009192b01b
...and remove it from `PointeeInfo`, which isn't meant for this. There are still various places (marked with FIXMEs) that assume all pointers have the same size and alignment. Fixing this requires parsing non-default address spaces in the data layout string, which will be done in a followup.
1744 lines
74 KiB
Rust
1744 lines
74 KiB
Rust
use std::borrow::Cow;
|
|
use std::cell::Cell;
|
|
use std::convert::TryFrom;
|
|
use std::ops::Deref;
|
|
|
|
use gccjit::{
|
|
BinaryOp,
|
|
Block,
|
|
ComparisonOp,
|
|
Context,
|
|
Function,
|
|
LValue,
|
|
RValue,
|
|
ToRValue,
|
|
Type,
|
|
UnaryOp,
|
|
};
|
|
use rustc_apfloat::{ieee, Float, Round, Status};
|
|
use rustc_codegen_ssa::MemFlags;
|
|
use rustc_codegen_ssa::common::{
|
|
AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind,
|
|
};
|
|
use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
|
|
use rustc_codegen_ssa::mir::place::PlaceRef;
|
|
use rustc_codegen_ssa::traits::{
|
|
BackendTypes,
|
|
BaseTypeMethods,
|
|
BuilderMethods,
|
|
ConstMethods,
|
|
DerivedTypeMethods,
|
|
LayoutTypeMethods,
|
|
HasCodegen,
|
|
OverflowOp,
|
|
StaticBuilderMethods,
|
|
};
|
|
use rustc_data_structures::fx::FxHashSet;
|
|
use rustc_middle::bug;
|
|
use rustc_middle::ty::{ParamEnv, Ty, TyCtxt};
|
|
use rustc_middle::ty::layout::{FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasParamEnv, HasTyCtxt, LayoutError, LayoutOfHelpers, TyAndLayout};
|
|
use rustc_span::Span;
|
|
use rustc_span::def_id::DefId;
|
|
use rustc_target::abi::{
|
|
self,
|
|
call::FnAbi,
|
|
Align,
|
|
HasDataLayout,
|
|
Size,
|
|
TargetDataLayout,
|
|
WrappingRange,
|
|
};
|
|
use rustc_target::spec::{HasTargetSpec, Target};
|
|
|
|
use crate::common::{SignType, TypeReflection, type_is_pointer};
|
|
use crate::context::CodegenCx;
|
|
use crate::intrinsic::llvm;
|
|
use crate::type_of::LayoutGccExt;
|
|
|
|
// TODO(antoyo)
|
|
type Funclet = ();
|
|
|
|
// TODO(antoyo): remove this variable.
|
|
static mut RETURN_VALUE_COUNT: usize = 0;
|
|
|
|
enum ExtremumOperation {
|
|
Max,
|
|
Min,
|
|
}
|
|
|
|
pub struct Builder<'a: 'gcc, 'gcc, 'tcx> {
|
|
pub cx: &'a CodegenCx<'gcc, 'tcx>,
|
|
pub block: Block<'gcc>,
|
|
stack_var_count: Cell<usize>,
|
|
}
|
|
|
|
impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> {
|
|
fn with_cx(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Self {
|
|
Builder {
|
|
cx,
|
|
block,
|
|
stack_var_count: Cell::new(0),
|
|
}
|
|
}
|
|
|
|
fn atomic_extremum(&mut self, operation: ExtremumOperation, dst: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering) -> RValue<'gcc> {
|
|
let size = src.get_type().get_size();
|
|
|
|
let func = self.current_func();
|
|
|
|
let load_ordering =
|
|
match order {
|
|
// TODO(antoyo): does this make sense?
|
|
AtomicOrdering::AcquireRelease | AtomicOrdering::Release => AtomicOrdering::Acquire,
|
|
_ => order,
|
|
};
|
|
let previous_value = self.atomic_load(dst.get_type(), dst, load_ordering, Size::from_bytes(size));
|
|
let previous_var = func.new_local(None, previous_value.get_type(), "previous_value");
|
|
let return_value = func.new_local(None, previous_value.get_type(), "return_value");
|
|
self.llbb().add_assignment(None, previous_var, previous_value);
|
|
self.llbb().add_assignment(None, return_value, previous_var.to_rvalue());
|
|
|
|
let while_block = func.new_block("while");
|
|
let after_block = func.new_block("after_while");
|
|
self.llbb().end_with_jump(None, while_block);
|
|
|
|
// NOTE: since jumps were added and compare_exchange doesn't expect this, the current block in the
|
|
// state need to be updated.
|
|
self.switch_to_block(while_block);
|
|
|
|
let comparison_operator =
|
|
match operation {
|
|
ExtremumOperation::Max => ComparisonOp::LessThan,
|
|
ExtremumOperation::Min => ComparisonOp::GreaterThan,
|
|
};
|
|
|
|
let cond1 = self.context.new_comparison(None, comparison_operator, previous_var.to_rvalue(), self.context.new_cast(None, src, previous_value.get_type()));
|
|
let compare_exchange = self.compare_exchange(dst, previous_var, src, order, load_ordering, false);
|
|
let cond2 = self.cx.context.new_unary_op(None, UnaryOp::LogicalNegate, compare_exchange.get_type(), compare_exchange);
|
|
let cond = self.cx.context.new_binary_op(None, BinaryOp::LogicalAnd, self.cx.bool_type, cond1, cond2);
|
|
|
|
while_block.end_with_conditional(None, cond, while_block, after_block);
|
|
|
|
// NOTE: since jumps were added in a place rustc does not expect, the current block in the
|
|
// state need to be updated.
|
|
self.switch_to_block(after_block);
|
|
|
|
return_value.to_rvalue()
|
|
}
|
|
|
|
fn compare_exchange(&self, dst: RValue<'gcc>, cmp: LValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering, failure_order: AtomicOrdering, weak: bool) -> RValue<'gcc> {
|
|
let size = src.get_type().get_size();
|
|
let compare_exchange = self.context.get_builtin_function(&format!("__atomic_compare_exchange_{}", size));
|
|
let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
|
|
let failure_order = self.context.new_rvalue_from_int(self.i32_type, failure_order.to_gcc());
|
|
let weak = self.context.new_rvalue_from_int(self.bool_type, weak as i32);
|
|
|
|
let void_ptr_type = self.context.new_type::<*mut ()>();
|
|
let volatile_void_ptr_type = void_ptr_type.make_volatile();
|
|
let dst = self.context.new_cast(None, dst, volatile_void_ptr_type);
|
|
let expected = self.context.new_cast(None, cmp.get_address(None), void_ptr_type);
|
|
|
|
// NOTE: not sure why, but we have the wrong type here.
|
|
let int_type = compare_exchange.get_param(2).to_rvalue().get_type();
|
|
let src = self.context.new_cast(None, src, int_type);
|
|
self.context.new_call(None, compare_exchange, &[dst, expected, src, weak, order, failure_order])
|
|
}
|
|
|
|
pub fn assign(&self, lvalue: LValue<'gcc>, value: RValue<'gcc>) {
|
|
self.llbb().add_assignment(None, lvalue, value);
|
|
}
|
|
|
|
fn check_call<'b>(&mut self, _typ: &str, func: Function<'gcc>, args: &'b [RValue<'gcc>]) -> Cow<'b, [RValue<'gcc>]> {
|
|
let mut all_args_match = true;
|
|
let mut param_types = vec![];
|
|
let param_count = func.get_param_count();
|
|
for (index, arg) in args.iter().enumerate().take(param_count) {
|
|
let param = func.get_param(index as i32);
|
|
let param = param.to_rvalue().get_type();
|
|
if param != arg.get_type() {
|
|
all_args_match = false;
|
|
}
|
|
param_types.push(param);
|
|
}
|
|
|
|
if all_args_match {
|
|
return Cow::Borrowed(args);
|
|
}
|
|
|
|
let casted_args: Vec<_> = param_types
|
|
.into_iter()
|
|
.zip(args.iter())
|
|
.enumerate()
|
|
.map(|(_i, (expected_ty, &actual_val))| {
|
|
let actual_ty = actual_val.get_type();
|
|
if expected_ty != actual_ty {
|
|
self.bitcast(actual_val, expected_ty)
|
|
}
|
|
else {
|
|
actual_val
|
|
}
|
|
})
|
|
.collect();
|
|
|
|
Cow::Owned(casted_args)
|
|
}
|
|
|
|
fn check_ptr_call<'b>(&mut self, _typ: &str, func_ptr: RValue<'gcc>, args: &'b [RValue<'gcc>]) -> Cow<'b, [RValue<'gcc>]> {
|
|
let mut all_args_match = true;
|
|
let mut param_types = vec![];
|
|
let gcc_func = func_ptr.get_type().dyncast_function_ptr_type().expect("function ptr");
|
|
for (index, arg) in args.iter().enumerate().take(gcc_func.get_param_count()) {
|
|
let param = gcc_func.get_param_type(index);
|
|
if param != arg.get_type() {
|
|
all_args_match = false;
|
|
}
|
|
param_types.push(param);
|
|
}
|
|
|
|
let mut on_stack_param_indices = FxHashSet::default();
|
|
if let Some(indices) = self.on_stack_params.borrow().get(&gcc_func) {
|
|
on_stack_param_indices = indices.clone();
|
|
}
|
|
|
|
if all_args_match {
|
|
return Cow::Borrowed(args);
|
|
}
|
|
|
|
let func_name = format!("{:?}", func_ptr);
|
|
|
|
let casted_args: Vec<_> = param_types
|
|
.into_iter()
|
|
.zip(args.iter())
|
|
.enumerate()
|
|
.map(|(index, (expected_ty, &actual_val))| {
|
|
if llvm::ignore_arg_cast(&func_name, index, args.len()) {
|
|
return actual_val;
|
|
}
|
|
|
|
let actual_ty = actual_val.get_type();
|
|
if expected_ty != actual_ty {
|
|
if !actual_ty.is_vector() && !expected_ty.is_vector() && actual_ty.is_integral() && expected_ty.is_integral() && actual_ty.get_size() != expected_ty.get_size() {
|
|
self.context.new_cast(None, actual_val, expected_ty)
|
|
}
|
|
else if on_stack_param_indices.contains(&index) {
|
|
actual_val.dereference(None).to_rvalue()
|
|
}
|
|
else {
|
|
assert!(!((actual_ty.is_vector() && !expected_ty.is_vector()) || (!actual_ty.is_vector() && expected_ty.is_vector())), "{:?} ({}) -> {:?} ({}), index: {:?}[{}]", actual_ty, actual_ty.is_vector(), expected_ty, expected_ty.is_vector(), func_ptr, index);
|
|
// TODO(antoyo): perhaps use __builtin_convertvector for vector casting.
