752 lines
25 KiB
Rust
752 lines
25 KiB
Rust
// NB: transitionary, de-mode-ing.
|
|
#[forbid(deprecated_mode)];
|
|
/**
|
|
* Concurrency-enabled mechanisms for sharing mutable and/or immutable state
|
|
* between tasks.
|
|
*/
|
|
|
|
use private::{SharedMutableState, shared_mutable_state,
|
|
clone_shared_mutable_state, unwrap_shared_mutable_state,
|
|
get_shared_mutable_state, get_shared_immutable_state};
|
|
use sync::{Mutex, mutex_with_condvars,
|
|
RWlock, rwlock_with_condvars};
|
|
|
|
|
|
/// As sync::condvar, a mechanism for unlock-and-descheduling and signalling.
|
|
pub struct Condvar { is_mutex: bool, failed: &mut bool, cond: &sync::Condvar }
|
|
|
|
impl &Condvar {
|
|
/// Atomically exit the associated ARC and block until a signal is sent.
|
|
#[inline(always)]
|
|
fn wait() { self.wait_on(0) }
|
|
/**
|
|
* Atomically exit the associated ARC and block on a specified condvar
|
|
* until a signal is sent on that same condvar (as sync::cond.wait_on).
|
|
*
|
|
* wait() is equivalent to wait_on(0).
|
|
*/
|
|
#[inline(always)]
|
|
fn wait_on(condvar_id: uint) {
|
|
assert !*self.failed;
|
|
self.cond.wait_on(condvar_id);
|
|
// This is why we need to wrap sync::condvar.
|
|
check_poison(self.is_mutex, *self.failed);
|
|
}
|
|
/// Wake up a blocked task. Returns false if there was no blocked task.
|
|
#[inline(always)]
|
|
fn signal() -> bool { self.signal_on(0) }
|
|
/**
|
|
* Wake up a blocked task on a specified condvar (as
|
|
* sync::cond.signal_on). Returns false if there was no blocked task.
|
|
*/
|
|
#[inline(always)]
|
|
fn signal_on(condvar_id: uint) -> bool {
|
|
assert !*self.failed;
|
|
self.cond.signal_on(condvar_id)
|
|
}
|
|
/// Wake up all blocked tasks. Returns the number of tasks woken.
|
|
#[inline(always)]
|
|
fn broadcast() -> uint { self.broadcast_on(0) }
|
|
/**
|
|
* Wake up all blocked tasks on a specified condvar (as
|
|
* sync::cond.broadcast_on). Returns Returns the number of tasks woken.
|
|
*/
|
|
#[inline(always)]
|
|
fn broadcast_on(condvar_id: uint) -> uint {
|
|
assert !*self.failed;
|
|
self.cond.broadcast_on(condvar_id)
|
|
}
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Immutable ARC
|
|
****************************************************************************/
|
|
|
|
/// An atomically reference counted wrapper for shared immutable state.
|
|
struct ARC<T: Const Send> { x: SharedMutableState<T> }
|
|
|
|
/// Create an atomically reference counted wrapper.
|
|
pub fn ARC<T: Const Send>(data: T) -> ARC<T> {
|
|
ARC { x: unsafe { shared_mutable_state(move data) } }
|
|
}
|
|
|
|
/**
|
|
* Access the underlying data in an atomically reference counted
|
|
* wrapper.
|
|
*/
|
|
pub fn get<T: Const Send>(rc: &a/ARC<T>) -> &a/T {
|
|
unsafe { get_shared_immutable_state(&rc.x) }
|
|
}
|
|
|
|
/**
|
|
* Duplicate an atomically reference counted wrapper.
|
|
*
|
|
* The resulting two `arc` objects will point to the same underlying data
|
|
* object. However, one of the `arc` objects can be sent to another task,
|
|
* allowing them to share the underlying data.
|
|
*/
|
|
pub fn clone<T: Const Send>(rc: &ARC<T>) -> ARC<T> {
|
|
ARC { x: unsafe { clone_shared_mutable_state(&rc.x) } }
|
|
}
|
|
|
|
/**
|
|
* Retrieve the data back out of the ARC. This function blocks until the
|
|
* reference given to it is the last existing one, and then unwrap the data
|
|
* instead of destroying it.
