rust/src/librustc/middle/astencode.rs
Michael Woerister 2f8865556b Encode codemap and span information in crate metadata.
This allows to create proper debuginfo line information for items inlined from other crates (e.g. instantiations of generics).
Only the codemap's 'metadata' is stored in a crate's metadata. That is, just filename, line-beginnings, etc. but not the actual source code itself. We are thus missing the opportunity of making Rust the first "open-source-only" programming language out there. Pity.
2015-03-04 09:50:09 +01:00

2074 lines
81 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
// FIXME: remove this after snapshot, and Results are handled
#![allow(unused_must_use)]
use metadata::common as c;
use metadata::cstore as cstore;
use session::Session;
use metadata::decoder;
use middle::def;
use metadata::encoder as e;
use middle::region;
use metadata::tydecode;
use metadata::tydecode::{DefIdSource, NominalType, TypeWithId, TypeParameter};
use metadata::tydecode::{RegionParameter, ClosureSource};
use metadata::tyencode;
use middle::check_const::ConstQualif;
use middle::mem_categorization::Typer;
use middle::privacy::{AllPublic, LastMod};
use middle::subst;
use middle::subst::VecPerParamSpace;
use middle::ty::{self, Ty, MethodCall, MethodCallee, MethodOrigin};
use util::ppaux::ty_to_string;
use syntax::{ast, ast_map, ast_util, codemap, fold};
use syntax::ast_util::PostExpansionMethod;
use syntax::codemap::Span;
use syntax::fold::Folder;
use syntax::parse::token;
use syntax::ptr::P;
use syntax;
use std::old_io::Seek;
use std::num::FromPrimitive;
use std::rc::Rc;
use std::cell::Cell;
use rbml::reader;
use rbml::writer::Encoder;
use rbml;
use serialize;
use serialize::{Decodable, Decoder, DecoderHelpers, Encodable};
use serialize::{EncoderHelpers};
#[cfg(test)] use rbml::io::SeekableMemWriter;
#[cfg(test)] use syntax::parse;
#[cfg(test)] use syntax::print::pprust;
struct DecodeContext<'a, 'b, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
cdata: &'b cstore::crate_metadata,
from_id_range: ast_util::IdRange,
to_id_range: ast_util::IdRange,
// Cache the last used filemap for translating spans as an optimization.
last_filemap_index: Cell<usize>,
}
trait tr {
fn tr(&self, dcx: &DecodeContext) -> Self;
}
trait tr_intern {
fn tr_intern(&self, dcx: &DecodeContext) -> ast::DefId;
}
// ______________________________________________________________________
// Top-level methods.
pub fn encode_inlined_item(ecx: &e::EncodeContext,
rbml_w: &mut Encoder,
ii: e::InlinedItemRef) {
let id = match ii {
e::IIItemRef(i) => i.id,
e::IIForeignRef(i) => i.id,
e::IITraitItemRef(_, &ast::ProvidedMethod(ref m)) => m.id,
e::IITraitItemRef(_, &ast::RequiredMethod(ref m)) => m.id,
e::IITraitItemRef(_, &ast::TypeTraitItem(ref ti)) => ti.ty_param.id,
e::IIImplItemRef(_, &ast::MethodImplItem(ref m)) => m.id,
e::IIImplItemRef(_, &ast::TypeImplItem(ref ti)) => ti.id,
};
debug!("> Encoding inlined item: {} ({:?})",
ecx.tcx.map.path_to_string(id),
rbml_w.writer.tell());
// Folding could be avoided with a smarter encoder.
let ii = simplify_ast(ii);
let id_range = ast_util::compute_id_range_for_inlined_item(&ii);
rbml_w.start_tag(c::tag_ast as uint);
id_range.encode(rbml_w);
encode_ast(rbml_w, &ii);
encode_side_tables_for_ii(ecx, rbml_w, &ii);
rbml_w.end_tag();
debug!("< Encoded inlined fn: {} ({:?})",
ecx.tcx.map.path_to_string(id),
rbml_w.writer.tell());
}
impl<'a, 'b, 'c, 'tcx> ast_map::FoldOps for &'a DecodeContext<'b, 'c, 'tcx> {
fn new_id(&self, id: ast::NodeId) -> ast::NodeId {
if id == ast::DUMMY_NODE_ID {
// Used by ast_map to map the NodeInlinedParent.
self.tcx.sess.next_node_id()
} else {
self.tr_id(id)
}
}
fn new_def_id(&self, def_id: ast::DefId) -> ast::DefId {
self.tr_def_id(def_id)
}
fn new_span(&self, span: Span) -> Span {
self.tr_span(span)
}
}
/// Decodes an item from its AST in the cdata's metadata and adds it to the
/// ast-map.
pub fn decode_inlined_item<'tcx>(cdata: &cstore::crate_metadata,
tcx: &ty::ctxt<'tcx>,
path: Vec<ast_map::PathElem>,
par_doc: rbml::Doc)
-> Result<&'tcx ast::InlinedItem, Vec<ast_map::PathElem>> {
match par_doc.opt_child(c::tag_ast) {
None => Err(path),
Some(ast_doc) => {
let mut path_as_str = None;
debug!("> Decoding inlined fn: {:?}::?",
{
// Do an Option dance to use the path after it is moved below.
let s = ast_map::path_to_string(path.iter().cloned());
path_as_str = Some(s);
path_as_str.as_ref().map(|x| &x[..])
});
let mut ast_dsr = reader::Decoder::new(ast_doc);
let from_id_range = Decodable::decode(&mut ast_dsr).unwrap();
let to_id_range = reserve_id_range(&tcx.sess, from_id_range);
let dcx = &DecodeContext {
cdata: cdata,
tcx: tcx,
from_id_range: from_id_range,
to_id_range: to_id_range,
last_filemap_index: Cell::new(0)
};
let raw_ii = decode_ast(ast_doc);
let ii = ast_map::map_decoded_item(&dcx.tcx.map, path, raw_ii, dcx);
let ident = match *ii {
ast::IIItem(ref i) => i.ident,
ast::IIForeign(ref i) => i.ident,
ast::IITraitItem(_, ref ti) => {
match *ti {
ast::ProvidedMethod(ref m) => m.pe_ident(),
ast::RequiredMethod(ref ty_m) => ty_m.ident,
ast::TypeTraitItem(ref ti) => ti.ty_param.ident,
}
},
ast::IIImplItem(_, ref m) => {
match *m {
ast::MethodImplItem(ref m) => m.pe_ident(),
ast::TypeImplItem(ref ti) => ti.ident,
}
}
};
debug!("Fn named: {}", token::get_ident(ident));
debug!("< Decoded inlined fn: {}::{}",
path_as_str.unwrap(),
token::get_ident(ident));
region::resolve_inlined_item(&tcx.sess, &tcx.region_maps, ii);
decode_side_tables(dcx, ast_doc);
match *ii {
ast::IIItem(ref i) => {
debug!(">>> DECODED ITEM >>>\n{}\n<<< DECODED ITEM <<<",
syntax::print::pprust::item_to_string(&**i));
}
_ => { }
}
Ok(ii)
}
}
}
// ______________________________________________________________________
// Enumerating the IDs which appear in an AST
fn reserve_id_range(sess: &Session,
from_id_range: ast_util::IdRange) -> ast_util::IdRange {
// Handle the case of an empty range:
if from_id_range.empty() { return from_id_range; }
let cnt = from_id_range.max - from_id_range.min;
let to_id_min = sess.reserve_node_ids(cnt);
let to_id_max = to_id_min + cnt;
ast_util::IdRange { min: to_id_min, max: to_id_max }
}
impl<'a, 'b, 'tcx> DecodeContext<'a, 'b, 'tcx> {
/// Translates an internal id, meaning a node id that is known to refer to some part of the
/// item currently being inlined, such as a local variable or argument. All naked node-ids
/// that appear in types have this property, since if something might refer to an external item
/// we would use a def-id to allow for the possibility that the item resides in another crate.
pub fn tr_id(&self, id: ast::NodeId) -> ast::NodeId {
// from_id_range should be non-empty
assert!(!self.from_id_range.empty());
// Use wrapping arithmetic because otherwise it introduces control flow.
// Maybe we should just have the control flow? -- aatch
(id.wrapping_sub(self.from_id_range.min).wrapping_add(self.to_id_range.min))
}
/// Translates an EXTERNAL def-id, converting the crate number from the one used in the encoded
/// data to the current crate numbers.. By external, I mean that it be translated to a
/// reference to the item in its original crate, as opposed to being translated to a reference
/// to the inlined version of the item. This is typically, but not always, what you want,
/// because most def-ids refer to external things like types or other fns that may or may not
/// be inlined. Note that even when the inlined function is referencing itself recursively, we
/// would want `tr_def_id` for that reference--- conceptually the function calls the original,
/// non-inlined version, and trans deals with linking that recursive call to the inlined copy.