|
|
self.bitcast(actual_val, expected_ty)
|
|
}
|
|
}
|
|
else {
|
|
actual_val
|
|
}
|
|
})
|
|
.collect();
|
|
|
|
Cow::Owned(casted_args)
|
|
}
|
|
|
|
fn check_store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> {
|
|
let dest_ptr_ty = self.cx.val_ty(ptr).make_pointer(); // TODO(antoyo): make sure make_pointer() is okay here.
|
|
let stored_ty = self.cx.val_ty(val);
|
|
let stored_ptr_ty = self.cx.type_ptr_to(stored_ty);
|
|
|
|
if dest_ptr_ty == stored_ptr_ty {
|
|
ptr
|
|
}
|
|
else {
|
|
self.bitcast(ptr, stored_ptr_ty)
|
|
}
|
|
}
|
|
|
|
pub fn current_func(&self) -> Function<'gcc> {
|
|
self.block.get_function()
|
|
}
|
|
|
|
fn function_call(&mut self, func: RValue<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> {
|
|
// TODO(antoyo): remove when the API supports a different type for functions.
|
|
let func: Function<'gcc> = self.cx.rvalue_as_function(func);
|
|
let args = self.check_call("call", func, args);
|
|
|
|
// gccjit requires to use the result of functions, even when it's not used.
|
|
// That's why we assign the result to a local or call add_eval().
|
|
let return_type = func.get_return_type();
|
|
let void_type = self.context.new_type::<()>();
|
|
let current_func = self.block.get_function();
|
|
if return_type != void_type {
|
|
unsafe { RETURN_VALUE_COUNT += 1 };
|
|
let result = current_func.new_local(None, return_type, &format!("returnValue{}", unsafe { RETURN_VALUE_COUNT }));
|
|
self.block.add_assignment(None, result, self.cx.context.new_call(None, func, &args));
|
|
result.to_rvalue()
|
|
}
|
|
else {
|
|
self.block.add_eval(None, self.cx.context.new_call(None, func, &args));
|
|
// Return dummy value when not having return value.
|
|
self.context.new_rvalue_from_long(self.isize_type, 0)
|
|
}
|
|
}
|
|
|
|
fn function_ptr_call(&mut self, func_ptr: RValue<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> {
|
|
let args = self.check_ptr_call("call", func_ptr, args);
|
|
|
|
// gccjit requires to use the result of functions, even when it's not used.
|
|
// That's why we assign the result to a local or call add_eval().
|
|
let gcc_func = func_ptr.get_type().dyncast_function_ptr_type().expect("function ptr");
|
|
let return_type = gcc_func.get_return_type();
|
|
let void_type = self.context.new_type::<()>();
|
|
let current_func = self.block.get_function();
|
|
|
|
if return_type != void_type {
|
|
unsafe { RETURN_VALUE_COUNT += 1 };
|
|
let result = current_func.new_local(None, return_type, &format!("ptrReturnValue{}", unsafe { RETURN_VALUE_COUNT }));
|
|
let func_name = format!("{:?}", func_ptr);
|
|
let args = llvm::adjust_intrinsic_arguments(&self, gcc_func, args, &func_name);
|
|
self.block.add_assignment(None, result, self.cx.context.new_call_through_ptr(None, func_ptr, &args));
|
|
result.to_rvalue()
|
|
}
|
|
else {
|
|
#[cfg(not(feature="master"))]
|
|
if gcc_func.get_param_count() == 0 {
|
|
// FIXME(antoyo): As a temporary workaround for unsupported LLVM intrinsics.
|
|
self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &[]));
|
|
}
|
|
else {
|
|
self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &args));
|
|
}
|
|
#[cfg(feature="master")]
|
|
self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &args));
|
|
// Return dummy value when not having return value.
|
|
let result = current_func.new_local(None, self.isize_type, "dummyValueThatShouldNeverBeUsed");
|
|
self.block.add_assignment(None, result, self.context.new_rvalue_from_long(self.isize_type, 0));
|
|
result.to_rvalue()
|
|
}
|
|
}
|
|
|
|
pub fn overflow_call(&self, func: Function<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> {
|
|
// gccjit requires to use the result of functions, even when it's not used.
|
|
// That's why we assign the result to a local.
|
|
let return_type = self.context.new_type::<bool>();
|
|
let current_func = self.block.get_function();
|
|
// TODO(antoyo): return the new_call() directly? Since the overflow function has no side-effects.
|
|
unsafe { RETURN_VALUE_COUNT += 1 };
|
|
let result = current_func.new_local(None, return_type, &format!("overflowReturnValue{}", unsafe { RETURN_VALUE_COUNT }));
|
|
self.block.add_assignment(None, result, self.cx.context.new_call(None, func, &args));
|
|
result.to_rvalue()
|
|
}
|
|
}
|
|
|
|
impl<'gcc, 'tcx> HasCodegen<'tcx> for Builder<'_, 'gcc, 'tcx> {
|
|
type CodegenCx = CodegenCx<'gcc, 'tcx>;
|
|
}
|
|
|
|
impl<'tcx> HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> {
|
|
fn tcx(&self) -> TyCtxt<'tcx> {
|
|
self.cx.tcx()
|
|
}
|
|
}
|
|
|
|
impl HasDataLayout for Builder<'_, '_, '_> {
|
|
fn data_layout(&self) -> &TargetDataLayout {
|
|
self.cx.data_layout()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> LayoutOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
|
|
type LayoutOfResult = TyAndLayout<'tcx>;
|
|
|
|
#[inline]
|
|
fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! {
|
|
self.cx.handle_layout_err(err, span, ty)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> FnAbiOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
|
|
type FnAbiOfResult = &'tcx FnAbi<'tcx, Ty<'tcx>>;
|
|
|
|
#[inline]
|
|
fn handle_fn_abi_err(
|
|
&self,
|
|
err: FnAbiError<'tcx>,
|
|
span: Span,
|
|
fn_abi_request: FnAbiRequest<'tcx>,
|
|
) -> ! {
|
|
self.cx.handle_fn_abi_err(err, span, fn_abi_request)
|
|
}
|
|
}
|
|
|
|
impl<'gcc, 'tcx> Deref for Builder<'_, 'gcc, 'tcx> {
|
|
type Target = CodegenCx<'gcc, 'tcx>;
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
self.cx
|
|
}
|
|
}
|
|
|
|
impl<'gcc, 'tcx> BackendTypes for Builder<'_, 'gcc, 'tcx> {
|
|
type Value = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Value;
|
|
type Function = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Function;
|
|
type BasicBlock = <CodegenCx<'gcc, 'tcx> as BackendTypes>::BasicBlock;
|
|
type Type = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Type;
|
|
type Funclet = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Funclet;
|
|
|
|
type DIScope = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIScope;
|
|
type DILocation = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DILocation;
|
|
type DIVariable = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIVariable;
|
|
}
|
|
|
|
impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> {
|
|
fn build(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Self {
|
|
Builder::with_cx(cx, block)
|
|
}
|
|
|
|
fn llbb(&self) -> Block<'gcc> {
|
|
self.block
|
|
}
|
|
|
|
fn append_block(cx: &'a CodegenCx<'gcc, 'tcx>, func: RValue<'gcc>, name: &str) -> Block<'gcc> {
|
|
let func = cx.rvalue_as_function(func);
|
|
func.new_block(name)
|
|
}
|
|
|
|
fn append_sibling_block(&mut self, name: &str) -> Block<'gcc> {
|
|
let func = self.current_func();
|
|
func.new_block(name)
|
|
}
|
|
|
|
fn switch_to_block(&mut self, block: Self::BasicBlock) {
|
|
self.block = block;
|
|
}
|
|
|
|
fn ret_void(&mut self) {
|
|
self.llbb().end_with_void_return(None)
|
|
}
|
|
|
|
fn ret(&mut self, value: RValue<'gcc>) {
|
|
let value =
|
|
if self.structs_as_pointer.borrow().contains(&value) {
|
|
// NOTE: hack to workaround a limitation of the rustc API: see comment on
|
|
// CodegenCx.structs_as_pointer
|
|
value.dereference(None).to_rvalue()
|
|
}
|
|
else {
|
|
value
|
|
};
|
|
self.llbb().end_with_return(None, value);
|
|
}
|
|
|
|
fn br(&mut self, dest: Block<'gcc>) {
|
|
self.llbb().end_with_jump(None, dest)
|
|
}
|
|
|
|
fn cond_br(&mut self, cond: RValue<'gcc>, then_block: Block<'gcc>, else_block: Block<'gcc>) {
|
|
self.llbb().end_with_conditional(None, cond, then_block, else_block)
|
|
}
|
|
|
|
fn switch(&mut self, value: RValue<'gcc>, default_block: Block<'gcc>, cases: impl ExactSizeIterator<Item = (u128, Block<'gcc>)>) {
|
|
let mut gcc_cases = vec![];
|
|
let typ = self.val_ty(value);
|
|
for (on_val, dest) in cases {
|
|
let on_val = self.const_uint_big(typ, on_val);
|
|
gcc_cases.push(self.context.new_case(on_val, on_val, dest));
|
|
}
|
|
self.block.end_with_switch(None, value, default_block, &gcc_cases);
|
|
}
|
|
|
|
fn invoke(
|
|
&mut self,
|
|
typ: Type<'gcc>,
|
|
fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
|
|
func: RValue<'gcc>,
|
|
args: &[RValue<'gcc>],
|
|
then: Block<'gcc>,
|
|
catch: Block<'gcc>,
|
|
_funclet: Option<&Funclet>,
|
|
) -> RValue<'gcc> {
|
|
// TODO(bjorn3): Properly implement unwinding.
