = llvm::LLVMDIBuilderInsertDeclareAtEnd(
|
|
DIB(cx),
|
|
alloca,
|
|
metadata,
|
|
address_operations.as_ptr(),
|
|
address_operations.len() as c_uint,
|
|
bcx.llbb);
|
|
|
|
llvm::LLVMSetInstDebugLocation(trans::build::B(bcx).llbuilder, instr);
|
|
}
|
|
}
|
|
}
|
|
|
|
match variable_kind {
|
|
ArgumentVariable(_) | CapturedVariable => {
|
|
assert!(!bcx.fcx
|
|
.debug_context
|
|
.get_ref(cx, span)
|
|
.source_locations_enabled
|
|
.get());
|
|
set_debug_location(cx, UnknownLocation);
|
|
}
|
|
_ => { /* nothing to do */ }
|
|
}
|
|
}
|
|
|
|
fn file_metadata(cx: &CrateContext, full_path: &str) -> DIFile {
|
|
match debug_context(cx).created_files.borrow().get(full_path) {
|
|
Some(file_metadata) => return *file_metadata,
|
|
None => ()
|
|
}
|
|
|
|
debug!("file_metadata: {}", full_path);
|
|
|
|
// FIXME (#9639): This needs to handle non-utf8 paths
|
|
let work_dir = cx.sess().working_dir.to_str().unwrap();
|
|
let file_name =
|
|
if full_path.starts_with(work_dir) {
|
|
&full_path[work_dir.len() + 1..full_path.len()]
|
|
} else {
|
|
full_path
|
|
};
|
|
|
|
let file_name = CString::new(file_name).unwrap();
|
|
let work_dir = CString::new(work_dir).unwrap();
|
|
let file_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateFile(DIB(cx), file_name.as_ptr(),
|
|
work_dir.as_ptr())
|
|
};
|
|
|
|
let mut created_files = debug_context(cx).created_files.borrow_mut();
|
|
created_files.insert(full_path.to_string(), file_metadata);
|
|
return file_metadata;
|
|
}
|
|
|
|
/// Finds the scope metadata node for the given AST node.
|
|
fn scope_metadata(fcx: &FunctionContext,
|
|
node_id: ast::NodeId,
|
|
error_reporting_span: Span)
|
|
-> DIScope {
|
|
let scope_map = &fcx.debug_context
|
|
.get_ref(fcx.ccx, error_reporting_span)
|
|
.scope_map;
|
|
match scope_map.borrow().get(&node_id).cloned() {
|
|
Some(scope_metadata) => scope_metadata,
|
|
None => {
|
|
let node = fcx.ccx.tcx().map.get(node_id);
|
|
|
|
fcx.ccx.sess().span_bug(error_reporting_span,
|
|
&format!("debuginfo: Could not find scope info for node {:?}",
|
|
node));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn diverging_type_metadata(cx: &CrateContext) -> DIType {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateBasicType(
|
|
DIB(cx),
|
|
"!\0".as_ptr() as *const _,
|
|
bytes_to_bits(0),
|
|
bytes_to_bits(0),
|
|
DW_ATE_unsigned)
|
|
}
|
|
}
|
|
|
|
fn basic_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>) -> DIType {
|
|
|
|
debug!("basic_type_metadata: {:?}", t);
|
|
|
|
let (name, encoding) = match t.sty {
|
|
ty::ty_tup(ref elements) if elements.is_empty() =>
|
|
("()".to_string(), DW_ATE_unsigned),
|
|
ty::ty_bool => ("bool".to_string(), DW_ATE_boolean),
|
|
ty::ty_char => ("char".to_string(), DW_ATE_unsigned_char),
|
|
ty::ty_int(int_ty) => match int_ty {
|
|
ast::TyIs => ("isize".to_string(), DW_ATE_signed),
|
|
ast::TyI8 => ("i8".to_string(), DW_ATE_signed),
|
|
ast::TyI16 => ("i16".to_string(), DW_ATE_signed),
|
|
ast::TyI32 => ("i32".to_string(), DW_ATE_signed),
|
|
ast::TyI64 => ("i64".to_string(), DW_ATE_signed)
|
|
},
|
|
ty::ty_uint(uint_ty) => match uint_ty {
|
|
ast::TyUs => ("usize".to_string(), DW_ATE_unsigned),
|
|
ast::TyU8 => ("u8".to_string(), DW_ATE_unsigned),
|
|
ast::TyU16 => ("u16".to_string(), DW_ATE_unsigned),
|
|
ast::TyU32 => ("u32".to_string(), DW_ATE_unsigned),
|
|
ast::TyU64 => ("u64".to_string(), DW_ATE_unsigned)
|
|
},
|
|
ty::ty_float(float_ty) => match float_ty {
|
|
ast::TyF32 => ("f32".to_string(), DW_ATE_float),
|
|
ast::TyF64 => ("f64".to_string(), DW_ATE_float),
|
|
},
|
|
_ => cx.sess().bug("debuginfo::basic_type_metadata - t is invalid type")
|
|
};
|
|
|
|
let llvm_type = type_of::type_of(cx, t);
|
|
let (size, align) = size_and_align_of(cx, llvm_type);
|
|
let name = CString::new(name).unwrap();
|
|
let ty_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateBasicType(
|
|
DIB(cx),
|
|
name.as_ptr(),
|
|
bytes_to_bits(size),
|
|
bytes_to_bits(align),
|
|
encoding)
|
|
};
|
|
|
|
return ty_metadata;
|
|
}
|
|
|
|
fn pointer_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
pointer_type: Ty<'tcx>,
|
|
pointee_type_metadata: DIType)
|
|
-> DIType {
|
|
let pointer_llvm_type = type_of::type_of(cx, pointer_type);
|
|
let (pointer_size, pointer_align) = size_and_align_of(cx, pointer_llvm_type);
|
|
let name = compute_debuginfo_type_name(cx, pointer_type, false);
|
|
let name = CString::new(name).unwrap();
|
|
let ptr_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreatePointerType(
|
|
DIB(cx),
|
|
pointee_type_metadata,
|
|
bytes_to_bits(pointer_size),
|
|
bytes_to_bits(pointer_align),
|
|
name.as_ptr())
|
|
};
|
|
return ptr_metadata;
|
|
}
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Common facilities for record-like types (structs, enums, tuples)
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
enum MemberOffset {
|
|
FixedMemberOffset { bytes: usize },
|
|
// For ComputedMemberOffset, the offset is read from the llvm type definition.
|
|
ComputedMemberOffset
|
|
}
|
|
|
|
// Description of a type member, which can either be a regular field (as in
|
|
// structs or tuples) or an enum variant.
|
|
struct MemberDescription {
|
|
name: String,
|
|
llvm_type: Type,
|
|
type_metadata: DIType,
|
|
offset: MemberOffset,
|
|
flags: c_uint
|
|
}
|
|
|
|
// A factory for MemberDescriptions. It produces a list of member descriptions
|
|
// for some record-like type. MemberDescriptionFactories are used to defer the
|
|
// creation of type member descriptions in order to break cycles arising from
|
|
// recursive type definitions.
|
|
enum MemberDescriptionFactory<'tcx> {
|
|
StructMDF(StructMemberDescriptionFactory<'tcx>),
|
|
TupleMDF(TupleMemberDescriptionFactory<'tcx>),
|
|
EnumMDF(EnumMemberDescriptionFactory<'tcx>),
|
|
VariantMDF(VariantMemberDescriptionFactory<'tcx>)
|
|
}
|
|
|
|
impl<'tcx> MemberDescriptionFactory<'tcx> {
|
|
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
|
|
-> Vec<MemberDescription> {
|
|
match *self {
|
|
StructMDF(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
TupleMDF(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
EnumMDF(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
VariantMDF(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// A description of some recursive type. It can either be already finished (as
|
|
// with FinalMetadata) or it is not yet finished, but contains all information
|
|
// needed to generate the missing parts of the description. See the
|
|
// documentation section on Recursive Types at the top of this file for more
|
|
// information.