///
/// However, there are a *few* cases where def-ids are used but we know that the thing being
/// referenced is in fact *internal* to the item being inlined. In those cases, you should use
/// `tr_intern_def_id()` below.
pub fn tr_def_id(&self, did: ast::DefId) -> ast::DefId {
decoder::translate_def_id(self.cdata, did)
}
/// Translates an INTERNAL def-id, meaning a def-id that is
/// known to refer to some part of the item currently being
/// inlined. In that case, we want to convert the def-id to
/// refer to the current crate and to the new, inlined node-id.
pub fn tr_intern_def_id(&self, did: ast::DefId) -> ast::DefId {
assert_eq!(did.krate, ast::LOCAL_CRATE);
ast::DefId { krate: ast::LOCAL_CRATE, node: self.tr_id(did.node) }
}
/// Translates a `Span` from an extern crate to the corresponding `Span`
/// within the local crate's codemap. `creader::import_codemap()` will
/// already have allocated any additionally needed FileMaps in the local
/// codemap as a side-effect of creating the crate_metadata's
/// `codemap_import_info`.
pub fn tr_span(&self, span: Span) -> Span {
let imported_filemaps = &self.cdata.codemap_import_info[..];
let filemap_index = {
// Optimize for the case that most spans within a translated item
// originate from the same filemap.
let last_filemap_index = self.last_filemap_index.get();
if span.lo >= imported_filemaps[last_filemap_index].original_start_pos &&
span.hi <= imported_filemaps[last_filemap_index].original_end_pos {
last_filemap_index
} else {
let mut a = 0;
let mut b = imported_filemaps.len();
while b - a > 1 {
let m = (a + b) / 2;
if imported_filemaps[m].original_start_pos > span.lo {
b = m;
} else {
a = m;
}
}
self.last_filemap_index.set(a);
a
}
};
let lo = (span.lo - imported_filemaps[filemap_index].original_start_pos) +
imported_filemaps[filemap_index].translated_filemap.start_pos;
let hi = (span.hi - imported_filemaps[filemap_index].original_start_pos) +
imported_filemaps[filemap_index].translated_filemap.start_pos;
codemap::mk_sp(lo, hi)
}
}
impl tr_intern for ast::DefId {
fn tr_intern(&self, dcx: &DecodeContext) -> ast::DefId {
dcx.tr_intern_def_id(*self)
}
}
impl tr for ast::DefId {
fn tr(&self, dcx: &DecodeContext) -> ast::DefId {
dcx.tr_def_id(*self)
}
}
impl tr for Option<ast::DefId> {
fn tr(&self, dcx: &DecodeContext) -> Option<ast::DefId> {
self.map(|d| dcx.tr_def_id(d))
}
}
impl tr for Span {
fn tr(&self, dcx: &DecodeContext) -> Span {
dcx.tr_span(*self)
}
}
trait def_id_encoder_helpers {
fn emit_def_id(&mut self, did: ast::DefId);
}
impl<S:serialize::Encoder> def_id_encoder_helpers for S {
fn emit_def_id(&mut self, did: ast::DefId) {
did.encode(self).ok().unwrap()
}
}
trait def_id_decoder_helpers {
fn read_def_id(&mut self, dcx: &DecodeContext) -> ast::DefId;
fn read_def_id_nodcx(&mut self,
cdata: &cstore::crate_metadata) -> ast::DefId;
}
impl<D:serialize::Decoder> def_id_decoder_helpers for D {
fn read_def_id(&mut self, dcx: &DecodeContext) -> ast::DefId {
let did: ast::DefId = Decodable::decode(self).ok().unwrap();
did.tr(dcx)
}
fn read_def_id_nodcx(&mut self,
cdata: &cstore::crate_metadata) -> ast::DefId {
let did: ast::DefId = Decodable::decode(self).ok().unwrap();
decoder::translate_def_id(cdata, did)
}
}
// ______________________________________________________________________
// Encoding and decoding the AST itself
//
// The hard work is done by an autogenerated module astencode_gen. To
// regenerate astencode_gen, run src/etc/gen-astencode. It will
// replace astencode_gen with a dummy file and regenerate its
// contents. If you get compile errors, the dummy file
// remains---resolve the errors and then rerun astencode_gen.
// Annoying, I know, but hopefully only temporary.
//
// When decoding, we have to renumber the AST so that the node ids that
// appear within are disjoint from the node ids in our existing ASTs.
// We also have to adjust the spans: for now we just insert a dummy span,
// but eventually we should add entries to the local codemap as required.
fn encode_ast(rbml_w: &mut Encoder, item: &ast::InlinedItem) {
rbml_w.start_tag(c::tag_tree as uint);
item.encode(rbml_w);
rbml_w.end_tag();
}
struct NestedItemsDropper;
impl Folder for NestedItemsDropper {
fn fold_block(&mut self, blk: P<ast::Block>) -> P<ast::Block> {
blk.and_then(|ast::Block {id, stmts, expr, rules, span, ..}| {
let stmts_sans_items = stmts.into_iter().filter_map(|stmt| {
let use_stmt = match stmt.node {
ast::StmtExpr(_, _) | ast::StmtSemi(_, _) => true,
ast::StmtDecl(ref decl, _) => {
match decl.node {
ast::DeclLocal(_) => true,
ast::DeclItem(_) => false,
}
}
ast::StmtMac(..) => panic!("unexpanded macro in astencode")
};
if use_stmt {
Some(stmt)
} else {
None
}
}).collect();
let blk_sans_items = P(ast::Block {
stmts: stmts_sans_items,
expr: expr,
id: id,
rules: rules,
span: span,
});
fold::noop_fold_block(blk_sans_items, self)
})
}
}
// Produces a simplified copy of the AST which does not include things
// that we do not need to or do not want to export. For example, we
// do not include any nested items: if these nested items are to be
// inlined, their AST will be exported separately (this only makes
// sense because, in Rust, nested items are independent except for
// their visibility).
//
// As it happens, trans relies on the fact that we do not export
// nested items, as otherwise it would get confused when translating
// inlined items.
fn simplify_ast(ii: e::InlinedItemRef) -> ast::InlinedItem {
let mut fld = NestedItemsDropper;
match ii {
// HACK we're not dropping items.