|
|
let call_site = self.call(typ, None, func, args, None);
|
|
let condition = self.context.new_rvalue_from_int(self.bool_type, 1);
|
|
self.llbb().end_with_conditional(None, condition, then, catch);
|
|
if let Some(_fn_abi) = fn_abi {
|
|
// TODO(bjorn3): Apply function attributes
|
|
}
|
|
call_site
|
|
}
|
|
|
|
fn unreachable(&mut self) {
|
|
let func = self.context.get_builtin_function("__builtin_unreachable");
|
|
self.block.add_eval(None, self.context.new_call(None, func, &[]));
|
|
let return_type = self.block.get_function().get_return_type();
|
|
let void_type = self.context.new_type::<()>();
|
|
if return_type == void_type {
|
|
self.block.end_with_void_return(None)
|
|
}
|
|
else {
|
|
let return_value = self.current_func()
|
|
.new_local(None, return_type, "unreachableReturn");
|
|
self.block.end_with_return(None, return_value)
|
|
}
|
|
}
|
|
|
|
fn add(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_add(a, b)
|
|
}
|
|
|
|
fn fadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
a + b
|
|
}
|
|
|
|
fn sub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_sub(a, b)
|
|
}
|
|
|
|
fn fsub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
a - b
|
|
}
|
|
|
|
fn mul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_mul(a, b)
|
|
}
|
|
|
|
fn fmul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
a * b
|
|
}
|
|
|
|
fn udiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_udiv(a, b)
|
|
}
|
|
|
|
fn exactudiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
// TODO(antoyo): poison if not exact.
|
|
let a_type = a.get_type().to_unsigned(self);
|
|
let a = self.gcc_int_cast(a, a_type);
|
|
let b_type = b.get_type().to_unsigned(self);
|
|
let b = self.gcc_int_cast(b, b_type);
|
|
a / b
|
|
}
|
|
|
|
fn sdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_sdiv(a, b)
|
|
}
|
|
|
|
fn exactsdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
// TODO(antoyo): poison if not exact.
|
|
// FIXME(antoyo): rustc_codegen_ssa::mir::intrinsic uses different types for a and b but they
|
|
// should be the same.
|
|
let typ = a.get_type().to_signed(self);
|
|
let b = self.context.new_cast(None, b, typ);
|
|
a / b
|
|
}
|
|
|
|
fn fdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
a / b
|
|
}
|
|
|
|
fn urem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_urem(a, b)
|
|
}
|
|
|
|
fn srem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_srem(a, b)
|
|
}
|
|
|
|
fn frem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
if a.get_type().is_compatible_with(self.cx.float_type) {
|
|
let fmodf = self.context.get_builtin_function("fmodf");
|
|
// FIXME(antoyo): this seems to produce the wrong result.
|
|
return self.context.new_call(None, fmodf, &[a, b]);
|
|
}
|
|
assert_eq!(a.get_type().unqualified(), self.cx.double_type);
|
|
|
|
let fmod = self.context.get_builtin_function("fmod");
|
|
return self.context.new_call(None, fmod, &[a, b]);
|
|
}
|
|
|
|
fn shl(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_shl(a, b)
|
|
}
|
|
|
|
fn lshr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_lshr(a, b)
|
|
}
|
|
|
|
fn ashr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
// TODO(antoyo): check whether behavior is an arithmetic shift for >> .
|
|
// It seems to be if the value is signed.
|
|
self.gcc_lshr(a, b)
|
|
}
|
|
|
|
fn and(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_and(a, b)
|
|
}
|
|
|
|
fn or(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.cx.gcc_or(a, b)
|
|
}
|
|
|
|
fn xor(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_xor(a, b)
|
|
}
|
|
|
|
fn neg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_neg(a)
|
|
}
|
|
|
|
fn fneg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.cx.context.new_unary_op(None, UnaryOp::Minus, a.get_type(), a)
|
|
}
|
|
|
|
fn not(&mut self, a: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_not(a)
|
|
}
|
|
|
|
fn unchecked_sadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
a + b
|
|
}
|
|
|
|
fn unchecked_uadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_add(a, b)
|
|
}
|
|
|
|
fn unchecked_ssub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
a - b
|
|
}
|
|
|
|
fn unchecked_usub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
// TODO(antoyo): should generate poison value?
|
|
self.gcc_sub(a, b)
|
|
}
|
|
|
|
fn unchecked_smul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
a * b
|
|
}
|
|
|
|
fn unchecked_umul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
|
|
a * b
|
|
}
|
|
|
|
fn fadd_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn fsub_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn fmul_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn fdiv_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn frem_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn checked_binop(&mut self, oop: OverflowOp, typ: Ty<'_>, lhs: Self::Value, rhs: Self::Value) -> (Self::Value, Self::Value) {
|
|
self.gcc_checked_binop(oop, typ, lhs, rhs)
|
|
}
|
|
|
|
fn alloca(&mut self, ty: Type<'gcc>, align: Align) -> RValue<'gcc> {
|
|
// FIXME(antoyo): this check that we don't call get_aligned() a second time on a type.
|
|
// Ideally, we shouldn't need to do this check.
|
|
let aligned_type =
|
|
if ty == self.cx.u128_type || ty == self.cx.i128_type {
|
|
ty
|
|
}
|
|
else {
|
|
ty.get_aligned(align.bytes())
|
|
};
|
|
// TODO(antoyo): It might be better to return a LValue, but fixing the rustc API is non-trivial.
|
|
self.stack_var_count.set(self.stack_var_count.get() + 1);
|
|
self.current_func().new_local(None, aligned_type, &format!("stack_var_{}", self.stack_var_count.get())).get_address(None)
|
|
}
|
|
|
|
fn byte_array_alloca(&mut self, _len: RValue<'gcc>, _align: Align) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn load(&mut self, pointee_ty: Type<'gcc>, ptr: RValue<'gcc>, _align: Align) -> RValue<'gcc> {
|
|
let block = self.llbb();
|
|
let function = block.get_function();
|
|
// NOTE: instead of returning the dereference here, we have to assign it to a variable in
|
|
// the current basic block. Otherwise, it could be used in another basic block, causing a
|
|
// dereference after a drop, for instance.
|
|
// TODO(antoyo): handle align of the load instruction.
|
|
let ptr = self.context.new_cast(None, ptr, pointee_ty.make_pointer());
|
|
let deref = ptr.dereference(None).to_rvalue();
|
|
unsafe { RETURN_VALUE_COUNT += 1 };
|
|
let loaded_value = function.new_local(None, pointee_ty, &format!("loadedValue{}", unsafe { RETURN_VALUE_COUNT }));
|
|
block.add_assignment(None, loaded_value, deref);
|
|
loaded_value.to_rvalue()
|
|
}
|
|
|
|
fn volatile_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> {
|
|
// TODO(antoyo): use ty.
|
|
let ptr = self.context.new_cast(None, ptr, ptr.get_type().make_volatile());
|
|
ptr.dereference(None).to_rvalue()
|
|
}
|
|
|
|
fn atomic_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>, order: AtomicOrdering, size: Size) -> RValue<'gcc> {
|
|
// TODO(antoyo): use ty.
|
|
// TODO(antoyo): handle alignment.