|
|
enum RecursiveTypeDescription<'tcx> {
|
|
UnfinishedMetadata {
|
|
unfinished_type: Ty<'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
metadata_stub: DICompositeType,
|
|
llvm_type: Type,
|
|
member_description_factory: MemberDescriptionFactory<'tcx>,
|
|
},
|
|
FinalMetadata(DICompositeType)
|
|
}
|
|
|
|
fn create_and_register_recursive_type_forward_declaration<'a, 'tcx>(
|
|
cx: &CrateContext<'a, 'tcx>,
|
|
unfinished_type: Ty<'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
metadata_stub: DICompositeType,
|
|
llvm_type: Type,
|
|
member_description_factory: MemberDescriptionFactory<'tcx>)
|
|
-> RecursiveTypeDescription<'tcx> {
|
|
|
|
// Insert the stub into the TypeMap in order to allow for recursive references
|
|
let mut type_map = debug_context(cx).type_map.borrow_mut();
|
|
type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata_stub);
|
|
type_map.register_type_with_metadata(cx, unfinished_type, metadata_stub);
|
|
|
|
UnfinishedMetadata {
|
|
unfinished_type: unfinished_type,
|
|
unique_type_id: unique_type_id,
|
|
metadata_stub: metadata_stub,
|
|
llvm_type: llvm_type,
|
|
member_description_factory: member_description_factory,
|
|
}
|
|
}
|
|
|
|
impl<'tcx> RecursiveTypeDescription<'tcx> {
|
|
// Finishes up the description of the type in question (mostly by providing
|
|
// descriptions of the fields of the given type) and returns the final type
|
|
// metadata.
|
|
fn finalize<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> MetadataCreationResult {
|
|
match *self {
|
|
FinalMetadata(metadata) => MetadataCreationResult::new(metadata, false),
|
|
UnfinishedMetadata {
|
|
unfinished_type,
|
|
unique_type_id,
|
|
metadata_stub,
|
|
llvm_type,
|
|
ref member_description_factory,
|
|
..
|
|
} => {
|
|
// Make sure that we have a forward declaration of the type in
|
|
// the TypeMap so that recursive references are possible. This
|
|
// will always be the case if the RecursiveTypeDescription has
|
|
// been properly created through the
|
|
// create_and_register_recursive_type_forward_declaration()
|
|
// function.
|
|
{
|
|
let type_map = debug_context(cx).type_map.borrow();
|
|
if type_map.find_metadata_for_unique_id(unique_type_id).is_none() ||
|
|
type_map.find_metadata_for_type(unfinished_type).is_none() {
|
|
cx.sess().bug(&format!("Forward declaration of potentially recursive type \
|
|
'{}' was not found in TypeMap!",
|
|
ppaux::ty_to_string(cx.tcx(), unfinished_type))
|
|
);
|
|
}
|
|
}
|
|
|
|
// ... then create the member descriptions ...
|
|
let member_descriptions =
|
|
member_description_factory.create_member_descriptions(cx);
|
|
|
|
// ... and attach them to the stub to complete it.
|
|
set_members_of_composite_type(cx,
|
|
metadata_stub,
|
|
llvm_type,
|
|
&member_descriptions[..]);
|
|
return MetadataCreationResult::new(metadata_stub, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Structs
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
// Creates MemberDescriptions for the fields of a struct
|
|
struct StructMemberDescriptionFactory<'tcx> {
|
|
fields: Vec<ty::field<'tcx>>,
|
|
is_simd: bool,
|
|
span: Span,
|
|
}
|
|
|
|
impl<'tcx> StructMemberDescriptionFactory<'tcx> {
|
|
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
|
|
-> Vec<MemberDescription> {
|
|
if self.fields.is_empty() {
|
|
return Vec::new();
|
|
}
|
|
|
|
let field_size = if self.is_simd {
|
|
machine::llsize_of_alloc(cx, type_of::type_of(cx, self.fields[0].mt.ty)) as usize
|
|
} else {
|
|
0xdeadbeef
|
|
};
|
|
|
|
self.fields.iter().enumerate().map(|(i, field)| {
|
|
let name = if field.name == special_idents::unnamed_field.name {
|
|
format!("__{}", i)
|
|
} else {
|
|
token::get_name(field.name).to_string()
|
|
};
|
|
|
|
let offset = if self.is_simd {
|
|
assert!(field_size != 0xdeadbeef);
|
|
FixedMemberOffset { bytes: i * field_size }
|
|
} else {
|
|
ComputedMemberOffset
|
|
};
|
|
|
|
MemberDescription {
|
|
name: name,
|
|
llvm_type: type_of::type_of(cx, field.mt.ty),
|
|
type_metadata: type_metadata(cx, field.mt.ty, self.span),
|
|
offset: offset,
|
|
flags: FLAGS_NONE,
|
|
}
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
|
|
fn prepare_struct_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
struct_type: Ty<'tcx>,
|
|
def_id: ast::DefId,
|
|
substs: &subst::Substs<'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
span: Span)
|
|
-> RecursiveTypeDescription<'tcx> {
|
|
let struct_name = compute_debuginfo_type_name(cx, struct_type, false);
|
|
let struct_llvm_type = type_of::type_of(cx, struct_type);
|
|
|
|
let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id);
|
|
|
|
let struct_metadata_stub = create_struct_stub(cx,
|
|
struct_llvm_type,
|
|
&struct_name[..],
|
|
unique_type_id,
|
|
containing_scope);
|
|
|
|
let mut fields = ty::struct_fields(cx.tcx(), def_id, substs);
|
|
|
|
// The `Ty` values returned by `ty::struct_fields` can still contain
|
|
// `ty_projection` variants, so normalize those away.
|
|
for field in &mut fields {
|
|
field.mt.ty = monomorphize::normalize_associated_type(cx.tcx(), &field.mt.ty);
|
|
}
|
|
|
|
create_and_register_recursive_type_forward_declaration(
|
|
cx,
|
|
struct_type,
|
|
unique_type_id,
|
|
struct_metadata_stub,
|
|
struct_llvm_type,
|
|
StructMDF(StructMemberDescriptionFactory {
|
|
fields: fields,
|
|
is_simd: ty::type_is_simd(cx.tcx(), struct_type),
|
|
span: span,
|
|
})
|
|
)
|
|
}
|
|
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Tuples
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
// Creates MemberDescriptions for the fields of a tuple
|
|
struct TupleMemberDescriptionFactory<'tcx> {
|
|
component_types: Vec<Ty<'tcx>>,
|
|
span: Span,
|
|
}
|
|
|
|
impl<'tcx> TupleMemberDescriptionFactory<'tcx> {
|
|
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
|
|
-> Vec<MemberDescription> {
|
|
self.component_types
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, &component_type)| {
|
|
MemberDescription {
|
|
name: format!("__{}", i),
|
|
llvm_type: type_of::type_of(cx, component_type),
|
|
type_metadata: type_metadata(cx, component_type, self.span),
|
|
offset: ComputedMemberOffset,
|
|
flags: FLAGS_NONE,
|
|
}
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
fn prepare_tuple_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
tuple_type: Ty<'tcx>,
|
|
component_types: &[Ty<'tcx>],
|
|
unique_type_id: UniqueTypeId,
|
|
span: Span)
|
|
-> RecursiveTypeDescription<'tcx> {
|
|
let tuple_name = compute_debuginfo_type_name(cx, tuple_type, false);
|
|
let tuple_llvm_type = type_of::type_of(cx, tuple_type);
|
|
|
|
create_and_register_recursive_type_forward_declaration(
|
|
cx,
|
|
tuple_type,
|
|
unique_type_id,
|
|
create_struct_stub(cx,
|
|
tuple_llvm_type,
|
|
&tuple_name[..],
|
|
unique_type_id,
|
|
UNKNOWN_SCOPE_METADATA),
|
|
tuple_llvm_type,
|
|
TupleMDF(TupleMemberDescriptionFactory {
|
|
component_types: component_types.to_vec(),
|
|
span: span,
|
|
})
|
|
)
|
|
}
|
|
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Enums
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
// Describes the members of an enum value: An enum is described as a union of
|
|
// structs in DWARF. This MemberDescriptionFactory provides the description for
|
|
// the members of this union; so for every variant of the given enum, this
|
|
// factory will produce one MemberDescription (all with no name and a fixed
|
|
// offset of zero bytes).