e::IIItemRef(i) => {
ast::IIItem(fold::noop_fold_item(P(i.clone()), &mut fld)
.expect_one("expected one item"))
}
e::IITraitItemRef(d, ti) => {
ast::IITraitItem(d, match *ti {
ast::ProvidedMethod(ref m) => {
ast::ProvidedMethod(
fold::noop_fold_method(m.clone(), &mut fld)
.expect_one("noop_fold_method must produce \
exactly one method"))
}
ast::RequiredMethod(ref ty_m) => {
ast::RequiredMethod(
fold::noop_fold_type_method(ty_m.clone(), &mut fld))
}
ast::TypeTraitItem(ref associated_type) => {
ast::TypeTraitItem(
P(fold::noop_fold_associated_type(
(**associated_type).clone(),
&mut fld)))
}
})
}
e::IIImplItemRef(d, m) => {
ast::IIImplItem(d, match *m {
ast::MethodImplItem(ref m) => {
ast::MethodImplItem(
fold::noop_fold_method(m.clone(), &mut fld)
.expect_one("noop_fold_method must produce \
exactly one method"))
}
ast::TypeImplItem(ref td) => {
ast::TypeImplItem(
P(fold::noop_fold_typedef((**td).clone(), &mut fld)))
}
})
}
e::IIForeignRef(i) => {
ast::IIForeign(fold::noop_fold_foreign_item(P(i.clone()), &mut fld))
}
}
}
fn decode_ast(par_doc: rbml::Doc) -> ast::InlinedItem {
let chi_doc = par_doc.get(c::tag_tree as uint);
let mut d = reader::Decoder::new(chi_doc);
Decodable::decode(&mut d).unwrap()
}
// ______________________________________________________________________
// Encoding and decoding of ast::def
fn decode_def(dcx: &DecodeContext, dsr: &mut reader::Decoder) -> def::Def {
let def: def::Def = Decodable::decode(dsr).unwrap();
def.tr(dcx)
}
impl tr for def::Def {
fn tr(&self, dcx: &DecodeContext) -> def::Def {
match *self {
def::DefFn(did, is_ctor) => def::DefFn(did.tr(dcx), is_ctor),
def::DefMethod(did, p) => {
def::DefMethod(did.tr(dcx), p.map(|did2| did2.tr(dcx)))
}
def::DefSelfTy(nid) => { def::DefSelfTy(dcx.tr_id(nid)) }
def::DefMod(did) => { def::DefMod(did.tr(dcx)) }
def::DefForeignMod(did) => { def::DefForeignMod(did.tr(dcx)) }
def::DefStatic(did, m) => { def::DefStatic(did.tr(dcx), m) }
def::DefConst(did) => { def::DefConst(did.tr(dcx)) }
def::DefLocal(nid) => { def::DefLocal(dcx.tr_id(nid)) }
def::DefVariant(e_did, v_did, is_s) => {
def::DefVariant(e_did.tr(dcx), v_did.tr(dcx), is_s)
},
def::DefTrait(did) => def::DefTrait(did.tr(dcx)),
def::DefTy(did, is_enum) => def::DefTy(did.tr(dcx), is_enum),
def::DefAssociatedTy(trait_did, did) =>
def::DefAssociatedTy(trait_did.tr(dcx), did.tr(dcx)),
def::DefPrimTy(p) => def::DefPrimTy(p),
def::DefTyParam(s, index, def_id, n) => def::DefTyParam(s, index, def_id.tr(dcx), n),
def::DefUse(did) => def::DefUse(did.tr(dcx)),
def::DefUpvar(nid1, nid2) => {
def::DefUpvar(dcx.tr_id(nid1), dcx.tr_id(nid2))
}
def::DefStruct(did) => def::DefStruct(did.tr(dcx)),
def::DefRegion(nid) => def::DefRegion(dcx.tr_id(nid)),
def::DefLabel(nid) => def::DefLabel(dcx.tr_id(nid))
}
}
}
// ______________________________________________________________________
// Encoding and decoding of ancillary information
impl tr for ty::Region {
fn tr(&self, dcx: &DecodeContext) -> ty::Region {
match *self {
ty::ReLateBound(debruijn, br) => {
ty::ReLateBound(debruijn, br.tr(dcx))
}
ty::ReEarlyBound(id, space, index, ident) => {
ty::ReEarlyBound(dcx.tr_id(id), space, index, ident)
}
ty::ReScope(scope) => {
ty::ReScope(scope.tr(dcx))
}
ty::ReEmpty | ty::ReStatic | ty::ReInfer(..) => {
*self
}
ty::ReFree(ref fr) => {
ty::ReFree(fr.tr(dcx))
}
}
}
}
impl tr for ty::FreeRegion {
fn tr(&self, dcx: &DecodeContext) -> ty::FreeRegion {
ty::FreeRegion { scope: self.scope.tr(dcx),
bound_region: self.bound_region.tr(dcx) }
}
}
impl tr for region::CodeExtent {
fn tr(&self, dcx: &DecodeContext) -> region::CodeExtent {
self.map_id(|id| dcx.tr_id(id))
}
}
impl tr for region::DestructionScopeData {
fn tr(&self, dcx: &DecodeContext) -> region::DestructionScopeData {
region::DestructionScopeData { node_id: dcx.tr_id(self.node_id) }
}
}
impl tr for ty::BoundRegion {
fn tr(&self, dcx: &DecodeContext) -> ty::BoundRegion {
match *self {
ty::BrAnon(_) |
ty::BrFresh(_) |
ty::BrEnv => *self,
ty::BrNamed(id, ident) => ty::BrNamed(dcx.tr_def_id(id),
ident),
}
}
}
// ______________________________________________________________________
// Encoding and decoding of freevar information
fn encode_freevar_entry(rbml_w: &mut Encoder, fv: &ty::Freevar) {
(*fv).encode(rbml_w).unwrap();
}
trait rbml_decoder_helper {
fn read_freevar_entry(&mut self, dcx: &DecodeContext)
-> ty::Freevar;
fn read_capture_mode(&mut self) -> ast::CaptureClause;
}
impl<'a> rbml_decoder_helper for reader::Decoder<'a> {
fn read_freevar_entry(&mut self, dcx: &DecodeContext)
-> ty::Freevar {
let fv: ty::Freevar = Decodable::decode(self).unwrap();
fv.tr(dcx)
}
fn read_capture_mode(&mut self) -> ast::CaptureClause {
let cm: ast::CaptureClause = Decodable::decode(self).unwrap();
cm
}
}
impl tr for ty::Freevar {
fn tr(&self, dcx: &DecodeContext) -> ty::Freevar {
ty::Freevar {
def: self.def.tr(dcx),
span: self.span.tr(dcx),
}
}
}
impl tr for ty::UpvarBorrow {
fn tr(&self, dcx: &DecodeContext) -> ty::UpvarBorrow {
ty::UpvarBorrow {
kind: self.kind,
region: self.region.tr(dcx)
}
}
}
impl tr for ty::UpvarCapture {
fn tr(&self, dcx: &DecodeContext) -> ty::UpvarCapture {
match *self {
ty::UpvarCapture::ByValue => ty::UpvarCapture::ByValue,
ty::UpvarCapture::ByRef(ref data) => ty::UpvarCapture::ByRef(data.tr(dcx)),
}
}
}
// ______________________________________________________________________
// Encoding and decoding of MethodCallee
trait read_method_callee_helper<'tcx> {
fn read_method_callee<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> (ty::ExprAdjustment, MethodCallee<'tcx>);
}
fn encode_method_callee<'a, 'tcx>(ecx: &e::EncodeContext<'a, 'tcx>,
rbml_w: &mut Encoder,
adjustment: ty::ExprAdjustment,
method: &MethodCallee<'tcx>) {
use serialize::Encoder;
rbml_w.emit_struct("MethodCallee", 4, |rbml_w| {
rbml_w.emit_struct_field("adjustment", 0, |rbml_w| {
adjustment.encode(rbml_w)
});
rbml_w.emit_struct_field("origin", 1, |rbml_w| {
Ok(rbml_w.emit_method_origin(ecx, &method.origin))
});
rbml_w.emit_struct_field("ty", 2, |rbml_w| {
Ok(rbml_w.emit_ty(ecx, method.ty))
});
rbml_w.emit_struct_field("substs", 3, |rbml_w| {
Ok(rbml_w.emit_substs(ecx, &method.substs))
})
}).unwrap();
}
impl<'a, 'tcx> read_method_callee_helper<'tcx> for reader::Decoder<'a> {
fn read_method_callee<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> (ty::ExprAdjustment, MethodCallee<'tcx>) {
self.read_struct("MethodCallee", 4, |this| {
let adjustment = this.read_struct_field("adjustment", 0, |this| {
Decodable::decode(this)
}).unwrap();
Ok((adjustment, MethodCallee {
origin: this.read_struct_field("origin", 1, |this| {
Ok(this.read_method_origin(dcx))
}).unwrap(),
ty: this.read_struct_field("ty", 2, |this| {
Ok(this.read_ty(dcx))
}).unwrap(),
substs: this.read_struct_field("substs", 3, |this| {
Ok(this.read_substs(dcx))
}).unwrap()
}))
}).unwrap()
}
}
impl<'tcx> tr for MethodOrigin<'tcx> {
fn tr(&self, dcx: &DecodeContext) -> MethodOrigin<'tcx> {
match *self {
ty::MethodStatic(did) => ty::MethodStatic(did.tr(dcx)),
ty::MethodStaticClosure(did) => {
ty::MethodStaticClosure(did.tr(dcx))
}
ty::MethodTypeParam(ref mp) => {
ty::MethodTypeParam(
ty::MethodParam {
// def-id is already translated when we read it out
trait_ref: mp.trait_ref.clone(),
method_num: mp.method_num,
impl_def_id: mp.impl_def_id.tr(dcx),
}
)
}
ty::MethodTraitObject(ref mo) => {
ty::MethodTraitObject(
ty::MethodObject {
trait_ref: mo.trait_ref.clone(),
.. *mo
}
)
}
}
}