|
|
*
|
|
* If multiple tasks call unwrap, all but the first will fail. Do not call
|
|
* unwrap from a task that holds another reference to the same ARC; it is
|
|
* guaranteed to deadlock.
|
|
*/
|
|
fn unwrap<T: Const Send>(rc: ARC<T>) -> T {
|
|
let ARC { x: x } = move rc;
|
|
unsafe { unwrap_shared_mutable_state(move x) }
|
|
}
|
|
|
|
impl<T: Const Send> ARC<T>: Clone {
|
|
fn clone(&self) -> ARC<T> {
|
|
clone(self)
|
|
}
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Mutex protected ARC (unsafe)
|
|
****************************************************************************/
|
|
|
|
#[doc(hidden)]
|
|
struct MutexARCInner<T: Send> { lock: Mutex, failed: bool, data: T }
|
|
/// An ARC with mutable data protected by a blocking mutex.
|
|
struct MutexARC<T: Send> { x: SharedMutableState<MutexARCInner<T>> }
|
|
|
|
/// Create a mutex-protected ARC with the supplied data.
|
|
pub fn MutexARC<T: Send>(user_data: T) -> MutexARC<T> {
|
|
mutex_arc_with_condvars(move user_data, 1)
|
|
}
|
|
/**
|
|
* Create a mutex-protected ARC with the supplied data and a specified number
|
|
* of condvars (as sync::mutex_with_condvars).
|
|
*/
|
|
pub fn mutex_arc_with_condvars<T: Send>(user_data: T,
|
|
num_condvars: uint) -> MutexARC<T> {
|
|
let data =
|
|
MutexARCInner { lock: mutex_with_condvars(num_condvars),
|
|
failed: false, data: move user_data };
|
|
MutexARC { x: unsafe { shared_mutable_state(move data) } }
|
|
}
|
|
|
|
impl<T: Send> MutexARC<T>: Clone {
|
|
/// Duplicate a mutex-protected ARC, as arc::clone.
|
|
fn clone(&self) -> MutexARC<T> {
|
|
// NB: Cloning the underlying mutex is not necessary. Its reference
|
|
// count would be exactly the same as the shared state's.
|
|
MutexARC { x: unsafe { clone_shared_mutable_state(&self.x) } }
|
|
}
|
|
}
|
|
|
|
impl<T: Send> &MutexARC<T> {
|
|
|
|
/**
|
|
* Access the underlying mutable data with mutual exclusion from other
|
|
* tasks. The argument closure will be run with the mutex locked; all
|
|
* other tasks wishing to access the data will block until the closure
|
|
* finishes running.
|
|
*
|
|
* The reason this function is 'unsafe' is because it is possible to
|
|
* construct a circular reference among multiple ARCs by mutating the
|
|
* underlying data. This creates potential for deadlock, but worse, this
|
|
* will guarantee a memory leak of all involved ARCs. Using mutex ARCs
|
|
* inside of other ARCs is safe in absence of circular references.
|
|
*
|
|
* If you wish to nest mutex_arcs, one strategy for ensuring safety at
|
|
* runtime is to add a "nesting level counter" inside the stored data, and
|
|
* when traversing the arcs, assert that they monotonically decrease.
|
|
*
|
|
* # Failure
|
|
*
|
|
* Failing while inside the ARC will unlock the ARC while unwinding, so
|
|
* that other tasks won't block forever. It will also poison the ARC:
|
|
* any tasks that subsequently try to access it (including those already
|
|
* blocked on the mutex) will also fail immediately.
|
|
*/
|
|
#[inline(always)]
|
|
unsafe fn access<U>(blk: fn(x: &mut T) -> U) -> U {
|
|
let state = unsafe { get_shared_mutable_state(&self.x) };
|
|
// Borrowck would complain about this if the function were not already
|
|
// unsafe. See borrow_rwlock, far below.
|
|
do (&state.lock).lock {
|
|
check_poison(true, state.failed);
|
|
let _z = PoisonOnFail(&mut state.failed);
|
|
blk(&mut state.data)
|
|
}
|
|
}
|
|
/// As access(), but with a condvar, as sync::mutex.lock_cond().