|
|
let atomic_load = self.context.get_builtin_function(&format!("__atomic_load_{}", size.bytes()));
|
|
let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
|
|
|
|
let volatile_const_void_ptr_type = self.context.new_type::<()>()
|
|
.make_const()
|
|
.make_volatile()
|
|
.make_pointer();
|
|
let ptr = self.context.new_cast(None, ptr, volatile_const_void_ptr_type);
|
|
self.context.new_call(None, atomic_load, &[ptr, ordering])
|
|
}
|
|
|
|
fn load_operand(&mut self, place: PlaceRef<'tcx, RValue<'gcc>>) -> OperandRef<'tcx, RValue<'gcc>> {
|
|
assert_eq!(place.llextra.is_some(), place.layout.is_unsized());
|
|
|
|
if place.layout.is_zst() {
|
|
return OperandRef::new_zst(self, place.layout);
|
|
}
|
|
|
|
fn scalar_load_metadata<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, load: RValue<'gcc>, scalar: &abi::Scalar) {
|
|
let vr = scalar.valid_range(bx);
|
|
match scalar.primitive() {
|
|
abi::Int(..) => {
|
|
if !scalar.is_always_valid(bx) {
|
|
bx.range_metadata(load, vr);
|
|
}
|
|
}
|
|
abi::Pointer(_) if vr.start < vr.end && !vr.contains(0) => {
|
|
bx.nonnull_metadata(load);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
let val =
|
|
if let Some(llextra) = place.llextra {
|
|
OperandValue::Ref(place.llval, Some(llextra), place.align)
|
|
}
|
|
else if place.layout.is_gcc_immediate() {
|
|
let load = self.load(
|
|
place.layout.gcc_type(self, false),
|
|
place.llval,
|
|
place.align,
|
|
);
|
|
if let abi::Abi::Scalar(ref scalar) = place.layout.abi {
|
|
scalar_load_metadata(self, load, scalar);
|
|
}
|
|
OperandValue::Immediate(self.to_immediate(load, place.layout))
|
|
}
|
|
else if let abi::Abi::ScalarPair(ref a, ref b) = place.layout.abi {
|
|
let b_offset = a.size(self).align_to(b.align(self).abi);
|
|
let pair_type = place.layout.gcc_type(self, false);
|
|
|
|
let mut load = |i, scalar: &abi::Scalar, align| {
|
|
let llptr = self.struct_gep(pair_type, place.llval, i as u64);
|
|
let llty = place.layout.scalar_pair_element_gcc_type(self, i, false);
|
|
let load = self.load(llty, llptr, align);
|
|
scalar_load_metadata(self, load, scalar);
|
|
if scalar.is_bool() { self.trunc(load, self.type_i1()) } else { load }
|
|
};
|
|
|
|
OperandValue::Pair(
|
|
load(0, a, place.align),
|
|
load(1, b, place.align.restrict_for_offset(b_offset)),
|
|
)
|
|
}
|
|
else {
|
|
OperandValue::Ref(place.llval, None, place.align)
|
|
};
|
|
|
|
OperandRef { val, layout: place.layout }
|
|
}
|
|
|
|
fn write_operand_repeatedly(&mut self, cg_elem: OperandRef<'tcx, RValue<'gcc>>, count: u64, dest: PlaceRef<'tcx, RValue<'gcc>>) {
|
|
let zero = self.const_usize(0);
|
|
let count = self.const_usize(count);
|
|
let start = dest.project_index(self, zero).llval;
|
|
let end = dest.project_index(self, count).llval;
|
|
|
|
let header_bb = self.append_sibling_block("repeat_loop_header");
|
|
let body_bb = self.append_sibling_block("repeat_loop_body");
|
|
let next_bb = self.append_sibling_block("repeat_loop_next");
|
|
|
|
let ptr_type = start.get_type();
|
|
let current = self.llbb().get_function().new_local(None, ptr_type, "loop_var");
|
|
let current_val = current.to_rvalue();
|
|
self.assign(current, start);
|
|
|
|
self.br(header_bb);
|
|
|
|
self.switch_to_block(header_bb);
|
|
let keep_going = self.icmp(IntPredicate::IntNE, current_val, end);
|
|
self.cond_br(keep_going, body_bb, next_bb);
|
|
|
|
self.switch_to_block(body_bb);
|
|
let align = dest.align.restrict_for_offset(dest.layout.field(self.cx(), 0).size);
|
|
cg_elem.val.store(self, PlaceRef::new_sized_aligned(current_val, cg_elem.layout, align));
|
|
|
|
let next = self.inbounds_gep(self.backend_type(cg_elem.layout), current.to_rvalue(), &[self.const_usize(1)]);
|
|
self.llbb().add_assignment(None, current, next);
|
|
self.br(header_bb);
|
|
|
|
self.switch_to_block(next_bb);
|
|
}
|
|
|
|
fn range_metadata(&mut self, _load: RValue<'gcc>, _range: WrappingRange) {
|
|
// TODO(antoyo)
|
|
}
|
|
|
|
fn nonnull_metadata(&mut self, _load: RValue<'gcc>) {
|
|
// TODO(antoyo)
|
|
}
|
|
|
|
fn store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> {
|
|
self.store_with_flags(val, ptr, align, MemFlags::empty())
|
|
}
|
|
|
|
fn store_with_flags(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align, _flags: MemFlags) -> RValue<'gcc> {
|
|
let ptr = self.check_store(val, ptr);
|
|
let destination = ptr.dereference(None);
|
|
// NOTE: libgccjit does not support specifying the alignment on the assignment, so we cast
|
|
// to type so it gets the proper alignment.
|
|
let destination_type = destination.to_rvalue().get_type().unqualified();
|
|
let aligned_type = destination_type.get_aligned(align.bytes()).make_pointer();
|
|
let aligned_destination = self.cx.context.new_bitcast(None, ptr, aligned_type);
|
|
let aligned_destination = aligned_destination.dereference(None);
|
|
self.llbb().add_assignment(None, aligned_destination, val);
|
|
// TODO(antoyo): handle align and flags.
|
|
// NOTE: dummy value here since it's never used. FIXME(antoyo): API should not return a value here?
|
|
self.cx.context.new_rvalue_zero(self.type_i32())
|
|
}
|
|
|
|
fn atomic_store(&mut self, value: RValue<'gcc>, ptr: RValue<'gcc>, order: AtomicOrdering, size: Size) {
|
|
// TODO(antoyo): handle alignment.
|
|
let atomic_store = self.context.get_builtin_function(&format!("__atomic_store_{}", size.bytes()));
|
|
let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
|
|
let volatile_const_void_ptr_type = self.context.new_type::<()>()
|
|
.make_volatile()
|
|
.make_pointer();
|
|
let ptr = self.context.new_cast(None, ptr, volatile_const_void_ptr_type);
|
|
|
|
// FIXME(antoyo): fix libgccjit to allow comparing an integer type with an aligned integer type because
|
|
// the following cast is required to avoid this error:
|
|
// gcc_jit_context_new_call: mismatching types for argument 2 of function "__atomic_store_4": assignment to param arg1 (type: int) from loadedValue3577 (type: unsigned int __attribute__((aligned(4))))
|
|
let int_type = atomic_store.get_param(1).to_rvalue().get_type();
|
|
let value = self.context.new_cast(None, value, int_type);
|
|
self.llbb()
|
|
.add_eval(None, self.context.new_call(None, atomic_store, &[ptr, value, ordering]));
|
|
}
|
|
|
|
fn gep(&mut self, _typ: Type<'gcc>, ptr: RValue<'gcc>, indices: &[RValue<'gcc>]) -> RValue<'gcc> {
|
|
let mut result = ptr;
|
|
for index in indices {
|
|
result = self.context.new_array_access(None, result, *index).get_address(None).to_rvalue();
|
|
}
|
|
result
|
|
}
|
|
|
|
fn inbounds_gep(&mut self, _typ: Type<'gcc>, ptr: RValue<'gcc>, indices: &[RValue<'gcc>]) -> RValue<'gcc> {
|
|
// FIXME(antoyo): would be safer if doing the same thing (loop) as gep.
|
|
// TODO(antoyo): specify inbounds somehow.
|
|
match indices.len() {
|
|
1 => {
|
|
self.context.new_array_access(None, ptr, indices[0]).get_address(None)
|
|
},
|
|
2 => {
|
|
let array = ptr.dereference(None); // TODO(antoyo): assert that first index is 0?
|
|
self.context.new_array_access(None, array, indices[1]).get_address(None)
|
|
},
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
|
|
fn struct_gep(&mut self, value_type: Type<'gcc>, ptr: RValue<'gcc>, idx: u64) -> RValue<'gcc> {
|
|
// FIXME(antoyo): it would be better if the API only called this on struct, not on arrays.
|
|
assert_eq!(idx as usize as u64, idx);
|
|
let value = ptr.dereference(None).to_rvalue();
|
|
|
|
if value_type.dyncast_array().is_some() {
|
|
let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from"));
|
|
let element = self.context.new_array_access(None, value, index);
|
|
element.get_address(None)
|
|
}
|
|
else if let Some(vector_type) = value_type.dyncast_vector() {
|
|
let array_type = vector_type.get_element_type().make_pointer();
|
|
let array = self.bitcast(ptr, array_type);
|
|
let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from"));
|
|
let element = self.context.new_array_access(None, array, index);
|
|
element.get_address(None)
|
|
}
|
|
else if let Some(struct_type) = value_type.is_struct() {
|
|
ptr.dereference_field(None, struct_type.get_field(idx as i32)).get_address(None)
|
|
}
|
|
else {
|
|
panic!("Unexpected type {:?}", value_type);
|
|
}
|
|
}
|
|
|
|
/* Casts */
|
|
fn trunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
// TODO(antoyo): check that it indeed truncate the value.
|
|
self.gcc_int_cast(value, dest_ty)
|
|
}
|
|
|
|
fn sext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
// TODO(antoyo): check that it indeed sign extend the value.
|
|
if dest_ty.dyncast_vector().is_some() {
|
|
// TODO(antoyo): nothing to do as it is only for LLVM?
|
|
return value;
|
|
}
|
|
self.context.new_cast(None, value, dest_ty)
|
|
}
|
|
|
|
fn fptoui(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_float_to_uint_cast(value, dest_ty)
|
|
}
|
|
|
|
fn fptosi(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_float_to_int_cast(value, dest_ty)
|
|
}
|
|
|
|
fn uitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_uint_to_float_cast(value, dest_ty)
|
|
}
|
|
|
|
fn sitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_int_to_float_cast(value, dest_ty)
|
|
}
|
|
|
|
fn fptrunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
// TODO(antoyo): make sure it truncates.
|
|
self.context.new_cast(None, value, dest_ty)
|
|
}
|
|
|
|
fn fpext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
self.context.new_cast(None, value, dest_ty)
|
|
}
|
|
|
|
fn ptrtoint(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
let usize_value = self.cx.const_bitcast(value, self.cx.type_isize());
|
|
self.intcast(usize_value, dest_ty, false)
|
|
}
|
|
|
|
fn inttoptr(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
let usize_value = self.intcast(value, self.cx.type_isize(), false);
|
|
self.cx.const_bitcast(usize_value, dest_ty)
|
|
}
|
|
|
|
fn bitcast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
self.cx.const_bitcast(value, dest_ty)
|
|
}
|
|
|
|
fn intcast(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>, _is_signed: bool) -> RValue<'gcc> {
|
|
// NOTE: is_signed is for value, not dest_typ.