|
|
struct EnumMemberDescriptionFactory<'tcx> {
|
|
enum_type: Ty<'tcx>,
|
|
type_rep: Rc<adt::Repr<'tcx>>,
|
|
variants: Rc<Vec<Rc<ty::VariantInfo<'tcx>>>>,
|
|
discriminant_type_metadata: Option<DIType>,
|
|
containing_scope: DIScope,
|
|
file_metadata: DIFile,
|
|
span: Span,
|
|
}
|
|
|
|
impl<'tcx> EnumMemberDescriptionFactory<'tcx> {
|
|
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
|
|
-> Vec<MemberDescription> {
|
|
match *self.type_rep {
|
|
adt::General(_, ref struct_defs, _) => {
|
|
let discriminant_info = RegularDiscriminant(self.discriminant_type_metadata
|
|
.expect(""));
|
|
|
|
struct_defs
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, struct_def)| {
|
|
let (variant_type_metadata,
|
|
variant_llvm_type,
|
|
member_desc_factory) =
|
|
describe_enum_variant(cx,
|
|
self.enum_type,
|
|
struct_def,
|
|
&*(*self.variants)[i],
|
|
discriminant_info,
|
|
self.containing_scope,
|
|
self.span);
|
|
|
|
let member_descriptions = member_desc_factory
|
|
.create_member_descriptions(cx);
|
|
|
|
set_members_of_composite_type(cx,
|
|
variant_type_metadata,
|
|
variant_llvm_type,
|
|
&member_descriptions[..]);
|
|
MemberDescription {
|
|
name: "".to_string(),
|
|
llvm_type: variant_llvm_type,
|
|
type_metadata: variant_type_metadata,
|
|
offset: FixedMemberOffset { bytes: 0 },
|
|
flags: FLAGS_NONE
|
|
}
|
|
}).collect()
|
|
},
|
|
adt::Univariant(ref struct_def, _) => {
|
|
assert!(self.variants.len() <= 1);
|
|
|
|
if self.variants.is_empty() {
|
|
vec![]
|
|
} else {
|
|
let (variant_type_metadata,
|
|
variant_llvm_type,
|
|
member_description_factory) =
|
|
describe_enum_variant(cx,
|
|
self.enum_type,
|
|
struct_def,
|
|
&*(*self.variants)[0],
|
|
NoDiscriminant,
|
|
self.containing_scope,
|
|
self.span);
|
|
|
|
let member_descriptions =
|
|
member_description_factory.create_member_descriptions(cx);
|
|
|
|
set_members_of_composite_type(cx,
|
|
variant_type_metadata,
|
|
variant_llvm_type,
|
|
&member_descriptions[..]);
|
|
vec![
|
|
MemberDescription {
|
|
name: "".to_string(),
|
|
llvm_type: variant_llvm_type,
|
|
type_metadata: variant_type_metadata,
|
|
offset: FixedMemberOffset { bytes: 0 },
|
|
flags: FLAGS_NONE
|
|
}
|
|
]
|
|
}
|
|
}
|
|
adt::RawNullablePointer { nndiscr: non_null_variant_index, nnty, .. } => {
|
|
// As far as debuginfo is concerned, the pointer this enum
|
|
// represents is still wrapped in a struct. This is to make the
|
|
// DWARF representation of enums uniform.
|
|
|
|
// First create a description of the artificial wrapper struct:
|
|
let non_null_variant = &(*self.variants)[non_null_variant_index as usize];
|
|
let non_null_variant_name = token::get_name(non_null_variant.name);
|
|
|
|
// The llvm type and metadata of the pointer
|
|
let non_null_llvm_type = type_of::type_of(cx, nnty);
|
|
let non_null_type_metadata = type_metadata(cx, nnty, self.span);
|
|
|
|
// The type of the artificial struct wrapping the pointer
|
|
let artificial_struct_llvm_type = Type::struct_(cx,
|
|
&[non_null_llvm_type],
|
|
false);
|
|
|
|
// For the metadata of the wrapper struct, we need to create a
|
|
// MemberDescription of the struct's single field.
|
|
let sole_struct_member_description = MemberDescription {
|
|
name: match non_null_variant.arg_names {
|
|
Some(ref names) => token::get_name(names[0]).to_string(),
|
|
None => "__0".to_string()
|
|
},
|
|
llvm_type: non_null_llvm_type,
|
|
type_metadata: non_null_type_metadata,
|
|
offset: FixedMemberOffset { bytes: 0 },
|
|
flags: FLAGS_NONE
|
|
};
|
|
|
|
let unique_type_id = debug_context(cx).type_map
|
|
.borrow_mut()
|
|
.get_unique_type_id_of_enum_variant(
|
|
cx,
|
|
self.enum_type,
|
|
&non_null_variant_name);
|
|
|
|
// Now we can create the metadata of the artificial struct
|
|
let artificial_struct_metadata =
|
|
composite_type_metadata(cx,
|
|
artificial_struct_llvm_type,
|
|
&non_null_variant_name,
|
|
unique_type_id,
|
|
&[sole_struct_member_description],
|
|
self.containing_scope,
|
|
self.file_metadata,
|
|
codemap::DUMMY_SP);
|
|
|
|
// Encode the information about the null variant in the union
|
|
// member's name.
|
|
let null_variant_index = (1 - non_null_variant_index) as usize;
|
|
let null_variant_name = token::get_name((*self.variants)[null_variant_index].name);
|
|
let union_member_name = format!("RUST$ENCODED$ENUM${}${}",
|
|
0,
|
|
null_variant_name);
|
|
|
|
// Finally create the (singleton) list of descriptions of union
|
|
// members.
|
|
vec![
|
|
MemberDescription {
|
|
name: union_member_name,
|
|
llvm_type: artificial_struct_llvm_type,
|
|
type_metadata: artificial_struct_metadata,
|
|
offset: FixedMemberOffset { bytes: 0 },
|
|
flags: FLAGS_NONE
|
|
}
|
|
]
|
|
},
|
|
adt::StructWrappedNullablePointer { nonnull: ref struct_def,
|
|
nndiscr,
|
|
ref discrfield, ..} => {
|
|
// Create a description of the non-null variant
|
|
let (variant_type_metadata, variant_llvm_type, member_description_factory) =
|
|
describe_enum_variant(cx,
|
|
self.enum_type,
|
|
struct_def,
|
|
&*(*self.variants)[nndiscr as usize],
|
|
OptimizedDiscriminant,
|
|
self.containing_scope,
|
|
self.span);
|
|
|
|
let variant_member_descriptions =
|
|
member_description_factory.create_member_descriptions(cx);
|
|
|
|
set_members_of_composite_type(cx,
|
|
variant_type_metadata,
|
|
variant_llvm_type,
|
|
&variant_member_descriptions[..]);
|
|
|
|
// Encode the information about the null variant in the union
|
|
// member's name.
|
|
let null_variant_index = (1 - nndiscr) as usize;
|
|
let null_variant_name = token::get_name((*self.variants)[null_variant_index].name);
|
|
let discrfield = discrfield.iter()
|
|
.skip(1)
|
|
.map(|x| x.to_string())
|
|
.collect::<Vec<_>>().connect("$");
|
|
let union_member_name = format!("RUST$ENCODED$ENUM${}${}",
|
|
discrfield,
|
|
null_variant_name);
|
|
|
|
// Create the (singleton) list of descriptions of union members.
|
|
vec![
|
|
MemberDescription {
|
|
name: union_member_name,
|
|
llvm_type: variant_llvm_type,
|
|
type_metadata: variant_type_metadata,
|
|
offset: FixedMemberOffset { bytes: 0 },
|
|
flags: FLAGS_NONE
|
|
}
|
|
]
|
|
},
|
|
adt::CEnum(..) => cx.sess().span_bug(self.span, "This should be unreachable.")
|
|
}
|
|
}
|
|
}
|
|
|
|
// Creates MemberDescriptions for the fields of a single enum variant.
|
|
struct VariantMemberDescriptionFactory<'tcx> {
|
|
args: Vec<(String, Ty<'tcx>)>,
|
|
discriminant_type_metadata: Option<DIType>,
|
|
span: Span,
|
|
}
|
|
|
|
impl<'tcx> VariantMemberDescriptionFactory<'tcx> {
|
|
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
|
|
-> Vec<MemberDescription> {
|
|
self.args.iter().enumerate().map(|(i, &(ref name, ty))| {
|
|
MemberDescription {
|
|
name: name.to_string(),
|
|
llvm_type: type_of::type_of(cx, ty),
|
|
type_metadata: match self.discriminant_type_metadata {
|
|
Some(metadata) if i == 0 => metadata,
|
|
_ => type_metadata(cx, ty, self.span)
|
|
},
|
|
offset: ComputedMemberOffset,
|
|
flags: FLAGS_NONE
|
|
}
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone)]
|
|
enum EnumDiscriminantInfo {
|
|
RegularDiscriminant(DIType),
|
|
OptimizedDiscriminant,
|
|
NoDiscriminant
|
|
}
|
|
|
|
// Returns a tuple of (1) type_metadata_stub of the variant, (2) the llvm_type
|
|
// of the variant, and (3) a MemberDescriptionFactory for producing the
|
|
// descriptions of the fields of the variant. This is a rudimentary version of a
|
|
// full RecursiveTypeDescription.