|
|
#[inline(always)]
|
|
unsafe fn access_cond<U>(blk: fn(x: &x/mut T, c: &c/Condvar) -> U) -> U {
|
|
let state = unsafe { get_shared_mutable_state(&self.x) };
|
|
do (&state.lock).lock_cond |cond| {
|
|
check_poison(true, state.failed);
|
|
let _z = PoisonOnFail(&mut state.failed);
|
|
blk(&mut state.data,
|
|
&Condvar { is_mutex: true, failed: &mut state.failed,
|
|
cond: cond })
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Retrieves the data, blocking until all other references are dropped,
|
|
* exactly as arc::unwrap.
|
|
*
|
|
* Will additionally fail if another task has failed while accessing the arc.
|
|
*/
|
|
// FIXME(#3724) make this a by-move method on the arc
|
|
pub fn unwrap_mutex_arc<T: Send>(arc: MutexARC<T>) -> T {
|
|
let MutexARC { x: x } = move arc;
|
|
let inner = unsafe { unwrap_shared_mutable_state(move x) };
|
|
let MutexARCInner { failed: failed, data: data, _ } = move inner;
|
|
if failed {
|
|
fail ~"Can't unwrap poisoned MutexARC - another task failed inside!"
|
|
}
|
|
move data
|
|
}
|
|
|
|
// Common code for {mutex.access,rwlock.write}{,_cond}.
|
|
#[inline(always)]
|
|
#[doc(hidden)]
|
|
fn check_poison(is_mutex: bool, failed: bool) {
|
|
if failed {
|
|
if is_mutex {
|
|
fail ~"Poisoned MutexARC - another task failed inside!";
|
|
} else {
|
|
fail ~"Poisoned rw_arc - another task failed inside!";
|
|
}
|
|
}
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
struct PoisonOnFail {
|
|
failed: &mut bool,
|
|
}
|
|
|
|
impl PoisonOnFail : Drop {
|
|
fn finalize(&self) {
|
|
/* assert !*self.failed; -- might be false in case of cond.wait() */
|
|
if task::failing() { *self.failed = true; }
|
|
}
|
|
}
|
|
|
|
fn PoisonOnFail(failed: &r/mut bool) -> PoisonOnFail/&r {
|
|
PoisonOnFail {
|
|
failed: failed
|
|
}
|
|
}
|
|
|
|
/****************************************************************************
|
|
* R/W lock protected ARC
|
|
****************************************************************************/
|
|
|
|
#[doc(hidden)]
|
|
struct RWARCInner<T: Const Send> { lock: RWlock, failed: bool, data: T }
|
|
/**
|
|
* A dual-mode ARC protected by a reader-writer lock. The data can be accessed
|
|
* mutably or immutably, and immutably-accessing tasks may run concurrently.
|
|
*
|
|
* Unlike mutex_arcs, rw_arcs are safe, because they cannot be nested.
|
|
*/
|
|
struct RWARC<T: Const Send> {
|
|
x: SharedMutableState<RWARCInner<T>>,
|
|
mut cant_nest: ()
|
|
}
|
|
|
|
/// Create a reader/writer ARC with the supplied data.
|
|
pub fn RWARC<T: Const Send>(user_data: T) -> RWARC<T> {
|
|
rw_arc_with_condvars(move user_data, 1)
|
|
}
|
|
/**
|
|
* Create a reader/writer ARC with the supplied data and a specified number
|
|
* of condvars (as sync::rwlock_with_condvars).
|
|
*/
|
|
pub fn rw_arc_with_condvars<T: Const Send>(user_data: T,
|
|
num_condvars: uint) -> RWARC<T> {
|
|
let data =
|
|
RWARCInner { lock: rwlock_with_condvars(num_condvars),
|
|
failed: false, data: move user_data };
|
|
RWARC { x: unsafe { shared_mutable_state(move data) }, cant_nest: () }
|
|
}
|
|
|
|
impl<T: Const Send> RWARC<T> {
|
|
/// Duplicate a rwlock-protected ARC, as arc::clone.
|
|
fn clone(&self) -> RWARC<T> {
|
|
RWARC { x: unsafe { clone_shared_mutable_state(&self.x) },
|
|
cant_nest: () }
|
|
}
|
|
|
|
}
|
|
|
|
impl<T: Const Send> &RWARC<T> {
|
|
/**
|
|
* Access the underlying data mutably. Locks the rwlock in write mode;
|
|
* other readers and writers will block.
|
|
*
|
|
* # Failure
|
|
*
|
|
* Failing while inside the ARC will unlock the ARC while unwinding, so
|
|
* that other tasks won't block forever. As MutexARC.access, it will also
|
|
* poison the ARC, so subsequent readers and writers will both also fail.