|
|
self.gcc_int_cast(value, dest_typ)
|
|
}
|
|
|
|
fn pointercast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
let val_type = value.get_type();
|
|
match (type_is_pointer(val_type), type_is_pointer(dest_ty)) {
|
|
(false, true) => {
|
|
// NOTE: Projecting a field of a pointer type will attempt a cast from a signed char to
|
|
// a pointer, which is not supported by gccjit.
|
|
return self.cx.context.new_cast(None, self.inttoptr(value, val_type.make_pointer()), dest_ty);
|
|
},
|
|
(false, false) => {
|
|
// When they are not pointers, we want a transmute (or reinterpret_cast).
|
|
self.bitcast(value, dest_ty)
|
|
},
|
|
(true, true) => self.cx.context.new_cast(None, value, dest_ty),
|
|
(true, false) => unimplemented!(),
|
|
}
|
|
}
|
|
|
|
/* Comparisons */
|
|
fn icmp(&mut self, op: IntPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.gcc_icmp(op, lhs, rhs)
|
|
}
|
|
|
|
fn fcmp(&mut self, op: RealPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.context.new_comparison(None, op.to_gcc_comparison(), lhs, rhs)
|
|
}
|
|
|
|
/* Miscellaneous instructions */
|
|
fn memcpy(&mut self, dst: RValue<'gcc>, _dst_align: Align, src: RValue<'gcc>, _src_align: Align, size: RValue<'gcc>, flags: MemFlags) {
|
|
assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memcpy not supported");
|
|
let size = self.intcast(size, self.type_size_t(), false);
|
|
let _is_volatile = flags.contains(MemFlags::VOLATILE);
|
|
let dst = self.pointercast(dst, self.type_i8p());
|
|
let src = self.pointercast(src, self.type_ptr_to(self.type_void()));
|
|
let memcpy = self.context.get_builtin_function("memcpy");
|
|
// TODO(antoyo): handle aligns and is_volatile.
|
|
self.block.add_eval(None, self.context.new_call(None, memcpy, &[dst, src, size]));
|
|
}
|
|
|
|
fn memmove(&mut self, dst: RValue<'gcc>, dst_align: Align, src: RValue<'gcc>, src_align: Align, size: RValue<'gcc>, flags: MemFlags) {
|
|
if flags.contains(MemFlags::NONTEMPORAL) {
|
|
// HACK(nox): This is inefficient but there is no nontemporal memmove.
|
|
let val = self.load(src.get_type().get_pointee().expect("get_pointee"), src, src_align);
|
|
let ptr = self.pointercast(dst, self.type_ptr_to(self.val_ty(val)));
|
|
self.store_with_flags(val, ptr, dst_align, flags);
|
|
return;
|
|
}
|
|
let size = self.intcast(size, self.type_size_t(), false);
|
|
let _is_volatile = flags.contains(MemFlags::VOLATILE);
|
|
let dst = self.pointercast(dst, self.type_i8p());
|
|
let src = self.pointercast(src, self.type_ptr_to(self.type_void()));
|
|
|
|
let memmove = self.context.get_builtin_function("memmove");
|
|
// TODO(antoyo): handle is_volatile.
|
|
self.block.add_eval(None, self.context.new_call(None, memmove, &[dst, src, size]));
|
|
}
|
|
|
|
fn memset(&mut self, ptr: RValue<'gcc>, fill_byte: RValue<'gcc>, size: RValue<'gcc>, _align: Align, flags: MemFlags) {
|
|
let _is_volatile = flags.contains(MemFlags::VOLATILE);
|
|
let ptr = self.pointercast(ptr, self.type_i8p());
|
|
let memset = self.context.get_builtin_function("memset");
|
|
// TODO(antoyo): handle align and is_volatile.
|
|
let fill_byte = self.context.new_cast(None, fill_byte, self.i32_type);
|
|
let size = self.intcast(size, self.type_size_t(), false);
|
|
self.block.add_eval(None, self.context.new_call(None, memset, &[ptr, fill_byte, size]));
|
|
}
|
|
|
|
fn select(&mut self, cond: RValue<'gcc>, then_val: RValue<'gcc>, mut else_val: RValue<'gcc>) -> RValue<'gcc> {
|
|
let func = self.current_func();
|
|
let variable = func.new_local(None, then_val.get_type(), "selectVar");
|
|
let then_block = func.new_block("then");
|
|
let else_block = func.new_block("else");
|
|
let after_block = func.new_block("after");
|
|
self.llbb().end_with_conditional(None, cond, then_block, else_block);
|
|
|
|
then_block.add_assignment(None, variable, then_val);
|
|
then_block.end_with_jump(None, after_block);
|
|
|
|
if !then_val.get_type().is_compatible_with(else_val.get_type()) {
|
|
else_val = self.context.new_cast(None, else_val, then_val.get_type());
|
|
}
|
|
else_block.add_assignment(None, variable, else_val);
|
|
else_block.end_with_jump(None, after_block);
|
|
|
|
// NOTE: since jumps were added in a place rustc does not expect, the current block in the
|
|
// state need to be updated.
|
|
self.switch_to_block(after_block);
|
|
|
|
variable.to_rvalue()
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
fn va_arg(&mut self, _list: RValue<'gcc>, _ty: Type<'gcc>) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn extract_element(&mut self, _vec: RValue<'gcc>, _idx: RValue<'gcc>) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn vector_splat(&mut self, _num_elts: usize, _elt: RValue<'gcc>) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn extract_value(&mut self, aggregate_value: RValue<'gcc>, idx: u64) -> RValue<'gcc> {
|
|
// FIXME(antoyo): it would be better if the API only called this on struct, not on arrays.
|
|
assert_eq!(idx as usize as u64, idx);
|
|
let value_type = aggregate_value.get_type();
|
|
|
|
if value_type.dyncast_array().is_some() {
|
|
let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from"));
|
|
let element = self.context.new_array_access(None, aggregate_value, index);
|
|
element.get_address(None)
|
|
}
|
|
else if value_type.dyncast_vector().is_some() {
|
|
panic!();
|
|
}
|
|
else if let Some(pointer_type) = value_type.get_pointee() {
|
|
if let Some(struct_type) = pointer_type.is_struct() {
|
|
// NOTE: hack to workaround a limitation of the rustc API: see comment on
|
|
// CodegenCx.structs_as_pointer
|
|
aggregate_value.dereference_field(None, struct_type.get_field(idx as i32)).to_rvalue()
|
|
}
|
|
else {
|
|
panic!("Unexpected type {:?}", value_type);
|
|
}
|
|
}
|
|
else if let Some(struct_type) = value_type.is_struct() {
|
|
aggregate_value.access_field(None, struct_type.get_field(idx as i32)).to_rvalue()
|
|
}
|
|
else {
|
|
panic!("Unexpected type {:?}", value_type);
|
|
}
|
|
}
|
|
|
|
fn insert_value(&mut self, aggregate_value: RValue<'gcc>, value: RValue<'gcc>, idx: u64) -> RValue<'gcc> {
|
|
// FIXME(antoyo): it would be better if the API only called this on struct, not on arrays.
|
|
assert_eq!(idx as usize as u64, idx);
|
|
let value_type = aggregate_value.get_type();
|
|
|
|
let lvalue =
|
|
if value_type.dyncast_array().is_some() {
|
|
let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from"));
|
|
self.context.new_array_access(None, aggregate_value, index)
|
|
}
|
|
else if value_type.dyncast_vector().is_some() {
|
|
panic!();
|
|
}
|
|
else if let Some(pointer_type) = value_type.get_pointee() {
|
|
if let Some(struct_type) = pointer_type.is_struct() {
|
|
// NOTE: hack to workaround a limitation of the rustc API: see comment on
|
|
// CodegenCx.structs_as_pointer
|
|
aggregate_value.dereference_field(None, struct_type.get_field(idx as i32))
|
|
}
|
|
else {
|
|
panic!("Unexpected type {:?}", value_type);
|
|
}
|
|
}
|
|
else {
|
|
panic!("Unexpected type {:?}", value_type);
|
|
};
|
|
|
|
let lvalue_type = lvalue.to_rvalue().get_type();
|
|
let value =
|
|
// NOTE: sometimes, rustc will create a value with the wrong type.
|
|
if lvalue_type != value.get_type() {
|
|
self.context.new_cast(None, value, lvalue_type)
|
|
}
|
|
else {
|
|
value
|
|
};
|
|
|
|
self.llbb().add_assignment(None, lvalue, value);
|
|
|
|
aggregate_value
|
|
}
|
|
|
|
fn set_personality_fn(&mut self, _personality: RValue<'gcc>) {
|
|
// TODO(antoyo)
|
|
}
|
|
|
|
fn cleanup_landing_pad(&mut self, _pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) {
|
|
(
|
|
self.current_func().new_local(None, self.u8_type.make_pointer(), "landing_pad0")
|
|
.to_rvalue(),
|
|
self.current_func().new_local(None, self.i32_type, "landing_pad1").to_rvalue(),
|
|
)
|
|
// TODO(antoyo): Properly implement unwinding.
|
|
// the above is just to make the compilation work as it seems
|
|
// rustc_codegen_ssa now calls the unwinding builder methods even on panic=abort.
|
|
}
|
|
|
|
fn resume(&mut self, _exn0: RValue<'gcc>, _exn1: RValue<'gcc>) {
|
|
// TODO(bjorn3): Properly implement unwinding.