|
|
fn describe_enum_variant<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
enum_type: Ty<'tcx>,
|
|
struct_def: &adt::Struct<'tcx>,
|
|
variant_info: &ty::VariantInfo<'tcx>,
|
|
discriminant_info: EnumDiscriminantInfo,
|
|
containing_scope: DIScope,
|
|
span: Span)
|
|
-> (DICompositeType, Type, MemberDescriptionFactory<'tcx>) {
|
|
let variant_llvm_type =
|
|
Type::struct_(cx, &struct_def.fields
|
|
.iter()
|
|
.map(|&t| type_of::type_of(cx, t))
|
|
.collect::<Vec<_>>()
|
|
,
|
|
struct_def.packed);
|
|
// Could do some consistency checks here: size, align, field count, discr type
|
|
|
|
let variant_name = token::get_name(variant_info.name);
|
|
let variant_name = &variant_name;
|
|
let unique_type_id = debug_context(cx).type_map
|
|
.borrow_mut()
|
|
.get_unique_type_id_of_enum_variant(
|
|
cx,
|
|
enum_type,
|
|
variant_name);
|
|
|
|
let metadata_stub = create_struct_stub(cx,
|
|
variant_llvm_type,
|
|
variant_name,
|
|
unique_type_id,
|
|
containing_scope);
|
|
|
|
// Get the argument names from the enum variant info
|
|
let mut arg_names: Vec<_> = match variant_info.arg_names {
|
|
Some(ref names) => {
|
|
names.iter()
|
|
.map(|&name| token::get_name(name).to_string())
|
|
.collect()
|
|
}
|
|
None => {
|
|
variant_info.args
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, _)| format!("__{}", i))
|
|
.collect()
|
|
}
|
|
};
|
|
|
|
// If this is not a univariant enum, there is also the discriminant field.
|
|
match discriminant_info {
|
|
RegularDiscriminant(_) => arg_names.insert(0, "RUST$ENUM$DISR".to_string()),
|
|
_ => { /* do nothing */ }
|
|
};
|
|
|
|
// Build an array of (field name, field type) pairs to be captured in the factory closure.
|
|
let args: Vec<(String, Ty)> = arg_names.iter()
|
|
.zip(struct_def.fields.iter())
|
|
.map(|(s, &t)| (s.to_string(), t))
|
|
.collect();
|
|
|
|
let member_description_factory =
|
|
VariantMDF(VariantMemberDescriptionFactory {
|
|
args: args,
|
|
discriminant_type_metadata: match discriminant_info {
|
|
RegularDiscriminant(discriminant_type_metadata) => {
|
|
Some(discriminant_type_metadata)
|
|
}
|
|
_ => None
|
|
},
|
|
span: span,
|
|
});
|
|
|
|
(metadata_stub, variant_llvm_type, member_description_factory)
|
|
}
|
|
|
|
fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
enum_type: Ty<'tcx>,
|
|
enum_def_id: ast::DefId,
|
|
unique_type_id: UniqueTypeId,
|
|
span: Span)
|
|
-> RecursiveTypeDescription<'tcx> {
|
|
let enum_name = compute_debuginfo_type_name(cx, enum_type, false);
|
|
|
|
let (containing_scope, definition_span) = get_namespace_and_span_for_item(cx, enum_def_id);
|
|
let loc = span_start(cx, definition_span);
|
|
let file_metadata = file_metadata(cx, &loc.file.name);
|
|
|
|
let variants = ty::enum_variants(cx.tcx(), enum_def_id);
|
|
|
|
let enumerators_metadata: Vec<DIDescriptor> = variants
|
|
.iter()
|
|
.map(|v| {
|
|
let token = token::get_name(v.name);
|
|
let name = CString::new(token.as_bytes()).unwrap();
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateEnumerator(
|
|
DIB(cx),
|
|
name.as_ptr(),
|
|
v.disr_val as u64)
|
|
}
|
|
})
|
|
.collect();
|
|
|
|
let discriminant_type_metadata = |inttype| {
|
|
// We can reuse the type of the discriminant for all monomorphized
|
|
// instances of an enum because it doesn't depend on any type
|
|
// parameters. The def_id, uniquely identifying the enum's polytype acts
|
|
// as key in this cache.
|
|
let cached_discriminant_type_metadata = debug_context(cx).created_enum_disr_types
|
|
.borrow()
|
|
.get(&enum_def_id).cloned();
|
|
match cached_discriminant_type_metadata {
|
|
Some(discriminant_type_metadata) => discriminant_type_metadata,
|
|
None => {
|
|
let discriminant_llvm_type = adt::ll_inttype(cx, inttype);
|
|
let (discriminant_size, discriminant_align) =
|
|
size_and_align_of(cx, discriminant_llvm_type);
|
|
let discriminant_base_type_metadata =
|
|
type_metadata(cx,
|
|
adt::ty_of_inttype(cx.tcx(), inttype),
|
|
codemap::DUMMY_SP);
|
|
let discriminant_name = get_enum_discriminant_name(cx, enum_def_id);
|
|
|
|
let name = CString::new(discriminant_name.as_bytes()).unwrap();
|
|
let discriminant_type_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateEnumerationType(
|
|
DIB(cx),
|
|
containing_scope,
|
|
name.as_ptr(),
|
|
UNKNOWN_FILE_METADATA,
|
|
UNKNOWN_LINE_NUMBER,
|
|
bytes_to_bits(discriminant_size),
|
|
bytes_to_bits(discriminant_align),
|
|
create_DIArray(DIB(cx), &enumerators_metadata),
|
|
discriminant_base_type_metadata)
|
|
};
|
|
|
|
debug_context(cx).created_enum_disr_types
|
|
.borrow_mut()
|
|
.insert(enum_def_id, discriminant_type_metadata);
|
|
|
|
discriminant_type_metadata
|
|
}
|
|
}
|
|
};
|
|
|
|
let type_rep = adt::represent_type(cx, enum_type);
|
|
|
|
let discriminant_type_metadata = match *type_rep {
|
|
adt::CEnum(inttype, _, _) => {
|
|
return FinalMetadata(discriminant_type_metadata(inttype))
|
|
},
|
|
adt::RawNullablePointer { .. } |
|
|
adt::StructWrappedNullablePointer { .. } |
|
|
adt::Univariant(..) => None,
|
|
adt::General(inttype, _, _) => Some(discriminant_type_metadata(inttype)),
|
|
};
|
|
|
|
let enum_llvm_type = type_of::type_of(cx, enum_type);
|
|
let (enum_type_size, enum_type_align) = size_and_align_of(cx, enum_llvm_type);
|
|
|
|
let unique_type_id_str = debug_context(cx)
|
|
.type_map
|
|
.borrow()
|
|
.get_unique_type_id_as_string(unique_type_id);
|
|
|
|
let enum_name = CString::new(enum_name).unwrap();
|
|
let unique_type_id_str = CString::new(unique_type_id_str.as_bytes()).unwrap();
|
|
let enum_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateUnionType(
|
|
DIB(cx),
|
|
containing_scope,
|
|
enum_name.as_ptr(),
|
|
UNKNOWN_FILE_METADATA,
|
|
UNKNOWN_LINE_NUMBER,
|
|
bytes_to_bits(enum_type_size),
|
|
bytes_to_bits(enum_type_align),
|
|
0, // Flags
|
|
ptr::null_mut(),
|
|
0, // RuntimeLang
|
|
unique_type_id_str.as_ptr())
|
|
};
|
|
|
|
return create_and_register_recursive_type_forward_declaration(
|
|
cx,
|
|
enum_type,
|
|
unique_type_id,
|
|
enum_metadata,
|
|
enum_llvm_type,
|
|
EnumMDF(EnumMemberDescriptionFactory {
|
|
enum_type: enum_type,
|
|
type_rep: type_rep.clone(),
|
|
variants: variants,
|
|
discriminant_type_metadata: discriminant_type_metadata,
|
|
containing_scope: containing_scope,
|
|
file_metadata: file_metadata,
|
|
span: span,
|
|
}),
|
|
);
|
|
|
|
fn get_enum_discriminant_name(cx: &CrateContext,
|
|
def_id: ast::DefId)
|
|
-> token::InternedString {
|
|
let name = if def_id.krate == ast::LOCAL_CRATE {
|
|
cx.tcx().map.get_path_elem(def_id.node).name()
|
|
} else {
|
|
csearch::get_item_path(cx.tcx(), def_id).last().unwrap().name()
|
|
};
|
|
|
|
token::get_name(name)
|
|
}
|
|
}
|
|
|
|
/// Creates debug information for a composite type, that is, anything that
|
|
/// results in a LLVM struct.