}
pub fn encode_closure_kind(ebml_w: &mut Encoder, kind: ty::ClosureKind) {
kind.encode(ebml_w).unwrap();
}
pub trait vtable_decoder_helpers<'tcx> {
fn read_vec_per_param_space<T, F>(&mut self, f: F) -> VecPerParamSpace<T> where
F: FnMut(&mut Self) -> T;
fn read_vtable_res_with_key(&mut self,
tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata)
-> (ty::ExprAdjustment, ty::vtable_res<'tcx>);
fn read_vtable_res(&mut self,
tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata)
-> ty::vtable_res<'tcx>;
fn read_vtable_param_res(&mut self,
tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata)
-> ty::vtable_param_res<'tcx>;
fn read_vtable_origin(&mut self,
tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata)
-> ty::vtable_origin<'tcx>;
}
impl<'tcx, 'a> vtable_decoder_helpers<'tcx> for reader::Decoder<'a> {
fn read_vec_per_param_space<T, F>(&mut self, mut f: F) -> VecPerParamSpace<T> where
F: FnMut(&mut reader::Decoder<'a>) -> T,
{
let types = self.read_to_vec(|this| Ok(f(this))).unwrap();
let selfs = self.read_to_vec(|this| Ok(f(this))).unwrap();
let fns = self.read_to_vec(|this| Ok(f(this))).unwrap();
VecPerParamSpace::new(types, selfs, fns)
}
fn read_vtable_res_with_key(&mut self,
tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata)
-> (ty::ExprAdjustment, ty::vtable_res<'tcx>) {
self.read_struct("VtableWithKey", 2, |this| {
let adjustment = this.read_struct_field("adjustment", 0, |this| {
Decodable::decode(this)
}).unwrap();
Ok((adjustment, this.read_struct_field("vtable_res", 1, |this| {
Ok(this.read_vtable_res(tcx, cdata))
}).unwrap()))
}).unwrap()
}
fn read_vtable_res(&mut self,
tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata)
-> ty::vtable_res<'tcx>
{
self.read_vec_per_param_space(
|this| this.read_vtable_param_res(tcx, cdata))
}
fn read_vtable_param_res(&mut self,
tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata)
-> ty::vtable_param_res<'tcx> {
self.read_to_vec(|this| Ok(this.read_vtable_origin(tcx, cdata)))
.unwrap().into_iter().collect()
}
fn read_vtable_origin(&mut self,
tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata)
-> ty::vtable_origin<'tcx> {
self.read_enum("vtable_origin", |this| {
this.read_enum_variant(&["vtable_static",
"vtable_param",
"vtable_error",
"vtable_closure"],
|this, i| {
Ok(match i {
0 => {
ty::vtable_static(
this.read_enum_variant_arg(0, |this| {
Ok(this.read_def_id_nodcx(cdata))
}).unwrap(),
this.read_enum_variant_arg(1, |this| {
Ok(this.read_substs_nodcx(tcx, cdata))
}).unwrap(),
this.read_enum_variant_arg(2, |this| {
Ok(this.read_vtable_res(tcx, cdata))
}).unwrap()
)
}
1 => {
ty::vtable_param(
this.read_enum_variant_arg(0, |this| {
Decodable::decode(this)
}).unwrap(),
this.read_enum_variant_arg(1, |this| {
this.read_uint()
}).unwrap()
)
}
2 => {
ty::vtable_closure(
this.read_enum_variant_arg(0, |this| {
Ok(this.read_def_id_nodcx(cdata))
}).unwrap()
)
}
3 => {
ty::vtable_error
}
_ => panic!("bad enum variant")
})
})
}).unwrap()
}
}
// ___________________________________________________________________________
//
fn encode_vec_per_param_space<T, F>(rbml_w: &mut Encoder,
v: &subst::VecPerParamSpace<T>,
mut f: F) where
F: FnMut(&mut Encoder, &T),
{
for &space in &subst::ParamSpace::all() {
rbml_w.emit_from_vec(v.get_slice(space),
|rbml_w, n| Ok(f(rbml_w, n))).unwrap();
}
}
// ______________________________________________________________________
// Encoding and decoding the side tables
trait get_ty_str_ctxt<'tcx> {
fn ty_str_ctxt<'a>(&'a self) -> tyencode::ctxt<'a, 'tcx>;
}
impl<'a, 'tcx> get_ty_str_ctxt<'tcx> for e::EncodeContext<'a, 'tcx> {
fn ty_str_ctxt<'b>(&'b self) -> tyencode::ctxt<'b, 'tcx> {
tyencode::ctxt {
diag: self.tcx.sess.diagnostic(),
ds: e::def_to_string,
tcx: self.tcx,
abbrevs: &self.type_abbrevs
}
}
}
trait rbml_writer_helpers<'tcx> {
fn emit_closure_type<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
closure_type: &ty::ClosureTy<'tcx>);
fn emit_method_origin<'a>(&mut self,
ecx: &e::EncodeContext<'a, 'tcx>,
method_origin: &ty::MethodOrigin<'tcx>);
fn emit_ty<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, ty: Ty<'tcx>);
fn emit_tys<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, tys: &[Ty<'tcx>]);
fn emit_type_param_def<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
type_param_def: &ty::TypeParameterDef<'tcx>);
fn emit_predicate<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
predicate: &ty::Predicate<'tcx>);
fn emit_trait_ref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
ty: &ty::TraitRef<'tcx>);
fn emit_type_scheme<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
type_scheme: ty::TypeScheme<'tcx>);
fn emit_substs<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
substs: &subst::Substs<'tcx>);
fn emit_existential_bounds<'b>(&mut self, ecx: &e::EncodeContext<'b,'tcx>,
bounds: &ty::ExistentialBounds<'tcx>);
fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds);
fn emit_auto_adjustment<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
adj: &ty::AutoAdjustment<'tcx>);
fn emit_autoref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
autoref: &ty::AutoRef<'tcx>);
fn emit_auto_deref_ref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
auto_deref_ref: &ty::AutoDerefRef<'tcx>);
fn emit_unsize_kind<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
uk: &ty::UnsizeKind<'tcx>);
}
impl<'a, 'tcx> rbml_writer_helpers<'tcx> for Encoder<'a> {
fn emit_closure_type<'b>(&mut self,
ecx: &e::EncodeContext<'b, 'tcx>,
closure_type: &ty::ClosureTy<'tcx>) {
self.emit_opaque(|this| {
Ok(e::write_closure_type(ecx, this, closure_type))
});
}
fn emit_method_origin<'b>(&mut self,
ecx: &e::EncodeContext<'b, 'tcx>,
method_origin: &ty::MethodOrigin<'tcx>)
{
use serialize::Encoder;
self.emit_enum("MethodOrigin", |this| {
match *method_origin {
ty::MethodStatic(def_id) => {
this.emit_enum_variant("MethodStatic", 0, 1, |this| {
Ok(this.emit_def_id(def_id))
})
}
ty::MethodStaticClosure(def_id) => {
this.emit_enum_variant("MethodStaticClosure", 1, 1, |this| {
Ok(this.emit_def_id(def_id))
})
}
ty::MethodTypeParam(ref p) => {
this.emit_enum_variant("MethodTypeParam", 2, 1, |this| {
this.emit_struct("MethodParam", 2, |this| {
try!(this.emit_struct_field("trait_ref", 0, |this| {
Ok(this.emit_trait_ref(ecx, &*p.trait_ref))
}));
try!(this.emit_struct_field("method_num", 0, |this| {
this.emit_uint(p.method_num)
}));
try!(this.emit_struct_field("impl_def_id", 0, |this| {
this.emit_option(|this| {
match p.impl_def_id {
None => this.emit_option_none(),
Some(did) => this.emit_option_some(|this| {
Ok(this.emit_def_id(did))
})
}
})
}));
Ok(())
})
})
}
ty::MethodTraitObject(ref o) => {
this.emit_enum_variant("MethodTraitObject", 3, 1, |this| {
this.emit_struct("MethodObject", 2, |this| {
try!(this.emit_struct_field("trait_ref", 0, |this| {
Ok(this.emit_trait_ref(ecx, &*o.trait_ref))
}));
try!(this.emit_struct_field("object_trait_id", 0, |this| {
Ok(this.emit_def_id(o.object_trait_id))
}));
try!(this.emit_struct_field("method_num", 0, |this| {
this.emit_uint(o.method_num)
}));
try!(this.emit_struct_field("vtable_index", 0, |this| {
this.emit_uint(o.vtable_index)
}));
Ok(())
})
})
}
}
});
}
fn emit_ty<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, ty: Ty<'tcx>) {
self.emit_opaque(|this| Ok(e::write_type(ecx, this, ty)));
}
fn emit_tys<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, tys: &[Ty<'tcx>]) {
self.emit_from_vec(tys, |this, ty| Ok(this.emit_ty(ecx, *ty)));