|
|
self.unreachable();
|
|
}
|
|
|
|
fn cleanup_pad(&mut self, _parent: Option<RValue<'gcc>>, _args: &[RValue<'gcc>]) -> Funclet {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn cleanup_ret(&mut self, _funclet: &Funclet, _unwind: Option<Block<'gcc>>) {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn catch_pad(&mut self, _parent: RValue<'gcc>, _args: &[RValue<'gcc>]) -> Funclet {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn catch_switch(
|
|
&mut self,
|
|
_parent: Option<RValue<'gcc>>,
|
|
_unwind: Option<Block<'gcc>>,
|
|
_handlers: &[Block<'gcc>],
|
|
) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
// Atomic Operations
|
|
fn atomic_cmpxchg(&mut self, dst: RValue<'gcc>, cmp: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering, failure_order: AtomicOrdering, weak: bool) -> RValue<'gcc> {
|
|
let expected = self.current_func().new_local(None, cmp.get_type(), "expected");
|
|
self.llbb().add_assignment(None, expected, cmp);
|
|
let success = self.compare_exchange(dst, expected, src, order, failure_order, weak);
|
|
|
|
let pair_type = self.cx.type_struct(&[src.get_type(), self.bool_type], false);
|
|
let result = self.current_func().new_local(None, pair_type, "atomic_cmpxchg_result");
|
|
let align = Align::from_bits(64).expect("align"); // TODO(antoyo): use good align.
|
|
|
|
let value_type = result.to_rvalue().get_type();
|
|
if let Some(struct_type) = value_type.is_struct() {
|
|
self.store(success, result.access_field(None, struct_type.get_field(1)).get_address(None), align);
|
|
// NOTE: since success contains the call to the intrinsic, it must be stored before
|
|
// expected so that we store expected after the call.
|
|
self.store(expected.to_rvalue(), result.access_field(None, struct_type.get_field(0)).get_address(None), align);
|
|
}
|
|
// TODO(antoyo): handle when value is not a struct.
|
|
|
|
result.to_rvalue()
|
|
}
|
|
|
|
fn atomic_rmw(&mut self, op: AtomicRmwBinOp, dst: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering) -> RValue<'gcc> {
|
|
let size = src.get_type().get_size();
|
|
let name =
|
|
match op {
|
|
AtomicRmwBinOp::AtomicXchg => format!("__atomic_exchange_{}", size),
|
|
AtomicRmwBinOp::AtomicAdd => format!("__atomic_fetch_add_{}", size),
|
|
AtomicRmwBinOp::AtomicSub => format!("__atomic_fetch_sub_{}", size),
|
|
AtomicRmwBinOp::AtomicAnd => format!("__atomic_fetch_and_{}", size),
|
|
AtomicRmwBinOp::AtomicNand => format!("__atomic_fetch_nand_{}", size),
|
|
AtomicRmwBinOp::AtomicOr => format!("__atomic_fetch_or_{}", size),
|
|
AtomicRmwBinOp::AtomicXor => format!("__atomic_fetch_xor_{}", size),
|
|
AtomicRmwBinOp::AtomicMax => return self.atomic_extremum(ExtremumOperation::Max, dst, src, order),
|
|
AtomicRmwBinOp::AtomicMin => return self.atomic_extremum(ExtremumOperation::Min, dst, src, order),
|
|
AtomicRmwBinOp::AtomicUMax => return self.atomic_extremum(ExtremumOperation::Max, dst, src, order),
|
|
AtomicRmwBinOp::AtomicUMin => return self.atomic_extremum(ExtremumOperation::Min, dst, src, order),
|
|
};
|
|
|
|
|
|
let atomic_function = self.context.get_builtin_function(name);
|
|
let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
|
|
|
|
let void_ptr_type = self.context.new_type::<*mut ()>();
|
|
let volatile_void_ptr_type = void_ptr_type.make_volatile();
|
|
let dst = self.context.new_cast(None, dst, volatile_void_ptr_type);
|
|
// FIXME(antoyo): not sure why, but we have the wrong type here.
|
|
let new_src_type = atomic_function.get_param(1).to_rvalue().get_type();
|
|
let src = self.context.new_cast(None, src, new_src_type);
|
|
let res = self.context.new_call(None, atomic_function, &[dst, src, order]);
|
|
self.context.new_cast(None, res, src.get_type())
|
|
}
|
|
|
|
fn atomic_fence(&mut self, order: AtomicOrdering, scope: SynchronizationScope) {
|
|
let name =
|
|
match scope {
|
|
SynchronizationScope::SingleThread => "__atomic_signal_fence",
|
|
SynchronizationScope::CrossThread => "__atomic_thread_fence",
|
|
};
|
|
let thread_fence = self.context.get_builtin_function(name);
|
|
let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
|
|
self.llbb().add_eval(None, self.context.new_call(None, thread_fence, &[order]));
|
|
}
|
|
|
|
fn set_invariant_load(&mut self, load: RValue<'gcc>) {
|
|
// NOTE: Hack to consider vtable function pointer as non-global-variable function pointer.
|
|
self.normal_function_addresses.borrow_mut().insert(load);
|
|
// TODO(antoyo)
|
|
}
|
|
|
|
fn lifetime_start(&mut self, _ptr: RValue<'gcc>, _size: Size) {
|
|
// TODO(antoyo)
|
|
}
|
|
|
|
fn lifetime_end(&mut self, _ptr: RValue<'gcc>, _size: Size) {
|
|
// TODO(antoyo)
|
|
}
|
|
|
|
fn call(
|
|
&mut self,
|
|
_typ: Type<'gcc>,
|
|
fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
|
|
func: RValue<'gcc>,
|
|
args: &[RValue<'gcc>],
|
|
funclet: Option<&Funclet>,
|
|
) -> RValue<'gcc> {
|
|
// FIXME(antoyo): remove when having a proper API.
|
|
let gcc_func = unsafe { std::mem::transmute(func) };
|
|
let call = if self.functions.borrow().values().any(|value| *value == gcc_func) {
|
|
self.function_call(func, args, funclet)
|
|
}
|
|
else {
|
|
// If it's a not function that was defined, it's a function pointer.
|
|
self.function_ptr_call(func, args, funclet)
|
|
};
|
|
if let Some(_fn_abi) = fn_abi {
|
|
// TODO(bjorn3): Apply function attributes
|
|
}
|
|
call
|
|
}
|
|
|
|
fn zext(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>) -> RValue<'gcc> {
|
|
// FIXME(antoyo): this does not zero-extend.
|
|
if value.get_type().is_bool() && dest_typ.is_i8(&self.cx) {
|
|
// FIXME(antoyo): hack because base::from_immediate converts i1 to i8.
|
|
// Fix the code in codegen_ssa::base::from_immediate.
|
|
return value;
|
|
}
|
|
self.gcc_int_cast(value, dest_typ)
|
|
}
|
|
|
|
fn cx(&self) -> &CodegenCx<'gcc, 'tcx> {
|
|
self.cx
|
|
}
|
|
|
|
fn do_not_inline(&mut self, _llret: RValue<'gcc>) {
|
|
// FIXME(bjorn3): implement
|
|
}
|
|
|
|
fn set_span(&mut self, _span: Span) {}
|
|
|
|
fn from_immediate(&mut self, val: Self::Value) -> Self::Value {
|
|
if self.cx().val_ty(val) == self.cx().type_i1() {
|
|
self.zext(val, self.cx().type_i8())
|
|
}
|
|
else {
|
|
val
|
|
}
|
|
}
|
|
|
|
fn to_immediate_scalar(&mut self, val: Self::Value, scalar: abi::Scalar) -> Self::Value {
|
|
if scalar.is_bool() {
|
|
return self.trunc(val, self.cx().type_i1());
|
|
}
|
|
val
|
|
}
|
|
|
|
fn fptoui_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
self.fptoint_sat(false, val, dest_ty)
|
|
}
|
|
|
|
fn fptosi_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
self.fptoint_sat(true, val, dest_ty)
|
|
}
|
|
|
|
fn instrprof_increment(&mut self, _fn_name: RValue<'gcc>, _hash: RValue<'gcc>, _num_counters: RValue<'gcc>, _index: RValue<'gcc>) {
|
|
unimplemented!();
|
|
}
|
|
}
|
|
|
|
impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> {
|
|
fn fptoint_sat(&mut self, signed: bool, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
|
|
let src_ty = self.cx.val_ty(val);
|
|
let (float_ty, int_ty) = if self.cx.type_kind(src_ty) == TypeKind::Vector {
|
|
assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty));
|
|
(self.cx.element_type(src_ty), self.cx.element_type(dest_ty))
|
|
} else {
|
|
(src_ty, dest_ty)
|
|
};
|
|
|
|
// FIXME(jistone): the following was originally the fallback SSA implementation, before LLVM 13
|
|
// added native `fptosi.sat` and `fptoui.sat` conversions, but it was used by GCC as well.
|
|
// Now that LLVM always relies on its own, the code has been moved to GCC, but the comments are
|
|
// still LLVM-specific. This should be updated, and use better GCC specifics if possible.
|
|
|
|
let int_width = self.cx.int_width(int_ty);
|
|
let float_width = self.cx.float_width(float_ty);
|
|
// LLVM's fpto[su]i returns undef when the input val is infinite, NaN, or does not fit into the
|
|
// destination integer type after rounding towards zero. This `undef` value can cause UB in
|
|
// safe code (see issue #10184), so we implement a saturating conversion on top of it:
|
|
// Semantically, the mathematical value of the input is rounded towards zero to the next
|
|
// mathematical integer, and then the result is clamped into the range of the destination
|
|
// integer type. Positive and negative infinity are mapped to the maximum and minimum value of
|
|
// the destination integer type. NaN is mapped to 0.
|
|
//
|
|
// Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to
|
|
// a value representable in int_ty.
|
|
// They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits.
|
|
// Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two.
|
|
// int_ty::MIN, however, is either zero or a negative power of two and is thus exactly
|
|
// representable. Note that this only works if float_ty's exponent range is sufficiently large.
|
|
// f16 or 256 bit integers would break this property. Right now the smallest float type is f32
|
|
// with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127.
|
|
// On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because
|
|
// we're rounding towards zero, we just get float_ty::MAX (which is always an integer).
|
|
// This already happens today with u128::MAX = 2^128 - 1 > f32::MAX.