|
|
///
|
|
/// Examples of Rust types to use this are: structs, tuples, boxes, vecs, and enums.
|
|
fn composite_type_metadata(cx: &CrateContext,
|
|
composite_llvm_type: Type,
|
|
composite_type_name: &str,
|
|
composite_type_unique_id: UniqueTypeId,
|
|
member_descriptions: &[MemberDescription],
|
|
containing_scope: DIScope,
|
|
|
|
// Ignore source location information as long as it
|
|
// can't be reconstructed for non-local crates.
|
|
_file_metadata: DIFile,
|
|
_definition_span: Span)
|
|
-> DICompositeType {
|
|
// Create the (empty) struct metadata node ...
|
|
let composite_type_metadata = create_struct_stub(cx,
|
|
composite_llvm_type,
|
|
composite_type_name,
|
|
composite_type_unique_id,
|
|
containing_scope);
|
|
// ... and immediately create and add the member descriptions.
|
|
set_members_of_composite_type(cx,
|
|
composite_type_metadata,
|
|
composite_llvm_type,
|
|
member_descriptions);
|
|
|
|
return composite_type_metadata;
|
|
}
|
|
|
|
fn set_members_of_composite_type(cx: &CrateContext,
|
|
composite_type_metadata: DICompositeType,
|
|
composite_llvm_type: Type,
|
|
member_descriptions: &[MemberDescription]) {
|
|
// In some rare cases LLVM metadata uniquing would lead to an existing type
|
|
// description being used instead of a new one created in
|
|
// create_struct_stub. This would cause a hard to trace assertion in
|
|
// DICompositeType::SetTypeArray(). The following check makes sure that we
|
|
// get a better error message if this should happen again due to some
|
|
// regression.
|
|
{
|
|
let mut composite_types_completed =
|
|
debug_context(cx).composite_types_completed.borrow_mut();
|
|
if composite_types_completed.contains(&composite_type_metadata) {
|
|
cx.sess().bug("debuginfo::set_members_of_composite_type() - \
|
|
Already completed forward declaration re-encountered.");
|
|
} else {
|
|
composite_types_completed.insert(composite_type_metadata);
|
|
}
|
|
}
|
|
|
|
let member_metadata: Vec<DIDescriptor> = member_descriptions
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, member_description)| {
|
|
let (member_size, member_align) = size_and_align_of(cx, member_description.llvm_type);
|
|
let member_offset = match member_description.offset {
|
|
FixedMemberOffset { bytes } => bytes as u64,
|
|
ComputedMemberOffset => machine::llelement_offset(cx, composite_llvm_type, i)
|
|
};
|
|
|
|
let member_name = member_description.name.as_bytes();
|
|
let member_name = CString::new(member_name).unwrap();
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateMemberType(
|
|
DIB(cx),
|
|
composite_type_metadata,
|
|
member_name.as_ptr(),
|
|
UNKNOWN_FILE_METADATA,
|
|
UNKNOWN_LINE_NUMBER,
|
|
bytes_to_bits(member_size),
|
|
bytes_to_bits(member_align),
|
|
bytes_to_bits(member_offset),
|
|
member_description.flags,
|
|
member_description.type_metadata)
|
|
}
|
|
})
|
|
.collect();
|
|
|
|
unsafe {
|
|
let type_array = create_DIArray(DIB(cx), &member_metadata[..]);
|
|
llvm::LLVMDICompositeTypeSetTypeArray(DIB(cx), composite_type_metadata, type_array);
|
|
}
|
|
}
|
|
|
|
// A convenience wrapper around LLVMDIBuilderCreateStructType(). Does not do any
|
|
// caching, does not add any fields to the struct. This can be done later with
|
|
// set_members_of_composite_type().
|
|
fn create_struct_stub(cx: &CrateContext,
|
|
struct_llvm_type: Type,
|
|
struct_type_name: &str,
|
|
unique_type_id: UniqueTypeId,
|
|
containing_scope: DIScope)
|
|
-> DICompositeType {
|
|
let (struct_size, struct_align) = size_and_align_of(cx, struct_llvm_type);
|
|
|
|
let unique_type_id_str = debug_context(cx).type_map
|
|
.borrow()
|
|
.get_unique_type_id_as_string(unique_type_id);
|
|
let name = CString::new(struct_type_name).unwrap();
|
|
let unique_type_id = CString::new(unique_type_id_str.as_bytes()).unwrap();
|
|
let metadata_stub = unsafe {
|
|
// LLVMDIBuilderCreateStructType() wants an empty array. A null
|
|
// pointer will lead to hard to trace and debug LLVM assertions
|
|
// later on in llvm/lib/IR/Value.cpp.
|
|
let empty_array = create_DIArray(DIB(cx), &[]);
|
|
|
|
llvm::LLVMDIBuilderCreateStructType(
|
|
DIB(cx),
|
|
containing_scope,
|
|
name.as_ptr(),
|
|
UNKNOWN_FILE_METADATA,
|
|
UNKNOWN_LINE_NUMBER,
|
|
bytes_to_bits(struct_size),
|
|
bytes_to_bits(struct_align),
|
|
0,
|
|
ptr::null_mut(),
|
|
empty_array,
|
|
0,
|
|
ptr::null_mut(),
|
|
unique_type_id.as_ptr())
|
|
};
|
|
|
|
return metadata_stub;
|
|
}
|
|
|
|
fn fixed_vec_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
element_type: Ty<'tcx>,
|
|
len: Option<u64>,
|
|
span: Span)
|
|
-> MetadataCreationResult {
|
|
let element_type_metadata = type_metadata(cx, element_type, span);
|
|
|
|
return_if_metadata_created_in_meantime!(cx, unique_type_id);
|
|
|
|
let element_llvm_type = type_of::type_of(cx, element_type);
|
|
let (element_type_size, element_type_align) = size_and_align_of(cx, element_llvm_type);
|
|
|
|
let (array_size_in_bytes, upper_bound) = match len {
|
|
Some(len) => (element_type_size * len, len as c_longlong),
|
|
None => (0, -1)
|
|
};
|
|
|
|
let subrange = unsafe {
|
|
llvm::LLVMDIBuilderGetOrCreateSubrange(DIB(cx), 0, upper_bound)
|
|
};
|
|
|
|
let subscripts = create_DIArray(DIB(cx), &[subrange]);
|
|
let metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateArrayType(
|
|
DIB(cx),
|
|
bytes_to_bits(array_size_in_bytes),
|
|
bytes_to_bits(element_type_align),
|
|
element_type_metadata,
|
|
subscripts)
|
|
};
|
|
|
|
return MetadataCreationResult::new(metadata, false);
|
|
}
|
|
|
|
fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
vec_type: Ty<'tcx>,
|
|
element_type: Ty<'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
span: Span)
|
|
-> MetadataCreationResult {
|
|
let data_ptr_type = ty::mk_ptr(cx.tcx(), ty::mt {
|
|
ty: element_type,
|
|
mutbl: ast::MutImmutable
|
|
});
|
|
|
|
let element_type_metadata = type_metadata(cx, data_ptr_type, span);
|
|
|
|
return_if_metadata_created_in_meantime!(cx, unique_type_id);
|
|
|
|
let slice_llvm_type = type_of::type_of(cx, vec_type);
|
|
let slice_type_name = compute_debuginfo_type_name(cx, vec_type, true);
|
|
|
|
let member_llvm_types = slice_llvm_type.field_types();
|
|
assert!(slice_layout_is_correct(cx,
|
|
&member_llvm_types[..],
|
|
element_type));
|
|
let member_descriptions = [
|
|
MemberDescription {
|
|
name: "data_ptr".to_string(),
|
|
llvm_type: member_llvm_types[0],
|
|
type_metadata: element_type_metadata,
|
|
offset: ComputedMemberOffset,
|
|
flags: FLAGS_NONE
|
|
},
|
|
MemberDescription {
|
|
name: "length".to_string(),
|
|
llvm_type: member_llvm_types[1],
|
|
type_metadata: type_metadata(cx, cx.tcx().types.usize, span),
|
|
offset: ComputedMemberOffset,
|
|
flags: FLAGS_NONE
|
|
},
|
|
];
|
|
|
|
assert!(member_descriptions.len() == member_llvm_types.len());
|
|
|
|
let loc = span_start(cx, span);
|
|
let file_metadata = file_metadata(cx, &loc.file.name);
|
|
|
|
let metadata = composite_type_metadata(cx,
|
|
slice_llvm_type,
|
|
&slice_type_name[..],
|
|
unique_type_id,
|
|
&member_descriptions,
|
|
UNKNOWN_SCOPE_METADATA,
|
|
file_metadata,
|
|
span);
|
|
return MetadataCreationResult::new(metadata, false);
|
|
|
|
fn slice_layout_is_correct<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
member_llvm_types: &[Type],
|
|
element_type: Ty<'tcx>)
|
|
-> bool {
|
|
member_llvm_types.len() == 2 &&
|
|
member_llvm_types[0] == type_of::type_of(cx, element_type).ptr_to() &&
|
|
member_llvm_types[1] == cx.int_type()
|
|
}
|
|
}
|
|
|
|
fn subroutine_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
signature: &ty::PolyFnSig<'tcx>,
|
|
span: Span)
|
|
-> MetadataCreationResult
|
|
{
|
|
let signature = ty::erase_late_bound_regions(cx.tcx(), signature);
|
|
|
|
let mut signature_metadata: Vec<DIType> = Vec::with_capacity(signature.inputs.len() + 1);
|
|
|
|
// return type
|
|
signature_metadata.push(match signature.output {
|
|
ty::FnConverging(ret_ty) => match ret_ty.sty {
|
|
ty::ty_tup(ref tys) if tys.is_empty() => ptr::null_mut(),
|
|
_ => type_metadata(cx, ret_ty, span)
|
|
},
|
|
ty::FnDiverging => diverging_type_metadata(cx)
|
|
});
|
|
|
|
// regular arguments
|
|
for &argument_type in &signature.inputs {
|
|
signature_metadata.push(type_metadata(cx, argument_type, span));
|
|
}
|
|
|
|
return_if_metadata_created_in_meantime!(cx, unique_type_id);
|
|
|
|
return MetadataCreationResult::new(
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateSubroutineType(
|
|
DIB(cx),
|
|
UNKNOWN_FILE_METADATA,
|
|
create_DIArray(DIB(cx), &signature_metadata[..]))