|
|
*/
|
|
#[inline(always)]
|
|
fn write<U>(blk: fn(x: &mut T) -> U) -> U {
|
|
let state = unsafe { get_shared_mutable_state(&self.x) };
|
|
do borrow_rwlock(state).write {
|
|
check_poison(false, state.failed);
|
|
let _z = PoisonOnFail(&mut state.failed);
|
|
blk(&mut state.data)
|
|
}
|
|
}
|
|
/// As write(), but with a condvar, as sync::rwlock.write_cond().
|
|
#[inline(always)]
|
|
fn write_cond<U>(blk: fn(x: &x/mut T, c: &c/Condvar) -> U) -> U {
|
|
let state = unsafe { get_shared_mutable_state(&self.x) };
|
|
do borrow_rwlock(state).write_cond |cond| {
|
|
check_poison(false, state.failed);
|
|
let _z = PoisonOnFail(&mut state.failed);
|
|
blk(&mut state.data,
|
|
&Condvar { is_mutex: false, failed: &mut state.failed,
|
|
cond: cond })
|
|
}
|
|
}
|
|
/**
|
|
* Access the underlying data immutably. May run concurrently with other
|
|
* reading tasks.
|
|
*
|
|
* # Failure
|
|
*
|
|
* Failing will unlock the ARC while unwinding. However, unlike all other
|
|
* access modes, this will not poison the ARC.
|
|
*/
|
|
fn read<U>(blk: fn(x: &T) -> U) -> U {
|
|
let state = unsafe { get_shared_immutable_state(&self.x) };
|
|
do (&state.lock).read {
|
|
check_poison(false, state.failed);
|
|
blk(&state.data)
|
|
}
|
|
}
|
|
|
|
/**
|
|
* As write(), but with the ability to atomically 'downgrade' the lock.
|
|
* See sync::rwlock.write_downgrade(). The RWWriteMode token must be used
|
|
* to obtain the &mut T, and can be transformed into a RWReadMode token by
|
|
* calling downgrade(), after which a &T can be obtained instead.
|
|
* ~~~
|
|
* do arc.write_downgrade |write_mode| {
|
|
* do (&write_mode).write_cond |state, condvar| {
|
|
* ... exclusive access with mutable state ...
|
|
* }
|
|
* let read_mode = arc.downgrade(write_mode);
|
|
* do (&read_mode).read |state| {
|
|
* ... shared access with immutable state ...
|
|
* }
|
|
* }
|
|
* ~~~
|
|
*/
|
|
fn write_downgrade<U>(blk: fn(v: RWWriteMode<T>) -> U) -> U {
|
|
let state = unsafe { get_shared_mutable_state(&self.x) };
|
|
do borrow_rwlock(state).write_downgrade |write_mode| {
|
|
check_poison(false, state.failed);
|
|
blk(RWWriteMode((&mut state.data, move write_mode,
|
|
PoisonOnFail(&mut state.failed))))
|
|
}
|
|
}
|
|
|
|
/// To be called inside of the write_downgrade block.
|
|
fn downgrade(token: RWWriteMode/&a<T>) -> RWReadMode/&a<T> {
|
|
// The rwlock should assert that the token belongs to us for us.
|
|
let state = unsafe { get_shared_immutable_state(&self.x) };
|
|
let RWWriteMode((data, t, _poison)) = move token;
|
|
// Let readers in
|
|
let new_token = (&state.lock).downgrade(move t);
|
|
// Whatever region the input reference had, it will be safe to use
|
|
// the same region for the output reference. (The only 'unsafe' part
|
|
// of this cast is removing the mutability.)
|
|
let new_data = unsafe { cast::transmute_immut(data) };
|
|
// Downgrade ensured the token belonged to us. Just a sanity check.
|
|
assert ptr::ref_eq(&state.data, new_data);
|
|
// Produce new token
|
|
RWReadMode((new_data, move new_token))
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Retrieves the data, blocking until all other references are dropped,
|
|
* exactly as arc::unwrap.
|
|
*
|
|
* Will additionally fail if another task has failed while accessing the arc
|
|
* in write mode.