}
fn emit_trait_ref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
trait_ref: &ty::TraitRef<'tcx>) {
self.emit_opaque(|this| Ok(e::write_trait_ref(ecx, this, trait_ref)));
}
fn emit_type_param_def<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
type_param_def: &ty::TypeParameterDef<'tcx>) {
self.emit_opaque(|this| {
Ok(tyencode::enc_type_param_def(this,
&ecx.ty_str_ctxt(),
type_param_def))
});
}
fn emit_predicate<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
predicate: &ty::Predicate<'tcx>) {
self.emit_opaque(|this| {
Ok(tyencode::enc_predicate(this,
&ecx.ty_str_ctxt(),
predicate))
});
}
fn emit_type_scheme<'b>(&mut self,
ecx: &e::EncodeContext<'b, 'tcx>,
type_scheme: ty::TypeScheme<'tcx>) {
use serialize::Encoder;
self.emit_struct("TypeScheme", 2, |this| {
this.emit_struct_field("generics", 0, |this| {
this.emit_struct("Generics", 2, |this| {
this.emit_struct_field("types", 0, |this| {
Ok(encode_vec_per_param_space(
this, &type_scheme.generics.types,
|this, def| this.emit_type_param_def(ecx, def)))
});
this.emit_struct_field("regions", 1, |this| {
Ok(encode_vec_per_param_space(
this, &type_scheme.generics.regions,
|this, def| def.encode(this).unwrap()))
})
})
});
this.emit_struct_field("ty", 1, |this| {
Ok(this.emit_ty(ecx, type_scheme.ty))
})
});
}
fn emit_existential_bounds<'b>(&mut self, ecx: &e::EncodeContext<'b,'tcx>,
bounds: &ty::ExistentialBounds<'tcx>) {
self.emit_opaque(|this| Ok(tyencode::enc_existential_bounds(this,
&ecx.ty_str_ctxt(),
bounds)));
}
fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds) {
self.emit_opaque(|this| Ok(tyencode::enc_builtin_bounds(this,
&ecx.ty_str_ctxt(),
bounds)));
}
fn emit_substs<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
substs: &subst::Substs<'tcx>) {
self.emit_opaque(|this| Ok(tyencode::enc_substs(this,
&ecx.ty_str_ctxt(),
substs)));
}
fn emit_auto_adjustment<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
adj: &ty::AutoAdjustment<'tcx>) {
use serialize::Encoder;
self.emit_enum("AutoAdjustment", |this| {
match *adj {
ty::AdjustReifyFnPointer(def_id) => {
this.emit_enum_variant("AdjustReifyFnPointer", 1, 2, |this| {
this.emit_enum_variant_arg(0, |this| def_id.encode(this))
})
}
ty::AdjustDerefRef(ref auto_deref_ref) => {
this.emit_enum_variant("AdjustDerefRef", 2, 2, |this| {
this.emit_enum_variant_arg(0,
|this| Ok(this.emit_auto_deref_ref(ecx, auto_deref_ref)))
})
}
}
});
}
fn emit_autoref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
autoref: &ty::AutoRef<'tcx>) {
use serialize::Encoder;
self.emit_enum("AutoRef", |this| {
match autoref {
&ty::AutoPtr(r, m, None) => {
this.emit_enum_variant("AutoPtr", 0, 3, |this| {
this.emit_enum_variant_arg(0, |this| r.encode(this));
this.emit_enum_variant_arg(1, |this| m.encode(this));
this.emit_enum_variant_arg(2,
|this| this.emit_option(|this| this.emit_option_none()))
})
}
&ty::AutoPtr(r, m, Some(box ref a)) => {
this.emit_enum_variant("AutoPtr", 0, 3, |this| {
this.emit_enum_variant_arg(0, |this| r.encode(this));
this.emit_enum_variant_arg(1, |this| m.encode(this));
this.emit_enum_variant_arg(2, |this| this.emit_option(
|this| this.emit_option_some(|this| Ok(this.emit_autoref(ecx, a)))))
})
}
&ty::AutoUnsize(ref uk) => {
this.emit_enum_variant("AutoUnsize", 1, 1, |this| {
this.emit_enum_variant_arg(0, |this| Ok(this.emit_unsize_kind(ecx, uk)))
})
}
&ty::AutoUnsizeUniq(ref uk) => {
this.emit_enum_variant("AutoUnsizeUniq", 2, 1, |this| {
this.emit_enum_variant_arg(0, |this| Ok(this.emit_unsize_kind(ecx, uk)))
})
}
&ty::AutoUnsafe(m, None) => {
this.emit_enum_variant("AutoUnsafe", 3, 2, |this| {
this.emit_enum_variant_arg(0, |this| m.encode(this));
this.emit_enum_variant_arg(1,
|this| this.emit_option(|this| this.emit_option_none()))
})
}
&ty::AutoUnsafe(m, Some(box ref a)) => {
this.emit_enum_variant("AutoUnsafe", 3, 2, |this| {
this.emit_enum_variant_arg(0, |this| m.encode(this));
this.emit_enum_variant_arg(1, |this| this.emit_option(
|this| this.emit_option_some(|this| Ok(this.emit_autoref(ecx, a)))))
})
}
}
});
}
fn emit_auto_deref_ref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
auto_deref_ref: &ty::AutoDerefRef<'tcx>) {
use serialize::Encoder;
self.emit_struct("AutoDerefRef", 2, |this| {
this.emit_struct_field("autoderefs", 0, |this| auto_deref_ref.autoderefs.encode(this));
this.emit_struct_field("autoref", 1, |this| {
this.emit_option(|this| {
match auto_deref_ref.autoref {
None => this.emit_option_none(),
Some(ref a) => this.emit_option_some(|this| Ok(this.emit_autoref(ecx, a))),
}
})
})
});
}
fn emit_unsize_kind<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
uk: &ty::UnsizeKind<'tcx>) {
use serialize::Encoder;
self.emit_enum("UnsizeKind", |this| {
match *uk {
ty::UnsizeLength(len) => {
this.emit_enum_variant("UnsizeLength", 0, 1, |this| {
this.emit_enum_variant_arg(0, |this| len.encode(this))
})
}
ty::UnsizeStruct(box ref uk, idx) => {
this.emit_enum_variant("UnsizeStruct", 1, 2, |this| {
this.emit_enum_variant_arg(0, |this| Ok(this.emit_unsize_kind(ecx, uk)));
this.emit_enum_variant_arg(1, |this| idx.encode(this))
})
}
ty::UnsizeVtable(ty::TyTrait { ref principal,
bounds: ref b },
self_ty) => {
this.emit_enum_variant("UnsizeVtable", 2, 4, |this| {
this.emit_enum_variant_arg(0, |this| {
try!(this.emit_struct_field("principal", 0, |this| {
Ok(this.emit_trait_ref(ecx, &*principal.0))
}));
this.emit_struct_field("bounds", 1, |this| {
Ok(this.emit_existential_bounds(ecx, b))
})
});
this.emit_enum_variant_arg(1, |this| Ok(this.emit_ty(ecx, self_ty)))
})
}
}
});
}
}
trait write_tag_and_id {
fn tag<F>(&mut self, tag_id: c::astencode_tag, f: F) where F: FnOnce(&mut Self);
fn id(&mut self, id: ast::NodeId);
}
impl<'a> write_tag_and_id for Encoder<'a> {
fn tag<F>(&mut self,
tag_id: c::astencode_tag,
f: F) where
F: FnOnce(&mut Encoder<'a>),
{
self.start_tag(tag_id as uint);
f(self);
self.end_tag();
}
fn id(&mut self, id: ast::NodeId) {
id.encode(self).unwrap();
}
}
struct SideTableEncodingIdVisitor<'a, 'b:'a, 'c:'a, 'tcx:'c> {
ecx: &'a e::EncodeContext<'c, 'tcx>,
rbml_w: &'a mut Encoder<'b>,
}
impl<'a, 'b, 'c, 'tcx> ast_util::IdVisitingOperation for
SideTableEncodingIdVisitor<'a, 'b, 'c, 'tcx> {
fn visit_id(&mut self, id: ast::NodeId) {
encode_side_tables_for_id(self.ecx, self.rbml_w, id)
}
}
fn encode_side_tables_for_ii(ecx: &e::EncodeContext,
rbml_w: &mut Encoder,
ii: &ast::InlinedItem) {
rbml_w.start_tag(c::tag_table as uint);
ast_util::visit_ids_for_inlined_item(ii, &mut SideTableEncodingIdVisitor {
ecx: ecx,
rbml_w: rbml_w
});
rbml_w.end_tag();
}
fn encode_side_tables_for_id(ecx: &e::EncodeContext,
rbml_w: &mut Encoder,
id: ast::NodeId) {
let tcx = ecx.tcx;
debug!("Encoding side tables for id {}", id);
if let Some(def) = tcx.def_map.borrow().get(&id).map(|d| d.full_def()) {
rbml_w.tag(c::tag_table_def, |rbml_w| {
rbml_w.id(id);
def.encode(rbml_w).unwrap();
})
}
if let Some(ty) = tcx.node_types.borrow().get(&id) {
rbml_w.tag(c::tag_table_node_type, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_ty(ecx, *ty);
})
}
if let Some(item_substs) = tcx.item_substs.borrow().get(&id) {
rbml_w.tag(c::tag_table_item_subst, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_substs(ecx, &item_substs.substs);
})
}
if let Some(fv) = tcx.freevars.borrow().get(&id) {
rbml_w.tag(c::tag_table_freevars, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_from_vec(fv, |rbml_w, fv_entry| {