|
|
},
|
|
false);
|
|
}
|
|
|
|
// FIXME(1563) This is all a bit of a hack because 'trait pointer' is an ill-
|
|
// defined concept. For the case of an actual trait pointer (i.e., Box<Trait>,
|
|
// &Trait), trait_object_type should be the whole thing (e.g, Box<Trait>) and
|
|
// trait_type should be the actual trait (e.g., Trait). Where the trait is part
|
|
// of a DST struct, there is no trait_object_type and the results of this
|
|
// function will be a little bit weird.
|
|
fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
trait_type: Ty<'tcx>,
|
|
trait_object_type: Option<Ty<'tcx>>,
|
|
unique_type_id: UniqueTypeId)
|
|
-> DIType {
|
|
// The implementation provided here is a stub. It makes sure that the trait
|
|
// type is assigned the correct name, size, namespace, and source location.
|
|
// But it does not describe the trait's methods.
|
|
|
|
let def_id = match trait_type.sty {
|
|
ty::ty_trait(ref data) => data.principal_def_id(),
|
|
_ => {
|
|
let pp_type_name = ppaux::ty_to_string(cx.tcx(), trait_type);
|
|
cx.sess().bug(&format!("debuginfo: Unexpected trait-object type in \
|
|
trait_pointer_metadata(): {}",
|
|
&pp_type_name[..]));
|
|
}
|
|
};
|
|
|
|
let trait_object_type = trait_object_type.unwrap_or(trait_type);
|
|
let trait_type_name =
|
|
compute_debuginfo_type_name(cx, trait_object_type, false);
|
|
|
|
let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id);
|
|
|
|
let trait_llvm_type = type_of::type_of(cx, trait_object_type);
|
|
|
|
composite_type_metadata(cx,
|
|
trait_llvm_type,
|
|
&trait_type_name[..],
|
|
unique_type_id,
|
|
&[],
|
|
containing_scope,
|
|
UNKNOWN_FILE_METADATA,
|
|
codemap::DUMMY_SP)
|
|
}
|
|
|
|
fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>,
|
|
usage_site_span: Span)
|
|
-> DIType {
|
|
// Get the unique type id of this type.
|
|
let unique_type_id = {
|
|
let mut type_map = debug_context(cx).type_map.borrow_mut();
|
|
// First, try to find the type in TypeMap. If we have seen it before, we
|
|
// can exit early here.
|
|
match type_map.find_metadata_for_type(t) {
|
|
Some(metadata) => {
|
|
return metadata;
|
|
},
|
|
None => {
|
|
// The Ty is not in the TypeMap but maybe we have already seen
|
|
// an equivalent type (e.g. only differing in region arguments).
|
|
// In order to find out, generate the unique type id and look
|
|
// that up.
|
|
let unique_type_id = type_map.get_unique_type_id_of_type(cx, t);
|
|
match type_map.find_metadata_for_unique_id(unique_type_id) {
|
|
Some(metadata) => {
|
|
// There is already an equivalent type in the TypeMap.
|
|
// Register this Ty as an alias in the cache and
|
|
// return the cached metadata.
|
|
type_map.register_type_with_metadata(cx, t, metadata);
|
|
return metadata;
|
|
},
|
|
None => {
|
|
// There really is no type metadata for this type, so
|
|
// proceed by creating it.
|
|
unique_type_id
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
debug!("type_metadata: {:?}", t);
|
|
|
|
let sty = &t.sty;
|
|
let MetadataCreationResult { metadata, already_stored_in_typemap } = match *sty {
|
|
ty::ty_bool |
|
|
ty::ty_char |
|
|
ty::ty_int(_) |
|
|
ty::ty_uint(_) |
|
|
ty::ty_float(_) => {
|
|
MetadataCreationResult::new(basic_type_metadata(cx, t), false)
|
|
}
|
|
ty::ty_tup(ref elements) if elements.is_empty() => {
|
|
MetadataCreationResult::new(basic_type_metadata(cx, t), false)
|
|
}
|
|
ty::ty_enum(def_id, _) => {
|
|
prepare_enum_metadata(cx, t, def_id, unique_type_id, usage_site_span).finalize(cx)
|
|
}
|
|
ty::ty_vec(typ, len) => {
|
|
fixed_vec_metadata(cx, unique_type_id, typ, len.map(|x| x as u64), usage_site_span)
|
|
}
|
|
ty::ty_str => {
|
|
fixed_vec_metadata(cx, unique_type_id, cx.tcx().types.i8, None, usage_site_span)
|
|
}
|
|
ty::ty_trait(..) => {
|
|
MetadataCreationResult::new(
|
|
trait_pointer_metadata(cx, t, None, unique_type_id),
|
|
false)
|
|
}
|
|
ty::ty_uniq(ty) | ty::ty_ptr(ty::mt{ty, ..}) | ty::ty_rptr(_, ty::mt{ty, ..}) => {
|
|
match ty.sty {
|
|
ty::ty_vec(typ, None) => {
|
|
vec_slice_metadata(cx, t, typ, unique_type_id, usage_site_span)
|
|
}
|
|
ty::ty_str => {
|
|
vec_slice_metadata(cx, t, cx.tcx().types.u8, unique_type_id, usage_site_span)
|
|
}
|
|
ty::ty_trait(..) => {
|
|
MetadataCreationResult::new(
|
|
trait_pointer_metadata(cx, ty, Some(t), unique_type_id),
|
|
false)
|
|
}
|
|
_ => {
|
|
let pointee_metadata = type_metadata(cx, ty, usage_site_span);
|
|
|
|
match debug_context(cx).type_map
|
|
.borrow()
|
|
.find_metadata_for_unique_id(unique_type_id) {
|
|
Some(metadata) => return metadata,
|
|
None => { /* proceed normally */ }
|
|
};
|
|
|
|
MetadataCreationResult::new(pointer_type_metadata(cx, t, pointee_metadata),
|
|
false)
|
|
}
|
|
}
|
|
}
|
|
ty::ty_bare_fn(_, ref barefnty) => {
|
|
subroutine_type_metadata(cx, unique_type_id, &barefnty.sig, usage_site_span)
|
|
}
|
|
ty::ty_closure(def_id, substs) => {
|
|
let typer = NormalizingClosureTyper::new(cx.tcx());
|
|
let sig = typer.closure_type(def_id, substs).sig;
|
|
subroutine_type_metadata(cx, unique_type_id, &sig, usage_site_span)
|
|
}
|
|
ty::ty_struct(def_id, substs) => {
|
|
prepare_struct_metadata(cx,
|
|
t,
|
|
def_id,
|
|
substs,
|
|
unique_type_id,
|
|
usage_site_span).finalize(cx)
|
|
}
|
|
ty::ty_tup(ref elements) => {
|
|
prepare_tuple_metadata(cx,
|
|
t,
|
|
&elements[..],
|
|
unique_type_id,
|
|
usage_site_span).finalize(cx)
|
|
}
|
|
_ => {
|
|
cx.sess().bug(&format!("debuginfo: unexpected type in type_metadata: {:?}",
|
|
sty))
|
|
}
|
|
};
|
|
|
|
{
|
|
let mut type_map = debug_context(cx).type_map.borrow_mut();
|
|
|
|
if already_stored_in_typemap {
|
|
// Also make sure that we already have a TypeMap entry entry for the unique type id.