|
|
let int_max = |signed: bool, int_width: u64| -> u128 {
|
|
let shift_amount = 128 - int_width;
|
|
if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount }
|
|
};
|
|
let int_min = |signed: bool, int_width: u64| -> i128 {
|
|
if signed { i128::MIN >> (128 - int_width) } else { 0 }
|
|
};
|
|
|
|
let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) {
|
|
let rounded_min =
|
|
ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero);
|
|
assert_eq!(rounded_min.status, Status::OK);
|
|
let rounded_max =
|
|
ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero);
|
|
assert!(rounded_max.value.is_finite());
|
|
(rounded_min.value.to_bits(), rounded_max.value.to_bits())
|
|
};
|
|
let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) {
|
|
let rounded_min =
|
|
ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero);
|
|
assert_eq!(rounded_min.status, Status::OK);
|
|
let rounded_max =
|
|
ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero);
|
|
assert!(rounded_max.value.is_finite());
|
|
(rounded_min.value.to_bits(), rounded_max.value.to_bits())
|
|
};
|
|
// To implement saturation, we perform the following steps:
|
|
//
|
|
// 1. Cast val to an integer with fpto[su]i. This may result in undef.
|
|
// 2. Compare val to f_min and f_max, and use the comparison results to select:
|
|
// a) int_ty::MIN if val < f_min or val is NaN
|
|
// b) int_ty::MAX if val > f_max
|
|
// c) the result of fpto[su]i otherwise
|
|
// 3. If val is NaN, return 0.0, otherwise return the result of step 2.
|
|
//
|
|
// This avoids resulting undef because values in range [f_min, f_max] by definition fit into the
|
|
// destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of
|
|
// undef does not introduce any non-determinism either.
|
|
// More importantly, the above procedure correctly implements saturating conversion.
|
|
// Proof (sketch):
|
|
// If val is NaN, 0 is returned by definition.
|
|
// Otherwise, val is finite or infinite and thus can be compared with f_min and f_max.
|
|
// This yields three cases to consider:
|
|
// (1) if val in [f_min, f_max], the result of fpto[su]i is returned, which agrees with
|
|
// saturating conversion for inputs in that range.
|
|
// (2) if val > f_max, then val is larger than int_ty::MAX. This holds even if f_max is rounded
|
|
// (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger
|
|
// than int_ty::MAX. Because val is larger than int_ty::MAX, the return value of int_ty::MAX
|
|
// is correct.
|
|
// (3) if val < f_min, then val is smaller than int_ty::MIN. As shown earlier, f_min exactly equals
|
|
// int_ty::MIN and therefore the return value of int_ty::MIN is correct.
|
|
// QED.
|
|
|
|
let float_bits_to_llval = |bx: &mut Self, bits| {
|
|
let bits_llval = match float_width {
|
|
32 => bx.cx().const_u32(bits as u32),
|
|
64 => bx.cx().const_u64(bits as u64),
|
|
n => bug!("unsupported float width {}", n),
|
|
};
|
|
bx.bitcast(bits_llval, float_ty)
|
|
};
|
|
let (f_min, f_max) = match float_width {
|
|
32 => compute_clamp_bounds_single(signed, int_width),
|
|
64 => compute_clamp_bounds_double(signed, int_width),
|
|
n => bug!("unsupported float width {}", n),
|
|
};
|
|
let f_min = float_bits_to_llval(self, f_min);
|
|
let f_max = float_bits_to_llval(self, f_max);
|
|
let int_max = self.cx.const_uint_big(int_ty, int_max(signed, int_width));
|
|
let int_min = self.cx.const_uint_big(int_ty, int_min(signed, int_width) as u128);
|
|
let zero = self.cx.const_uint(int_ty, 0);
|
|
|
|
// If we're working with vectors, constants must be "splatted": the constant is duplicated
|
|
// into each lane of the vector. The algorithm stays the same, we are just using the
|
|
// same constant across all lanes.
|
|
let maybe_splat = |bx: &mut Self, val| {
|
|
if bx.cx().type_kind(dest_ty) == TypeKind::Vector {
|
|
bx.vector_splat(bx.vector_length(dest_ty), val)
|
|
} else {
|
|
val
|
|
}
|
|
};
|
|
let f_min = maybe_splat(self, f_min);
|
|
let f_max = maybe_splat(self, f_max);
|
|
let int_max = maybe_splat(self, int_max);
|
|
let int_min = maybe_splat(self, int_min);
|
|
let zero = maybe_splat(self, zero);
|
|
|
|
// Step 1 ...
|
|
let fptosui_result = if signed { self.fptosi(val, dest_ty) } else { self.fptoui(val, dest_ty) };
|
|
let less_or_nan = self.fcmp(RealPredicate::RealULT, val, f_min);
|
|
let greater = self.fcmp(RealPredicate::RealOGT, val, f_max);
|
|
|
|
// Step 2: We use two comparisons and two selects, with %s1 being the
|
|
// result:
|
|
// %less_or_nan = fcmp ult %val, %f_min
|
|
// %greater = fcmp olt %val, %f_max
|
|
// %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result
|
|
// %s1 = select %greater, int_ty::MAX, %s0
|
|
// Note that %less_or_nan uses an *unordered* comparison. This
|
|
// comparison is true if the operands are not comparable (i.e., if val is
|
|
// NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if
|
|
// val is NaN.
|
|
//
|
|
// Performance note: Unordered comparison can be lowered to a "flipped"
|
|
// comparison and a negation, and the negation can be merged into the
|
|
// select. Therefore, it not necessarily any more expensive than an
|
|
// ordered ("normal") comparison. Whether these optimizations will be
|
|
// performed is ultimately up to the backend, but at least x86 does
|
|
// perform them.
|
|
let s0 = self.select(less_or_nan, int_min, fptosui_result);
|
|
let s1 = self.select(greater, int_max, s0);
|
|
|
|
// Step 3: NaN replacement.
|
|
// For unsigned types, the above step already yielded int_ty::MIN == 0 if val is NaN.
|
|
// Therefore we only need to execute this step for signed integer types.
|
|
if signed {
|
|
// LLVM has no isNaN predicate, so we use (val == val) instead
|
|
let cmp = self.fcmp(RealPredicate::RealOEQ, val, val);
|
|
self.select(cmp, s1, zero)
|
|
} else {
|
|
s1
|
|
}
|
|
}
|
|
|
|
#[cfg(feature="master")]
|
|
pub fn shuffle_vector(&mut self, v1: RValue<'gcc>, v2: RValue<'gcc>, mask: RValue<'gcc>) -> RValue<'gcc> {
|
|
let struct_type = mask.get_type().is_struct().expect("mask of struct type");
|
|
|
|
// TODO(antoyo): use a recursive unqualified() here.
|
|
let vector_type = v1.get_type().unqualified().dyncast_vector().expect("vector type");
|
|
let element_type = vector_type.get_element_type();
|
|
let vec_num_units = vector_type.get_num_units();
|
|
|
|
let mask_num_units = struct_type.get_field_count();
|
|
let mut vector_elements = vec![];
|
|
let mask_element_type =
|
|
if element_type.is_integral() {
|
|
element_type
|
|
}
|
|
else {
|
|
#[cfg(feature="master")]
|
|
{
|
|
self.cx.type_ix(element_type.get_size() as u64 * 8)
|
|
}
|
|
#[cfg(not(feature="master"))]
|
|
self.int_type
|
|
};
|
|
for i in 0..mask_num_units {
|
|
let field = struct_type.get_field(i as i32);
|
|
vector_elements.push(self.context.new_cast(None, mask.access_field(None, field).to_rvalue(), mask_element_type));
|
|
}
|
|
|
|
// NOTE: the mask needs to be the same length as the input vectors, so add the missing
|
|
// elements in the mask if needed.
|
|
for _ in mask_num_units..vec_num_units {
|
|
vector_elements.push(self.context.new_rvalue_zero(mask_element_type));
|
|
}
|
|
|
|
let array_type = self.context.new_array_type(None, element_type, vec_num_units as i32);
|
|
let result_type = self.context.new_vector_type(element_type, mask_num_units as u64);
|
|
let (v1, v2) =
|
|
if vec_num_units < mask_num_units {
|
|
// NOTE: the mask needs to be the same length as the input vectors, so join the 2
|
|
// vectors and create a dummy second vector.
|
|
// TODO(antoyo): switch to using new_vector_access.
|
|
let array = self.context.new_bitcast(None, v1, array_type);
|
|
let mut elements = vec![];
|
|
for i in 0..vec_num_units {
|
|
elements.push(self.context.new_array_access(None, array, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue());
|
|
}
|
|
// TODO(antoyo): switch to using new_vector_access.
|
|
let array = self.context.new_bitcast(None, v2, array_type);
|
|
for i in 0..(mask_num_units - vec_num_units) {
|
|
elements.push(self.context.new_array_access(None, array, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue());
|
|
}
|
|
let v1 = self.context.new_rvalue_from_vector(None, result_type, &elements);
|
|
let zero = self.context.new_rvalue_zero(element_type);
|
|
let v2 = self.context.new_rvalue_from_vector(None, result_type, &vec![zero; mask_num_units]);
|
|
(v1, v2)
|
|
}
|
|
else {
|
|
(v1, v2)
|
|
};
|
|
|
|
let new_mask_num_units = std::cmp::max(mask_num_units, vec_num_units);
|
|
let mask_type = self.context.new_vector_type(mask_element_type, new_mask_num_units as u64);
|
|
let mask = self.context.new_rvalue_from_vector(None, mask_type, &vector_elements);
|
|
let result = self.context.new_rvalue_vector_perm(None, v1, v2, mask);
|
|
|
|
if vec_num_units != mask_num_units {
|
|
// NOTE: if padding was added, only select the number of elements of the masks to
|
|
// remove that padding in the result.
|
|
let mut elements = vec![];
|
|
// TODO(antoyo): switch to using new_vector_access.