|
|
*/
|
|
// FIXME(#3724) make this a by-move method on the arc
|
|
pub fn unwrap_rw_arc<T: Const Send>(arc: RWARC<T>) -> T {
|
|
let RWARC { x: x, _ } = move arc;
|
|
let inner = unsafe { unwrap_shared_mutable_state(move x) };
|
|
let RWARCInner { failed: failed, data: data, _ } = move inner;
|
|
if failed {
|
|
fail ~"Can't unwrap poisoned RWARC - another task failed inside!"
|
|
}
|
|
move data
|
|
}
|
|
|
|
// Borrowck rightly complains about immutably aliasing the rwlock in order to
|
|
// lock it. This wraps the unsafety, with the justification that the 'lock'
|
|
// field is never overwritten; only 'failed' and 'data'.
|
|
#[doc(hidden)]
|
|
fn borrow_rwlock<T: Const Send>(state: &r/mut RWARCInner<T>) -> &r/RWlock {
|
|
unsafe { cast::transmute_immut(&mut state.lock) }
|
|
}
|
|
|
|
// FIXME (#3154) ice with struct/&<T> prevents these from being structs.
|
|
|
|
/// The "write permission" token used for RWARC.write_downgrade().
|
|
pub enum RWWriteMode<T: Const Send> =
|
|
(&mut T, sync::RWlockWriteMode, PoisonOnFail);
|
|
/// The "read permission" token used for RWARC.write_downgrade().
|
|
pub enum RWReadMode<T:Const Send> = (&T, sync::RWlockReadMode);
|
|
|
|
impl<T: Const Send> &RWWriteMode<T> {
|
|
/// Access the pre-downgrade RWARC in write mode.
|
|
fn write<U>(blk: fn(x: &mut T) -> U) -> U {
|
|
match *self {
|
|
RWWriteMode((data, ref token, _)) => {
|
|
do token.write {
|
|
blk(data)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/// Access the pre-downgrade RWARC in write mode with a condvar.
|
|
fn write_cond<U>(blk: fn(x: &x/mut T, c: &c/Condvar) -> U) -> U {
|
|
match *self {
|
|
RWWriteMode((data, ref token, ref poison)) => {
|
|
do token.write_cond |cond| {
|
|
let cvar = Condvar {
|
|
is_mutex: false, failed: poison.failed,
|
|
cond: cond };
|
|
blk(data, &cvar)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Const Send> &RWReadMode<T> {
|
|
/// Access the post-downgrade rwlock in read mode.
|
|
fn read<U>(blk: fn(x: &T) -> U) -> U {
|
|
match *self {
|
|
RWReadMode((data, ref token)) => {
|
|
do token.read { blk(data) }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Tests
|
|
****************************************************************************/
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
#[legacy_exports];
|
|
use comm::*;
|
|
|
|
#[test]
|
|
fn manually_share_arc() {
|
|
let v = ~[1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
|
|
let arc_v = arc::ARC(v);
|
|
|
|
let (c, p) = pipes::stream();
|
|
|
|
do task::spawn() |move c| {
|
|
let p = pipes::PortSet();
|
|
c.send(p.chan());
|
|
|
|
let arc_v = p.recv();
|
|
|
|
let v = *arc::get::<~[int]>(&arc_v);
|
|
assert v[3] == 4;
|
|
};
|
|
|
|
let c = p.recv();
|
|
c.send(arc::clone(&arc_v));
|
|
|
|
assert (*arc::get(&arc_v))[2] == 3;
|
|
|
|
log(info, arc_v);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mutex_arc_condvar() {
|
|
let arc = ~MutexARC(false);
|
|
let arc2 = ~arc.clone();
|
|
let (c,p) = pipes::oneshot();
|
|
let (c,p) = (~mut Some(move c), ~mut Some(move p));
|
|
do task::spawn |move arc2, move p| {
|
|
// wait until parent gets in
|
|
pipes::recv_one(option::swap_unwrap(p));
|
|
do arc2.access_cond |state, cond| {
|
|
*state = true;
|
|
cond.signal();
|
|
}
|
|
}
|
|
do arc.access_cond |state, cond| {
|
|
pipes::send_one(option::swap_unwrap(c), ());
|
|
assert !*state;
|
|
while !*state {
|
|
cond.wait();
|
|
}
|
|
}
|
|
}
|
|
#[test] #[should_fail] #[ignore(cfg(windows))]
|
|
fn test_arc_condvar_poison() {
|
|
let arc = ~MutexARC(1);
|
|
let arc2 = ~arc.clone();
|
|
let (c,p) = pipes::stream();
|
|
|
|
do task::spawn_unlinked |move arc2, move p| {
|
|
let _ = p.recv();
|
|
do arc2.access_cond |one, cond| {
|
|
cond.signal();
|
|
assert *one == 0; // Parent should fail when it wakes up.