|
|
let metadata_for_uid = match type_map.find_metadata_for_unique_id(unique_type_id) {
|
|
Some(metadata) => metadata,
|
|
None => {
|
|
let unique_type_id_str =
|
|
type_map.get_unique_type_id_as_string(unique_type_id);
|
|
let error_message = format!("Expected type metadata for unique \
|
|
type id '{}' to already be in \
|
|
the debuginfo::TypeMap but it \
|
|
was not. (Ty = {})",
|
|
&unique_type_id_str[..],
|
|
ppaux::ty_to_string(cx.tcx(), t));
|
|
cx.sess().span_bug(usage_site_span, &error_message[..]);
|
|
}
|
|
};
|
|
|
|
match type_map.find_metadata_for_type(t) {
|
|
Some(metadata) => {
|
|
if metadata != metadata_for_uid {
|
|
let unique_type_id_str =
|
|
type_map.get_unique_type_id_as_string(unique_type_id);
|
|
let error_message = format!("Mismatch between Ty and \
|
|
UniqueTypeId maps in \
|
|
debuginfo::TypeMap. \
|
|
UniqueTypeId={}, Ty={}",
|
|
&unique_type_id_str[..],
|
|
ppaux::ty_to_string(cx.tcx(), t));
|
|
cx.sess().span_bug(usage_site_span, &error_message[..]);
|
|
}
|
|
}
|
|
None => {
|
|
type_map.register_type_with_metadata(cx, t, metadata);
|
|
}
|
|
}
|
|
} else {
|
|
type_map.register_type_with_metadata(cx, t, metadata);
|
|
type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata);
|
|
}
|
|
}
|
|
|
|
metadata
|
|
}
|
|
|
|
struct MetadataCreationResult {
|
|
metadata: DIType,
|
|
already_stored_in_typemap: bool
|
|
}
|
|
|
|
impl MetadataCreationResult {
|
|
fn new(metadata: DIType, already_stored_in_typemap: bool) -> MetadataCreationResult {
|
|
MetadataCreationResult {
|
|
metadata: metadata,
|
|
already_stored_in_typemap: already_stored_in_typemap
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq)]
|
|
enum InternalDebugLocation {
|
|
KnownLocation { scope: DIScope, line: usize, col: usize },
|
|
UnknownLocation
|
|
}
|
|
|
|
impl InternalDebugLocation {
|
|
fn new(scope: DIScope, line: usize, col: usize) -> InternalDebugLocation {
|
|
KnownLocation {
|
|
scope: scope,
|
|
line: line,
|
|
col: col,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn set_debug_location(cx: &CrateContext, debug_location: InternalDebugLocation) {
|
|
if debug_location == debug_context(cx).current_debug_location.get() {
|
|
return;
|
|
}
|
|
|
|
let metadata_node;
|
|
|
|
match debug_location {
|
|
KnownLocation { scope, line, .. } => {
|
|
// Always set the column to zero like Clang and GCC
|
|
let col = UNKNOWN_COLUMN_NUMBER;
|
|
debug!("setting debug location to {} {}", line, col);
|
|
|
|
unsafe {
|
|
metadata_node = llvm::LLVMDIBuilderCreateDebugLocation(
|
|
debug_context(cx).llcontext,
|
|
line as c_uint,
|
|
col as c_uint,
|
|
scope,
|
|
ptr::null_mut());
|
|
}
|
|
}
|
|
UnknownLocation => {
|
|
debug!("clearing debug location ");
|
|
metadata_node = ptr::null_mut();
|
|
}
|
|
};
|
|
|
|
unsafe {
|
|
llvm::LLVMSetCurrentDebugLocation(cx.raw_builder(), metadata_node);
|
|
}
|
|
|
|
debug_context(cx).current_debug_location.set(debug_location);
|
|
}
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Type Names for Debug Info
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
// Compute the name of the type as it should be stored in debuginfo. Does not do
|
|
// any caching, i.e. calling the function twice with the same type will also do
|
|
// the work twice. The `qualified` parameter only affects the first level of the
|
|
// type name, further levels (i.e. type parameters) are always fully qualified.
|
|
fn compute_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>,
|
|
qualified: bool)
|
|
-> String {
|
|
let mut result = String::with_capacity(64);
|
|
push_debuginfo_type_name(cx, t, qualified, &mut result);
|
|
result
|
|
}
|
|
|
|
// Pushes the name of the type as it should be stored in debuginfo on the
|
|
// `output` String. See also compute_debuginfo_type_name().
|
|
fn push_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>,
|
|
qualified: bool,
|
|
output: &mut String) {
|
|
match t.sty {
|
|
ty::ty_bool => output.push_str("bool"),
|
|
ty::ty_char => output.push_str("char"),
|
|
ty::ty_str => output.push_str("str"),
|
|
ty::ty_int(ast::TyIs) => output.push_str("isize"),
|
|
ty::ty_int(ast::TyI8) => output.push_str("i8"),
|
|
ty::ty_int(ast::TyI16) => output.push_str("i16"),
|
|
ty::ty_int(ast::TyI32) => output.push_str("i32"),
|
|
ty::ty_int(ast::TyI64) => output.push_str("i64"),
|
|
ty::ty_uint(ast::TyUs) => output.push_str("usize"),
|
|
ty::ty_uint(ast::TyU8) => output.push_str("u8"),
|
|
ty::ty_uint(ast::TyU16) => output.push_str("u16"),
|
|
ty::ty_uint(ast::TyU32) => output.push_str("u32"),
|
|
ty::ty_uint(ast::TyU64) => output.push_str("u64"),
|
|
ty::ty_float(ast::TyF32) => output.push_str("f32"),
|
|
ty::ty_float(ast::TyF64) => output.push_str("f64"),
|
|
ty::ty_struct(def_id, substs) |
|
|
ty::ty_enum(def_id, substs) => {
|
|
push_item_name(cx, def_id, qualified, output);
|
|
push_type_params(cx, substs, output);
|
|
},
|
|
ty::ty_tup(ref component_types) => {
|
|
output.push('(');
|
|
for &component_type in component_types {
|
|
push_debuginfo_type_name(cx, component_type, true, output);
|
|
output.push_str(", ");
|
|
}
|
|
if !component_types.is_empty() {
|
|
output.pop();
|
|
output.pop();
|
|
}
|
|
output.push(')');
|
|
},
|
|
ty::ty_uniq(inner_type) => {
|
|
output.push_str("Box<");
|
|
push_debuginfo_type_name(cx, inner_type, true, output);
|
|
output.push('>');
|
|
},
|
|
ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => {
|
|
output.push('*');
|
|
match mutbl {
|
|
ast::MutImmutable => output.push_str("const "),
|
|
ast::MutMutable => output.push_str("mut "),
|
|
}
|
|
|
|
push_debuginfo_type_name(cx, inner_type, true, output);
|
|
},
|
|
ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => {
|
|
output.push('&');
|
|
if mutbl == ast::MutMutable {
|
|
output.push_str("mut ");
|
|
}
|
|
|
|
push_debuginfo_type_name(cx, inner_type, true, output);
|
|
},
|
|
ty::ty_vec(inner_type, optional_length) => {
|
|
output.push('[');
|
|
push_debuginfo_type_name(cx, inner_type, true, output);
|
|
|
|
match optional_length {
|
|
Some(len) => {
|
|
output.push_str(&format!("; {}", len));
|
|
}
|
|
None => { /* nothing to do */ }
|
|
};
|
|
|
|
output.push(']');
|
|
},
|
|
ty::ty_trait(ref trait_data) => {
|
|
let principal = ty::erase_late_bound_regions(cx.tcx(), &trait_data.principal);
|
|