|
|
let array = self.context.new_bitcast(None, result, array_type);
|
|
for i in 0..mask_num_units {
|
|
elements.push(self.context.new_array_access(None, array, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue());
|
|
}
|
|
self.context.new_rvalue_from_vector(None, result_type, &elements)
|
|
}
|
|
else {
|
|
result
|
|
}
|
|
}
|
|
|
|
#[cfg(not(feature="master"))]
|
|
pub fn shuffle_vector(&mut self, _v1: RValue<'gcc>, _v2: RValue<'gcc>, _mask: RValue<'gcc>) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
#[cfg(feature="master")]
|
|
pub fn vector_reduce<F>(&mut self, src: RValue<'gcc>, op: F) -> RValue<'gcc>
|
|
where F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc>
|
|
{
|
|
let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type");
|
|
let element_count = vector_type.get_num_units();
|
|
let mut vector_elements = vec![];
|
|
for i in 0..element_count {
|
|
vector_elements.push(i);
|
|
}
|
|
let mask_type = self.context.new_vector_type(self.int_type, element_count as u64);
|
|
let mut shift = 1;
|
|
let mut res = src;
|
|
while shift < element_count {
|
|
let vector_elements: Vec<_> =
|
|
vector_elements.iter()
|
|
.map(|i| self.context.new_rvalue_from_int(self.int_type, ((i + shift) % element_count) as i32))
|
|
.collect();
|
|
let mask = self.context.new_rvalue_from_vector(None, mask_type, &vector_elements);
|
|
let shifted = self.context.new_rvalue_vector_perm(None, res, res, mask);
|
|
shift *= 2;
|
|
res = op(res, shifted, &self.context);
|
|
}
|
|
self.context.new_vector_access(None, res, self.context.new_rvalue_zero(self.int_type))
|
|
.to_rvalue()
|
|
}
|
|
|
|
#[cfg(not(feature="master"))]
|
|
pub fn vector_reduce<F>(&mut self, src: RValue<'gcc>, op: F) -> RValue<'gcc>
|
|
where F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc>
|
|
{
|
|
unimplemented!();
|
|
}
|
|
|
|
pub fn vector_reduce_op(&mut self, src: RValue<'gcc>, op: BinaryOp) -> RValue<'gcc> {
|
|
self.vector_reduce(src, |a, b, context| context.new_binary_op(None, op, a.get_type(), a, b))
|
|
}
|
|
|
|
pub fn vector_reduce_fadd_fast(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
pub fn vector_reduce_fmul_fast(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> {
|
|
unimplemented!();
|
|
}
|
|
|
|
// Inspired by Hacker's Delight min implementation.
|
|
pub fn vector_reduce_min(&mut self, src: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.vector_reduce(src, |a, b, context| {
|
|
let differences_or_zeros = difference_or_zero(a, b, context);
|
|
context.new_binary_op(None, BinaryOp::Minus, a.get_type(), a, differences_or_zeros)
|
|
})
|
|
}
|
|
|
|
// Inspired by Hacker's Delight max implementation.
|
|
pub fn vector_reduce_max(&mut self, src: RValue<'gcc>) -> RValue<'gcc> {
|
|
self.vector_reduce(src, |a, b, context| {
|
|
let differences_or_zeros = difference_or_zero(a, b, context);
|
|
context.new_binary_op(None, BinaryOp::Plus, b.get_type(), b, differences_or_zeros)
|
|
})
|
|
}
|
|
|
|
pub fn vector_select(&mut self, cond: RValue<'gcc>, then_val: RValue<'gcc>, else_val: RValue<'gcc>) -> RValue<'gcc> {
|
|
// cond is a vector of integers, not of bools.
|
|
let cond_type = cond.get_type();
|
|
let vector_type = cond_type.unqualified().dyncast_vector().expect("vector type");
|
|
let num_units = vector_type.get_num_units();
|
|
let element_type = vector_type.get_element_type();
|
|
let zeros = vec![self.context.new_rvalue_zero(element_type); num_units];
|
|
let zeros = self.context.new_rvalue_from_vector(None, cond_type, &zeros);
|
|
|
|
let masks = self.context.new_comparison(None, ComparisonOp::NotEquals, cond, zeros);
|
|
let then_vals = masks & then_val;
|
|
|
|
let ones = vec![self.context.new_rvalue_one(element_type); num_units];
|
|
let ones = self.context.new_rvalue_from_vector(None, cond_type, &ones);
|
|
let inverted_masks = masks + ones;
|
|
// NOTE: sometimes, the type of else_val can be different than the type of then_val in
|
|
// libgccjit (vector of int vs vector of int32_t), but they should be the same for the AND
|
|
// operation to work.
|
|
let else_val = self.context.new_bitcast(None, else_val, then_val.get_type());
|
|
let else_vals = inverted_masks & else_val;
|
|
|
|
then_vals | else_vals
|
|
}
|
|
}
|
|
|
|
fn difference_or_zero<'gcc>(a: RValue<'gcc>, b: RValue<'gcc>, context: &'gcc Context<'gcc>) -> RValue<'gcc> {
|
|
let difference = a - b;
|
|
let masks = context.new_comparison(None, ComparisonOp::GreaterThanEquals, b, a);
|
|
difference & masks
|
|
}
|
|
|
|
impl<'a, 'gcc, 'tcx> StaticBuilderMethods for Builder<'a, 'gcc, 'tcx> {
|
|
fn get_static(&mut self, def_id: DefId) -> RValue<'gcc> {
|
|
// Forward to the `get_static` method of `CodegenCx`
|
|
self.cx().get_static(def_id).get_address(None)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> HasParamEnv<'tcx> for Builder<'_, '_, 'tcx> {
|
|
fn param_env(&self) -> ParamEnv<'tcx> {
|
|
self.cx.param_env()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> HasTargetSpec for Builder<'_, '_, 'tcx> {
|
|
fn target_spec(&self) -> &Target {
|
|
&self.cx.target_spec()
|
|
}
|
|
}
|
|
|
|
pub trait ToGccComp {
|
|
fn to_gcc_comparison(&self) -> ComparisonOp;
|
|
}
|
|
|
|
impl ToGccComp for IntPredicate {
|
|
fn to_gcc_comparison(&self) -> ComparisonOp {
|
|
match *self {
|
|
IntPredicate::IntEQ => ComparisonOp::Equals,
|
|
IntPredicate::IntNE => ComparisonOp::NotEquals,
|
|
IntPredicate::IntUGT => ComparisonOp::GreaterThan,
|
|
IntPredicate::IntUGE => ComparisonOp::GreaterThanEquals,
|
|
IntPredicate::IntULT => ComparisonOp::LessThan,
|
|
IntPredicate::IntULE => ComparisonOp::LessThanEquals,
|
|
IntPredicate::IntSGT => ComparisonOp::GreaterThan,
|
|
IntPredicate::IntSGE => ComparisonOp::GreaterThanEquals,
|
|
IntPredicate::IntSLT => ComparisonOp::LessThan,
|
|
IntPredicate::IntSLE => ComparisonOp::LessThanEquals,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ToGccComp for RealPredicate {
|
|
fn to_gcc_comparison(&self) -> ComparisonOp {
|
|
// TODO(antoyo): check that ordered vs non-ordered is respected.
|
|
match *self {
|
|
RealPredicate::RealPredicateFalse => unreachable!(),
|
|
RealPredicate::RealOEQ => ComparisonOp::Equals,
|
|
RealPredicate::RealOGT => ComparisonOp::GreaterThan,
|
|
RealPredicate::RealOGE => ComparisonOp::GreaterThanEquals,
|
|
RealPredicate::RealOLT => ComparisonOp::LessThan,
|
|
RealPredicate::RealOLE => ComparisonOp::LessThanEquals,
|
|
RealPredicate::RealONE => ComparisonOp::NotEquals,
|
|
RealPredicate::RealORD => unreachable!(),
|
|
RealPredicate::RealUNO => unreachable!(),
|
|
RealPredicate::RealUEQ => ComparisonOp::Equals,
|
|
RealPredicate::RealUGT => ComparisonOp::GreaterThan,
|
|
RealPredicate::RealUGE => ComparisonOp::GreaterThan,
|
|
RealPredicate::RealULT => ComparisonOp::LessThan,
|
|
RealPredicate::RealULE => ComparisonOp::LessThan,
|
|
RealPredicate::RealUNE => ComparisonOp::NotEquals,
|
|
RealPredicate::RealPredicateTrue => unreachable!(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[allow(non_camel_case_types)]
|
|
enum MemOrdering {
|
|
__ATOMIC_RELAXED,
|
|
__ATOMIC_CONSUME,
|
|
__ATOMIC_ACQUIRE,
|
|
__ATOMIC_RELEASE,
|
|
__ATOMIC_ACQ_REL,
|
|
__ATOMIC_SEQ_CST,
|
|
}
|
|
|
|
trait ToGccOrdering {
|
|
fn to_gcc(self) -> i32;
|
|
}
|
|
|
|
impl ToGccOrdering for AtomicOrdering {
|
|
fn to_gcc(self) -> i32 {
|
|
use MemOrdering::*;
|
|
|
|
let ordering =
|
|
match self {
|
|
AtomicOrdering::Unordered => __ATOMIC_RELAXED,
|
|
AtomicOrdering::Relaxed => __ATOMIC_RELAXED, // TODO(antoyo): check if that's the same.
|
|
AtomicOrdering::Acquire => __ATOMIC_ACQUIRE,
|
|
AtomicOrdering::Release => __ATOMIC_RELEASE,
|
|
AtomicOrdering::AcquireRelease => __ATOMIC_ACQ_REL,
|
|
AtomicOrdering::SequentiallyConsistent => __ATOMIC_SEQ_CST,
|
|
};
|
|
ordering as i32
|
|
}
|
|
}
|