Ok(encode_freevar_entry(rbml_w, fv_entry))
});
});
for freevar in fv {
rbml_w.tag(c::tag_table_upvar_capture_map, |rbml_w| {
rbml_w.id(id);
let var_id = freevar.def.def_id().node;
let upvar_id = ty::UpvarId {
var_id: var_id,
closure_expr_id: id
};
let upvar_capture = tcx.upvar_capture_map.borrow()[upvar_id].clone();
var_id.encode(rbml_w);
upvar_capture.encode(rbml_w);
})
}
}
let lid = ast::DefId { krate: ast::LOCAL_CRATE, node: id };
if let Some(type_scheme) = tcx.tcache.borrow().get(&lid) {
rbml_w.tag(c::tag_table_tcache, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_type_scheme(ecx, type_scheme.clone());
})
}
if let Some(type_param_def) = tcx.ty_param_defs.borrow().get(&id) {
rbml_w.tag(c::tag_table_param_defs, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_type_param_def(ecx, type_param_def)
})
}
let method_call = MethodCall::expr(id);
if let Some(method) = tcx.method_map.borrow().get(&method_call) {
rbml_w.tag(c::tag_table_method_map, |rbml_w| {
rbml_w.id(id);
encode_method_callee(ecx, rbml_w, method_call.adjustment, method)
})
}
if let Some(trait_ref) = tcx.object_cast_map.borrow().get(&id) {
rbml_w.tag(c::tag_table_object_cast_map, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_trait_ref(ecx, &*trait_ref.0);
})
}
if let Some(adjustment) = tcx.adjustments.borrow().get(&id) {
match *adjustment {
_ if ty::adjust_is_object(adjustment) => {
let method_call = MethodCall::autoobject(id);
if let Some(method) = tcx.method_map.borrow().get(&method_call) {
rbml_w.tag(c::tag_table_method_map, |rbml_w| {
rbml_w.id(id);
encode_method_callee(ecx, rbml_w, method_call.adjustment, method)
})
}
}
ty::AdjustDerefRef(ref adj) => {
assert!(!ty::adjust_is_object(adjustment));
for autoderef in 0..adj.autoderefs {
let method_call = MethodCall::autoderef(id, autoderef);
if let Some(method) = tcx.method_map.borrow().get(&method_call) {
rbml_w.tag(c::tag_table_method_map, |rbml_w| {
rbml_w.id(id);
encode_method_callee(ecx, rbml_w,
method_call.adjustment, method)
})
}
}
}
_ => {
assert!(!ty::adjust_is_object(adjustment));
}
}
rbml_w.tag(c::tag_table_adjustments, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_auto_adjustment(ecx, adjustment);
})
}
if let Some(closure_type) = tcx.closure_tys.borrow().get(&ast_util::local_def(id)) {
rbml_w.tag(c::tag_table_closure_tys, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_closure_type(ecx, closure_type);
})
}
if let Some(closure_kind) = tcx.closure_kinds.borrow().get(&ast_util::local_def(id)) {
rbml_w.tag(c::tag_table_closure_kinds, |rbml_w| {
rbml_w.id(id);
encode_closure_kind(rbml_w, *closure_kind)
})
}
for &qualif in tcx.const_qualif_map.borrow().get(&id).iter() {
rbml_w.tag(c::tag_table_const_qualif, |rbml_w| {
rbml_w.id(id);
qualif.encode(rbml_w).unwrap()
})
}
}
trait doc_decoder_helpers {
fn as_int(&self) -> int;
fn opt_child(&self, tag: c::astencode_tag) -> Option<Self>;
}
impl<'a> doc_decoder_helpers for rbml::Doc<'a> {
fn as_int(&self) -> int { reader::doc_as_u64(*self) as int }
fn opt_child(&self, tag: c::astencode_tag) -> Option<rbml::Doc<'a>> {
reader::maybe_get_doc(*self, tag as uint)
}
}
trait rbml_decoder_decoder_helpers<'tcx> {
fn read_method_origin<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::MethodOrigin<'tcx>;
fn read_ty<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> Ty<'tcx>;
fn read_tys<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> Vec<Ty<'tcx>>;
fn read_trait_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> Rc<ty::TraitRef<'tcx>>;
fn read_poly_trait_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::PolyTraitRef<'tcx>;
fn read_type_param_def<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::TypeParameterDef<'tcx>;
fn read_predicate<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::Predicate<'tcx>;
fn read_type_scheme<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::TypeScheme<'tcx>;
fn read_existential_bounds<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::ExistentialBounds<'tcx>;
fn read_substs<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> subst::Substs<'tcx>;
fn read_auto_adjustment<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::AutoAdjustment<'tcx>;
fn read_closure_kind<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::ClosureKind;
fn read_closure_ty<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::ClosureTy<'tcx>;
fn read_auto_deref_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::AutoDerefRef<'tcx>;
fn read_autoref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::AutoRef<'tcx>;
fn read_unsize_kind<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::UnsizeKind<'tcx>;
fn convert_def_id(&mut self,
dcx: &DecodeContext,
source: DefIdSource,
did: ast::DefId)
-> ast::DefId;
// Versions of the type reading functions that don't need the full
// DecodeContext.
fn read_ty_nodcx(&mut self,
tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> Ty<'tcx>;
fn read_tys_nodcx(&mut self,
tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata) -> Vec<Ty<'tcx>>;
fn read_substs_nodcx(&mut self, tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata)
-> subst::Substs<'tcx>;
}
impl<'a, 'tcx> rbml_decoder_decoder_helpers<'tcx> for reader::Decoder<'a> {
fn read_ty_nodcx(&mut self,
tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> Ty<'tcx> {
self.read_opaque(|_, doc| {
Ok(tydecode::parse_ty_data(
doc.data,
cdata.cnum,
doc.start,
tcx,
|_, id| decoder::translate_def_id(cdata, id)))
}).unwrap()
}
fn read_tys_nodcx(&mut self,
tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata) -> Vec<Ty<'tcx>> {
self.read_to_vec(|this| Ok(this.read_ty_nodcx(tcx, cdata)) )
.unwrap()
.into_iter()
.collect()
}
fn read_substs_nodcx(&mut self,
tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata)
-> subst::Substs<'tcx>
{
self.read_opaque(|_, doc| {
Ok(tydecode::parse_substs_data(
doc.data,
cdata.cnum,
doc.start,
tcx,
|_, id| decoder::translate_def_id(cdata, id)))
}).unwrap()
}
fn read_method_origin<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::MethodOrigin<'tcx>
{
self.read_enum("MethodOrigin", |this| {
let variants = &["MethodStatic", "MethodStaticClosure",
"MethodTypeParam", "MethodTraitObject"];
this.read_enum_variant(variants, |this, i| {
Ok(match i {
0 => {
let def_id = this.read_def_id(dcx);
ty::MethodStatic(def_id)
}
1 => {
let def_id = this.read_def_id(dcx);
ty::MethodStaticClosure(def_id)
}
2 => {
this.read_struct("MethodTypeParam", 2, |this| {
Ok(ty::MethodTypeParam(
ty::MethodParam {
trait_ref: {
this.read_struct_field("trait_ref", 0, |this| {
Ok(this.read_trait_ref(dcx))
}).unwrap()
},
method_num: {
this.read_struct_field("method_num", 1, |this| {
this.read_uint()
}).unwrap()
},
impl_def_id: {
this.read_struct_field("impl_def_id", 2, |this| {
this.read_option(|this, b| {
if b {
Ok(Some(this.read_def_id(dcx)))
} else {
Ok(None)
}
})
}).unwrap()
}
}))
}).unwrap()
}
3 => {
this.read_struct("MethodTraitObject", 2, |this| {
Ok(ty::MethodTraitObject(
ty::MethodObject {
trait_ref: {
this.read_struct_field("trait_ref", 0, |this| {
Ok(this.read_trait_ref(dcx))
}).unwrap()
},
object_trait_id: {
this.read_struct_field("object_trait_id", 1, |this| {
Ok(this.read_def_id(dcx))
}).unwrap()
},
method_num: {
this.read_struct_field("method_num", 2, |this| {
this.read_uint()
}).unwrap()
},
vtable_index: {
this.read_struct_field("vtable_index", 3, |this| {
this.read_uint()
}).unwrap()
},
}))
}).unwrap()
}
_ => panic!("..")