|
|
}
|
|
}
|
|
|
|
do arc.access_cond |one, cond| {
|
|
c.send(());
|
|
while *one == 1 {
|
|
cond.wait();
|
|
}
|
|
}
|
|
}
|
|
#[test] #[should_fail] #[ignore(cfg(windows))]
|
|
fn test_mutex_arc_poison() {
|
|
let arc = ~MutexARC(1);
|
|
let arc2 = ~arc.clone();
|
|
do task::try |move arc2| {
|
|
do arc2.access |one| {
|
|
assert *one == 2;
|
|
}
|
|
};
|
|
do arc.access |one| {
|
|
assert *one == 1;
|
|
}
|
|
}
|
|
#[test] #[should_fail] #[ignore(cfg(windows))]
|
|
fn test_mutex_arc_unwrap_poison() {
|
|
let arc = MutexARC(1);
|
|
let arc2 = ~(&arc).clone();
|
|
let (c,p) = pipes::stream();
|
|
do task::spawn |move c, move arc2| {
|
|
do arc2.access |one| {
|
|
c.send(());
|
|
assert *one == 2;
|
|
}
|
|
}
|
|
let _ = p.recv();
|
|
let one = unwrap_mutex_arc(move arc);
|
|
assert one == 1;
|
|
}
|
|
#[test] #[should_fail] #[ignore(cfg(windows))]
|
|
fn test_rw_arc_poison_wr() {
|
|
let arc = ~RWARC(1);
|
|
let arc2 = ~arc.clone();
|
|
do task::try |move arc2| {
|
|
do arc2.write |one| {
|
|
assert *one == 2;
|
|
}
|
|
};
|
|
do arc.read |one| {
|
|
assert *one == 1;
|
|
}
|
|
}
|
|
#[test] #[should_fail] #[ignore(cfg(windows))]
|
|
fn test_rw_arc_poison_ww() {
|
|
let arc = ~RWARC(1);
|
|
let arc2 = ~arc.clone();
|
|
do task::try |move arc2| {
|
|
do arc2.write |one| {
|
|
assert *one == 2;
|
|
}
|
|
};
|
|
do arc.write |one| {
|
|
assert *one == 1;
|
|
}
|
|
}
|
|
#[test] #[should_fail] #[ignore(cfg(windows))]
|
|
fn test_rw_arc_poison_dw() {
|
|
let arc = ~RWARC(1);
|
|
let arc2 = ~arc.clone();
|
|
do task::try |move arc2| {
|
|
do arc2.write_downgrade |write_mode| {
|
|
do (&write_mode).write |one| {
|
|
assert *one == 2;
|
|
}
|
|
}
|
|
};
|
|
do arc.write |one| {
|
|
assert *one == 1;
|
|
}
|
|
}
|
|
#[test] #[ignore(cfg(windows))]
|
|
fn test_rw_arc_no_poison_rr() {
|
|
let arc = ~RWARC(1);
|
|
let arc2 = ~arc.clone();
|
|
do task::try |move arc2| {
|
|
do arc2.read |one| {
|
|
assert *one == 2;
|
|
}
|
|
};
|
|
do arc.read |one| {
|
|
assert *one == 1;
|
|
}
|
|
}
|
|
#[test] #[ignore(cfg(windows))]
|
|
fn test_rw_arc_no_poison_rw() {
|
|
let arc = ~RWARC(1);
|
|
let arc2 = ~arc.clone();
|
|
do task::try |move arc2| {
|
|
do arc2.read |one| {
|
|
assert *one == 2;
|
|
}
|
|
};
|
|
do arc.write |one| {
|
|
assert *one == 1;
|
|
}
|
|
}
|
|
#[test] #[ignore(cfg(windows))]
|
|
fn test_rw_arc_no_poison_dr() {
|
|
let arc = ~RWARC(1);
|
|
let arc2 = ~arc.clone();
|
|
do task::try |move arc2| {
|
|
do arc2.write_downgrade |write_mode| {
|
|
let read_mode = arc2.downgrade(move write_mode);
|
|
do (&read_mode).read |one| {
|
|
assert *one == 2;
|
|
}
|
|
}
|
|
};
|
|
do arc.write |one| {
|
|
assert *one == 1;
|
|
}
|
|
}
|
|
#[test]
|
|
fn test_rw_arc() {
|
|
let arc = ~RWARC(0);
|
|
let arc2 = ~arc.clone();
|
|
let (c,p) = pipes::stream();
|
|
|
|
do task::spawn |move arc2, move c| {
|
|