push_item_name(cx, principal.def_id, false, output);
|
|
push_type_params(cx, principal.substs, output);
|
|
},
|
|
ty::ty_bare_fn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => {
|
|
if unsafety == ast::Unsafety::Unsafe {
|
|
output.push_str("unsafe ");
|
|
}
|
|
|
|
if abi != ::syntax::abi::Rust {
|
|
output.push_str("extern \"");
|
|
output.push_str(abi.name());
|
|
output.push_str("\" ");
|
|
}
|
|
|
|
output.push_str("fn(");
|
|
|
|
let sig = ty::erase_late_bound_regions(cx.tcx(), sig);
|
|
if !sig.inputs.is_empty() {
|
|
for ¶meter_type in &sig.inputs {
|
|
push_debuginfo_type_name(cx, parameter_type, true, output);
|
|
output.push_str(", ");
|
|
}
|
|
output.pop();
|
|
output.pop();
|
|
}
|
|
|
|
if sig.variadic {
|
|
if !sig.inputs.is_empty() {
|
|
output.push_str(", ...");
|
|
} else {
|
|
output.push_str("...");
|
|
}
|
|
}
|
|
|
|
output.push(')');
|
|
|
|
match sig.output {
|
|
ty::FnConverging(result_type) if ty::type_is_nil(result_type) => {}
|
|
ty::FnConverging(result_type) => {
|
|
output.push_str(" -> ");
|
|
push_debuginfo_type_name(cx, result_type, true, output);
|
|
}
|
|
ty::FnDiverging => {
|
|
output.push_str(" -> !");
|
|
}
|
|
}
|
|
},
|
|
ty::ty_closure(..) => {
|
|
output.push_str("closure");
|
|
}
|
|
ty::ty_err |
|
|
ty::ty_infer(_) |
|
|
ty::ty_projection(..) |
|
|
ty::ty_param(_) => {
|
|
cx.sess().bug(&format!("debuginfo: Trying to create type name for \
|
|
unexpected type: {}", ppaux::ty_to_string(cx.tcx(), t)));
|
|
}
|
|
}
|
|
|
|
fn push_item_name(cx: &CrateContext,
|
|
def_id: ast::DefId,
|
|
qualified: bool,
|
|
output: &mut String) {
|
|
ty::with_path(cx.tcx(), def_id, |path| {
|
|
if qualified {
|
|
if def_id.krate == ast::LOCAL_CRATE {
|
|
output.push_str(crate_root_namespace(cx));
|
|
output.push_str("::");
|
|
}
|
|
|
|
let mut path_element_count = 0;
|
|
for path_element in path {
|
|
let name = token::get_name(path_element.name());
|
|
output.push_str(&name);
|
|
output.push_str("::");
|
|
path_element_count += 1;
|
|
}
|
|
|
|
if path_element_count == 0 {
|
|
cx.sess().bug("debuginfo: Encountered empty item path!");
|
|
}
|
|
|
|
output.pop();
|
|
output.pop();
|
|
} else {
|
|
let name = token::get_name(path.last()
|
|
.expect("debuginfo: Empty item path?")
|
|
.name());
|
|
output.push_str(&name);
|
|
}
|
|
});
|
|
}
|
|
|
|
// Pushes the type parameters in the given `Substs` to the output string.
|
|
// This ignores region parameters, since they can't reliably be
|
|
// reconstructed for items from non-local crates. For local crates, this
|
|
// would be possible but with inlining and LTO we have to use the least
|
|
// common denominator - otherwise we would run into conflicts.
|
|
fn push_type_params<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
substs: &subst::Substs<'tcx>,
|
|
output: &mut String) {
|
|
if substs.types.is_empty() {
|
|
return;
|
|
}
|
|
|
|
output.push('<');
|
|
|
|
for &type_parameter in substs.types.iter() {
|
|
push_debuginfo_type_name(cx, type_parameter, true, output);
|
|
output.push_str(", ");
|
|
}
|
|
|
|
output.pop();
|
|
output.pop();
|
|
|
|
output.push('>');
|
|
}
|
|
}
|
|
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Namespace Handling
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
struct NamespaceTreeNode {
|
|
name: ast::Name,
|
|
scope: DIScope,
|
|
parent: Option<Weak<NamespaceTreeNode>>,
|
|
}
|
|
|
|
impl NamespaceTreeNode {
|
|
fn mangled_name_of_contained_item(&self, item_name: &str) -> String {
|
|
fn fill_nested(node: &NamespaceTreeNode, output: &mut String) {
|
|
match node.parent {
|
|
Some(ref parent) => fill_nested(&*parent.upgrade().unwrap(), output),
|
|
None => {}
|
|
}
|
|
let string = token::get_name(node.name);
|
|
output.push_str(&format!("{}", string.len()));
|
|
output.push_str(&string);
|
|
}
|
|
|
|
let mut name = String::from_str("_ZN");
|
|
fill_nested(self, &mut name);
|
|
name.push_str(&format!("{}", item_name.len()));
|
|
name.push_str(item_name);
|
|
name.push('E');
|
|
name
|
|
}
|
|
}
|
|
|
|
fn crate_root_namespace<'a>(cx: &'a CrateContext) -> &'a str {
|
|
&cx.link_meta().crate_name
|
|
}
|
|
|
|
fn namespace_for_item(cx: &CrateContext, def_id: ast::DefId) -> Rc<NamespaceTreeNode> {
|
|
ty::with_path(cx.tcx(), def_id, |path| {
|
|
// prepend crate name if not already present
|
|
let krate = if def_id.krate == ast::LOCAL_CRATE {
|
|
let crate_namespace_name = token::intern(crate_root_namespace(cx));
|
|
Some(ast_map::PathMod(crate_namespace_name))
|
|
} else {
|
|
None
|
|
};
|
|
let mut path = krate.into_iter().chain(path).peekable();
|
|
|
|
let mut current_key = Vec::new();
|
|
let mut parent_node: Option<Rc<NamespaceTreeNode>> = None;
|
|
|
|
// Create/Lookup namespace for each element of the path.
|
|
loop {
|
|
// Emulate a for loop so we can use peek below.
|
|
let path_element = match path.next() {
|
|
Some(e) => e,
|
|
None => break
|
|
};
|
|
// Ignore the name of the item (the last path element).
|
|
if path.peek().is_none() {
|
|
break;
|
|
}
|
|
|
|
let name = path_element.name();
|
|
current_key.push(name);
|
|
|
|
let existing_node = debug_context(cx).namespace_map.borrow()
|
|
.get(¤t_key).cloned();
|
|
let current_node = match existing_node {
|
|
Some(existing_node) => existing_node,
|
|
None => {
|
|
// create and insert
|
|
let parent_scope = match parent_node {
|
|
Some(ref node) => node.scope,
|
|
None => ptr::null_mut()
|
|
};
|
|
let namespace_name = token::get_name(name);
|
|
let namespace_name = CString::new(namespace_name.as_bytes()).unwrap();
|
|
let scope = unsafe {
|
|
llvm::LLVMDIBuilderCreateNameSpace(
|
|
DIB(cx),
|
|
parent_scope,
|
|
namespace_name.as_ptr(),
|
|
// cannot reconstruct file ...
|
|
ptr::null_mut(),
|
|
// ... or line information, but that's not so important.
|
|
0)
|
|
};
|
|
|
|
let node = Rc::new(NamespaceTreeNode {
|
|
name: name,
|
|
scope: scope,
|
|
parent: parent_node.map(|parent| parent.downgrade()),
|
|
});
|
|
|
|
debug_context(cx).namespace_map.borrow_mut()
|
|
.insert(current_key.clone(), node.clone());
|
|
|
|
node
|
|
}
|
|
};
|
|
|
|
parent_node = Some(current_node);
|
|
}
|
|
|
|
match parent_node {
|
|
Some(node) => node,
|
|
None => {
|
|
cx.sess().bug(&format!("debuginfo::namespace_for_item(): \
|
|
path too short for {:?}",
|
|
def_id));
|
|
}
|
|
}
|
|
})
|
|
}
|