})
})
}).unwrap()
}
fn read_ty<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> Ty<'tcx> {
// Note: regions types embed local node ids. In principle, we
// should translate these node ids into the new decode
// context. However, we do not bother, because region types
// are not used during trans.
return self.read_opaque(|this, doc| {
debug!("read_ty({})", type_string(doc));
let ty = tydecode::parse_ty_data(
doc.data,
dcx.cdata.cnum,
doc.start,
dcx.tcx,
|s, a| this.convert_def_id(dcx, s, a));
Ok(ty)
}).unwrap();
fn type_string(doc: rbml::Doc) -> String {
let mut str = String::new();
for i in doc.start..doc.end {
str.push(doc.data[i] as char);
}
str
}
}
fn read_tys<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> Vec<Ty<'tcx>> {
self.read_to_vec(|this| Ok(this.read_ty(dcx))).unwrap().into_iter().collect()
}
fn read_trait_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> Rc<ty::TraitRef<'tcx>> {
self.read_opaque(|this, doc| {
let ty = tydecode::parse_trait_ref_data(
doc.data,
dcx.cdata.cnum,
doc.start,
dcx.tcx,
|s, a| this.convert_def_id(dcx, s, a));
Ok(ty)
}).unwrap()
}
fn read_poly_trait_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::PolyTraitRef<'tcx> {
ty::Binder(self.read_opaque(|this, doc| {
let ty = tydecode::parse_trait_ref_data(
doc.data,
dcx.cdata.cnum,
doc.start,
dcx.tcx,
|s, a| this.convert_def_id(dcx, s, a));
Ok(ty)
}).unwrap())
}
fn read_type_param_def<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::TypeParameterDef<'tcx> {
self.read_opaque(|this, doc| {
Ok(tydecode::parse_type_param_def_data(
doc.data,
doc.start,
dcx.cdata.cnum,
dcx.tcx,
|s, a| this.convert_def_id(dcx, s, a)))
}).unwrap()
}
fn read_predicate<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::Predicate<'tcx>
{
self.read_opaque(|this, doc| {
Ok(tydecode::parse_predicate_data(doc.data, doc.start, dcx.cdata.cnum, dcx.tcx,
|s, a| this.convert_def_id(dcx, s, a)))
}).unwrap()
}
fn read_type_scheme<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::TypeScheme<'tcx> {
self.read_struct("TypeScheme", 3, |this| {
Ok(ty::TypeScheme {
generics: this.read_struct_field("generics", 0, |this| {
this.read_struct("Generics", 2, |this| {
Ok(ty::Generics {
types:
this.read_struct_field("types", 0, |this| {
Ok(this.read_vec_per_param_space(
|this| this.read_type_param_def(dcx)))
}).unwrap(),
regions:
this.read_struct_field("regions", 1, |this| {
Ok(this.read_vec_per_param_space(
|this| Decodable::decode(this).unwrap()))
}).unwrap(),
})
})
}).unwrap(),
ty: this.read_struct_field("ty", 1, |this| {
Ok(this.read_ty(dcx))
}).unwrap()
})
}).unwrap()
}
fn read_existential_bounds<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::ExistentialBounds<'tcx>
{
self.read_opaque(|this, doc| {
Ok(tydecode::parse_existential_bounds_data(doc.data,
dcx.cdata.cnum,
doc.start,
dcx.tcx,
|s, a| this.convert_def_id(dcx, s, a)))
}).unwrap()
}
fn read_substs<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> subst::Substs<'tcx> {
self.read_opaque(|this, doc| {
Ok(tydecode::parse_substs_data(doc.data,
dcx.cdata.cnum,
doc.start,
dcx.tcx,
|s, a| this.convert_def_id(dcx, s, a)))
}).unwrap()
}
fn read_auto_adjustment<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::AutoAdjustment<'tcx> {
self.read_enum("AutoAdjustment", |this| {
let variants = ["AutoAddEnv", "AutoDerefRef"];
this.read_enum_variant(&variants, |this, i| {
Ok(match i {
1 => {
let def_id: ast::DefId =
this.read_def_id(dcx);
ty::AdjustReifyFnPointer(def_id)
}
2 => {
let auto_deref_ref: ty::AutoDerefRef =
this.read_enum_variant_arg(0,
|this| Ok(this.read_auto_deref_ref(dcx))).unwrap();
ty::AdjustDerefRef(auto_deref_ref)
}
_ => panic!("bad enum variant for ty::AutoAdjustment")
})
})
}).unwrap()
}
fn read_auto_deref_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::AutoDerefRef<'tcx> {
self.read_struct("AutoDerefRef", 2, |this| {
Ok(ty::AutoDerefRef {
autoderefs: this.read_struct_field("autoderefs", 0, |this| {
Decodable::decode(this)
}).unwrap(),
autoref: this.read_struct_field("autoref", 1, |this| {
this.read_option(|this, b| {
if b {
Ok(Some(this.read_autoref(dcx)))
} else {
Ok(None)
}
})
}).unwrap(),
})
}).unwrap()
}
fn read_autoref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::AutoRef<'tcx> {
self.read_enum("AutoRef", |this| {
let variants = ["AutoPtr",
"AutoUnsize",
"AutoUnsizeUniq",
"AutoUnsafe"];
this.read_enum_variant(&variants, |this, i| {
Ok(match i {
0 => {
let r: ty::Region =
this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap();
let m: ast::Mutability =
this.read_enum_variant_arg(1, |this| Decodable::decode(this)).unwrap();
let a: Option<Box<ty::AutoRef>> =
this.read_enum_variant_arg(2, |this| this.read_option(|this, b| {
if b {
Ok(Some(box this.read_autoref(dcx)))
} else {
Ok(None)
}
})).unwrap();
ty::AutoPtr(r.tr(dcx), m, a)
}
1 => {
let uk: ty::UnsizeKind =
this.read_enum_variant_arg(0,
|this| Ok(this.read_unsize_kind(dcx))).unwrap();
ty::AutoUnsize(uk)
}
2 => {
let uk: ty::UnsizeKind =
this.read_enum_variant_arg(0,
|this| Ok(this.read_unsize_kind(dcx))).unwrap();
ty::AutoUnsizeUniq(uk)
}
3 => {
let m: ast::Mutability =
this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap();
let a: Option<Box<ty::AutoRef>> =
this.read_enum_variant_arg(1, |this| this.read_option(|this, b| {
if b {
Ok(Some(box this.read_autoref(dcx)))
} else {
Ok(None)
}
})).unwrap();
ty::AutoUnsafe(m, a)
}
_ => panic!("bad enum variant for ty::AutoRef")
})
})
}).unwrap()
}
fn read_unsize_kind<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::UnsizeKind<'tcx> {
self.read_enum("UnsizeKind", |this| {
let variants = &["UnsizeLength", "UnsizeStruct", "UnsizeVtable"];
this.read_enum_variant(variants, |this, i| {
Ok(match i {
0 => {
let len: uint =
this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap();
ty::UnsizeLength(len)
}
1 => {
let uk: ty::UnsizeKind =
this.read_enum_variant_arg(0,
|this| Ok(this.read_unsize_kind(dcx))).unwrap();
let idx: uint =
this.read_enum_variant_arg(1, |this| Decodable::decode(this)).unwrap();
ty::UnsizeStruct(box uk, idx)
}
2 => {
let ty_trait = try!(this.read_enum_variant_arg(0, |this| {
let principal = try!(this.read_struct_field("principal", 0, |this| {
Ok(this.read_poly_trait_ref(dcx))
}));
Ok(ty::TyTrait {
principal: principal,
bounds: try!(this.read_struct_field("bounds", 1, |this| {
Ok(this.read_existential_bounds(dcx))
})),
})
}));
let self_ty =
this.read_enum_variant_arg(1, |this| Ok(this.read_ty(dcx))).unwrap();
ty::UnsizeVtable(ty_trait, self_ty)
}
_ => panic!("bad enum variant for ty::UnsizeKind")
})
})
}).unwrap()
}
fn read_closure_kind<'b, 'c>(&mut self, _dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::ClosureKind
{
Decodable::decode(self).ok().unwrap()
}
fn read_closure_ty<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::ClosureTy<'tcx>
{
self.read_opaque(|this, doc| {
Ok(tydecode::parse_ty_closure_data(
doc.data,
dcx.cdata.cnum,
doc.start,
dcx.tcx,
|s, a| this.convert_def_id(dcx, s, a)))
}).unwrap()
}
/// Converts a def-id that appears in a type. The correct
/// translation will depend on what kind of def-id this is.
/// This is a subtle point: type definitions are not
/// inlined into the current crate, so if the def-id names
/// a nominal type or type alias, then it should be
/// translated to refer to the source crate.
///
/// However, *type parameters* are cloned along with the function
/// they are attached to. So we should translate those def-ids
/// to refer to the new, cloned copy of the type parameter.
/// We only see references to free type parameters in the body of
/// an inlined function. In such cases, we need the def-id to
/// be a local id so that the TypeContents code is able to lookup
/// the relevant info in the ty_param_defs table.