do arc2.write |num| {
|
|
for 10.times {
|
|
let tmp = *num;
|
|
*num = -1;
|
|
task::yield();
|
|
*num = tmp + 1;
|
|
}
|
|
c.send(());
|
|
}
|
|
}
|
|
|
|
// Readers try to catch the writer in the act
|
|
let mut children = ~[];
|
|
for 5.times {
|
|
let arc3 = ~arc.clone();
|
|
do task::task().future_result(|+r| children.push(move r)).spawn
|
|
|move arc3| {
|
|
do arc3.read |num| {
|
|
assert *num >= 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Wait for children to pass their asserts
|
|
for vec::each(children) |r| { r.recv(); }
|
|
|
|
// Wait for writer to finish
|
|
p.recv();
|
|
do arc.read |num| { assert *num == 10; }
|
|
}
|
|
#[test]
|
|
fn test_rw_downgrade() {
|
|
// (1) A downgrader gets in write mode and does cond.wait.
|
|
// (2) A writer gets in write mode, sets state to 42, and does signal.
|
|
// (3) Downgrader wakes, sets state to 31337.
|
|
// (4) tells writer and all other readers to contend as it downgrades.
|
|
// (5) Writer attempts to set state back to 42, while downgraded task
|
|
// and all reader tasks assert that it's 31337.
|
|
let arc = ~RWARC(0);
|
|
|
|
// Reader tasks
|
|
let mut reader_convos = ~[];
|
|
for 10.times {
|
|
let ((rc1,rp1),(rc2,rp2)) = (pipes::stream(),pipes::stream());
|
|
reader_convos.push((move rc1, move rp2));
|
|
let arcn = ~arc.clone();
|
|
do task::spawn |move rp1, move rc2, move arcn| {
|
|
rp1.recv(); // wait for downgrader to give go-ahead
|
|
do arcn.read |state| {
|
|
assert *state == 31337;
|
|
rc2.send(());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Writer task
|
|
let arc2 = ~arc.clone();
|
|
let ((wc1,wp1),(wc2,wp2)) = (pipes::stream(),pipes::stream());
|
|
do task::spawn |move arc2, move wc2, move wp1| {
|
|
wp1.recv();
|
|
do arc2.write_cond |state, cond| {
|
|
assert *state == 0;
|
|
*state = 42;
|
|
cond.signal();
|
|
}
|
|
wp1.recv();
|
|
do arc2.write |state| {
|
|
// This shouldn't happen until after the downgrade read
|
|
// section, and all other readers, finish.
|
|
assert *state == 31337;
|
|
*state = 42;
|
|
}
|
|
wc2.send(());
|
|
}
|
|
|
|
// Downgrader (us)
|
|
do arc.write_downgrade |write_mode| {
|
|
do (&write_mode).write_cond |state, cond| {
|
|
wc1.send(()); // send to another writer who will wake us up
|
|
while *state == 0 {
|
|
cond.wait();
|
|
}
|
|
assert *state == 42;
|
|
*state = 31337;
|
|
// send to other readers
|
|
for vec::each(reader_convos) |x| {
|
|
match *x {
|
|
(ref rc, _) => rc.send(()),
|
|
}
|
|
}
|
|
}
|
|
let read_mode = arc.downgrade(move write_mode);
|
|
do (&read_mode).read |state| {
|
|
// complete handshake with other readers
|
|
for vec::each(reader_convos) |x| {
|
|
match *x {
|
|
(_, ref rp) => rp.recv(),
|
|
}
|
|
}
|
|
wc1.send(()); // tell writer to try again
|
|
assert *state == 31337;
|
|
}
|
|
}
|
|
|
|
wp2.recv(); // complete handshake with writer
|
|
}
|
|
}
|