///
/// *Region parameters*, unfortunately, are another kettle of fish.
/// In such cases, def_id's can appear in types to distinguish
/// shadowed bound regions and so forth. It doesn't actually
/// matter so much what we do to these, since regions are erased
/// at trans time, but it's good to keep them consistent just in
/// case. We translate them with `tr_def_id()` which will map
/// the crate numbers back to the original source crate.
///
/// Unboxed closures are cloned along with the function being
/// inlined, and all side tables use interned node IDs, so we
/// translate their def IDs accordingly.
///
/// It'd be really nice to refactor the type repr to not include
/// def-ids so that all these distinctions were unnecessary.
fn convert_def_id(&mut self,
dcx: &DecodeContext,
source: tydecode::DefIdSource,
did: ast::DefId)
-> ast::DefId {
let r = match source {
NominalType | TypeWithId | RegionParameter => dcx.tr_def_id(did),
TypeParameter | ClosureSource => dcx.tr_intern_def_id(did)
};
debug!("convert_def_id(source={:?}, did={:?})={:?}", source, did, r);
return r;
}
}
fn decode_side_tables(dcx: &DecodeContext,
ast_doc: rbml::Doc) {
let tbl_doc = ast_doc.get(c::tag_table as uint);
reader::docs(tbl_doc, |tag, entry_doc| {
let mut entry_dsr = reader::Decoder::new(entry_doc);
let id0: ast::NodeId = Decodable::decode(&mut entry_dsr).unwrap();
let id = dcx.tr_id(id0);
debug!(">> Side table document with tag 0x{:x} \
found for id {} (orig {})",
tag, id, id0);
let decoded_tag: Option<c::astencode_tag> = FromPrimitive::from_usize(tag);
match decoded_tag {
None => {
dcx.tcx.sess.bug(
&format!("unknown tag found in side tables: {:x}",
tag));
}
Some(value) => {
let val_dsr = &mut entry_dsr;
match value {
c::tag_table_def => {
let def = decode_def(dcx, val_dsr);
dcx.tcx.def_map.borrow_mut().insert(id, def::PathResolution {
base_def: def,
// This doesn't matter cross-crate.
last_private: LastMod(AllPublic),
depth: 0
});
}
c::tag_table_node_type => {
let ty = val_dsr.read_ty(dcx);
debug!("inserting ty for node {}: {}",
id, ty_to_string(dcx.tcx, ty));
dcx.tcx.node_types.borrow_mut().insert(id, ty);
}
c::tag_table_item_subst => {
let item_substs = ty::ItemSubsts {
substs: val_dsr.read_substs(dcx)
};
dcx.tcx.item_substs.borrow_mut().insert(
id, item_substs);
}
c::tag_table_freevars => {
let fv_info = val_dsr.read_to_vec(|val_dsr| {
Ok(val_dsr.read_freevar_entry(dcx))
}).unwrap().into_iter().collect();
dcx.tcx.freevars.borrow_mut().insert(id, fv_info);
}
c::tag_table_upvar_capture_map => {
let var_id: ast::NodeId = Decodable::decode(val_dsr).unwrap();
let upvar_id = ty::UpvarId {
var_id: dcx.tr_id(var_id),
closure_expr_id: id
};
let ub: ty::UpvarCapture = Decodable::decode(val_dsr).unwrap();
dcx.tcx.upvar_capture_map.borrow_mut().insert(upvar_id, ub.tr(dcx));
}
c::tag_table_tcache => {
let type_scheme = val_dsr.read_type_scheme(dcx);
let lid = ast::DefId { krate: ast::LOCAL_CRATE, node: id };
dcx.tcx.tcache.borrow_mut().insert(lid, type_scheme);
}
c::tag_table_param_defs => {
let bounds = val_dsr.read_type_param_def(dcx);
dcx.tcx.ty_param_defs.borrow_mut().insert(id, bounds);
}
c::tag_table_method_map => {
let (adjustment, method) = val_dsr.read_method_callee(dcx);
let method_call = MethodCall {
expr_id: id,
adjustment: adjustment
};
dcx.tcx.method_map.borrow_mut().insert(method_call, method);
}
c::tag_table_object_cast_map => {
let trait_ref = val_dsr.read_poly_trait_ref(dcx);
dcx.tcx.object_cast_map.borrow_mut()
.insert(id, trait_ref);
}
c::tag_table_adjustments => {
let adj: ty::AutoAdjustment = val_dsr.read_auto_adjustment(dcx);
dcx.tcx.adjustments.borrow_mut().insert(id, adj);
}
c::tag_table_closure_tys => {
let closure_ty =
val_dsr.read_closure_ty(dcx);
dcx.tcx.closure_tys.borrow_mut().insert(ast_util::local_def(id),
closure_ty);
}
c::tag_table_closure_kinds => {
let closure_kind =
val_dsr.read_closure_kind(dcx);
dcx.tcx.closure_kinds.borrow_mut().insert(ast_util::local_def(id),
closure_kind);
}
c::tag_table_const_qualif => {
let qualif: ConstQualif = Decodable::decode(val_dsr).unwrap();
dcx.tcx.const_qualif_map.borrow_mut().insert(id, qualif);
}
_ => {
dcx.tcx.sess.bug(
&format!("unknown tag found in side tables: {:x}",
tag));
}
}
}
}
debug!(">< Side table doc loaded");
true
});
}
// ______________________________________________________________________
// Testing of astencode_gen
#[cfg(test)]
fn encode_item_ast(rbml_w: &mut Encoder, item: &ast::Item) {
rbml_w.start_tag(c::tag_tree as uint);
(*item).encode(rbml_w);
rbml_w.end_tag();
}
#[cfg(test)]
fn decode_item_ast(par_doc: rbml::Doc) -> ast::Item {
let chi_doc = par_doc.get(c::tag_tree as uint);
let mut d = reader::Decoder::new(chi_doc);
Decodable::decode(&mut d).unwrap()
}
#[cfg(test)]
trait fake_ext_ctxt {
fn cfg(&self) -> ast::CrateConfig;
fn parse_sess<'a>(&'a self) -> &'a parse::ParseSess;
fn call_site(&self) -> Span;
fn ident_of(&self, st: &str) -> ast::Ident;
}
#[cfg(test)]
impl fake_ext_ctxt for parse::ParseSess {
fn cfg(&self) -> ast::CrateConfig {
Vec::new()
}
fn parse_sess<'a>(&'a self) -> &'a parse::ParseSess { self }
fn call_site(&self) -> Span {
codemap::Span {
lo: codemap::BytePos(0),
hi: codemap::BytePos(0),
expn_id: codemap::NO_EXPANSION
}
}
fn ident_of(&self, st: &str) -> ast::Ident {
token::str_to_ident(st)
}
}
#[cfg(test)]
fn mk_ctxt() -> parse::ParseSess {
parse::new_parse_sess()
}
#[cfg(test)]
fn roundtrip(in_item: Option<P<ast::Item>>) {
let in_item = in_item.unwrap();
let mut wr = SeekableMemWriter::new();
encode_item_ast(&mut Encoder::new(&mut wr), &*in_item);
let rbml_doc = rbml::Doc::new(wr.get_ref());
let out_item = decode_item_ast(rbml_doc);
assert!(*in_item == out_item);
}
#[test]
fn test_basic() {
let cx = mk_ctxt();
roundtrip(quote_item!(&cx,
fn foo() {}
));
}
/* NOTE: When there's a snapshot, update this (yay quasiquoter!)
#[test]
fn test_smalltalk() {
let cx = mk_ctxt();
roundtrip(quote_item!(&cx,
fn foo() -> int { 3 + 4 } // first smalltalk program ever executed.
));
}
*/
#[test]
fn test_more() {
let cx = mk_ctxt();
roundtrip(quote_item!(&cx,
fn foo(x: uint, y: uint) -> uint {
let z = x + y;
return z;
}
));
}
#[test]
fn test_simplification() {
let cx = mk_ctxt();
let item = quote_item!(&cx,
fn new_int_alist<B>() -> alist<int, B> {
fn eq_int(a: int, b: int) -> bool { a == b }
return alist {eq_fn: eq_int, data: Vec::new()};
}
).unwrap();
let item_in = e::IIItemRef(&*item);
let item_out = simplify_ast(item_in);
let item_exp = ast::IIItem(quote_item!(&cx,
fn new_int_alist<B>() -> alist<int, B> {
return alist {eq_fn: eq_int, data: Vec::new()};
}
).unwrap());
match (item_out, item_exp) {
(ast::IIItem(item_out), ast::IIItem(item_exp)) => {
assert!(pprust::item_to_string(&*item_out) ==
pprust::item_to_string(&*item_exp));
}
_ => panic!()
}
}