rust/src/librustc/middle/traits/object_safety.rs
Niko Matsakis 3e88b5bbf9 Rote changes to fix fallout throughout the compiler from splitting the
predicates and renaming some things.
2015-02-12 13:29:51 -05:00

303 lines
11 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! "Object safety" refers to the ability for a trait to be converted
//! to an object. In general, traits may only be converted to an
//! object if all of their methods meet certain criteria. In particular,
//! they must:
//!
//! - have a suitable receiver from which we can extract a vtable;
//! - not reference the erased type `Self` except for in this receiver;
//! - not have generic type parameters
use super::supertraits;
use super::elaborate_predicates;
use middle::subst::{self, SelfSpace};
use middle::traits;
use middle::ty::{self, Ty};
use std::rc::Rc;
use syntax::ast;
use util::ppaux::Repr;
pub enum ObjectSafetyViolation<'tcx> {
/// Self : Sized declared on the trait
SizedSelf,
/// Method has something illegal
Method(Rc<ty::Method<'tcx>>, MethodViolationCode),
}
/// Reasons a method might not be object-safe.
#[derive(Copy,Clone,Debug)]
pub enum MethodViolationCode {
/// e.g., `fn(self)`
ByValueSelf,
/// e.g., `fn foo()`
StaticMethod,
/// e.g., `fn foo(&self, x: Self)` or `fn foo(&self) -> Self`
ReferencesSelf,
/// e.g., `fn foo<A>()`
Generic,
}
pub fn is_object_safe<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>)
-> bool
{
// Because we query yes/no results frequently, we keep a cache:
let cached_result =
tcx.object_safety_cache.borrow().get(&trait_ref.def_id()).map(|&r| r);
let result =
cached_result.unwrap_or_else(|| {
let result = object_safety_violations(tcx, trait_ref.clone()).is_empty();
// Record just a yes/no result in the cache; this is what is
// queried most frequently. Note that this may overwrite a
// previous result, but always with the same thing.
tcx.object_safety_cache.borrow_mut().insert(trait_ref.def_id(), result);
result
});
debug!("is_object_safe({}) = {}", trait_ref.repr(tcx), result);
result
}
pub fn object_safety_violations<'tcx>(tcx: &ty::ctxt<'tcx>,
sub_trait_ref: ty::PolyTraitRef<'tcx>)
-> Vec<ObjectSafetyViolation<'tcx>>
{
supertraits(tcx, sub_trait_ref)
.flat_map(|tr| object_safety_violations_for_trait(tcx, tr.def_id()).into_iter())
.collect()
}
fn object_safety_violations_for_trait<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId)
-> Vec<ObjectSafetyViolation<'tcx>>
{
// Check methods for violations.
let mut violations: Vec<_> =
ty::trait_items(tcx, trait_def_id).iter()
.flat_map(|item| {
match *item {
ty::MethodTraitItem(ref m) => {
object_safety_violations_for_method(tcx, trait_def_id, &**m)
.map(|code| ObjectSafetyViolation::Method(m.clone(), code))
.into_iter()
}
ty::TypeTraitItem(_) => {
None.into_iter()
}
}
})
.collect();
// Check the trait itself.
if trait_has_sized_self(tcx, trait_def_id) {
violations.push(ObjectSafetyViolation::SizedSelf);
}
debug!("object_safety_violations_for_trait(trait_def_id={}) = {}",
trait_def_id.repr(tcx),
violations.repr(tcx));
violations
}
fn trait_has_sized_self<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId)
-> bool
{
let sized_def_id = match tcx.lang_items.sized_trait() {
Some(def_id) => def_id,
None => { return false; /* No Sized trait, can't require it! */ }
};
// Search for a predicate like `Self : Sized` amongst the trait bounds.
let trait_def = ty::lookup_trait_def(tcx, trait_def_id);
let free_substs = ty::construct_free_substs(tcx, &trait_def.generics, ast::DUMMY_NODE_ID);
let trait_predicates = ty::lookup_predicates(tcx, trait_def_id);
let predicates = trait_predicates.instantiate(tcx, &free_substs).predicates.into_vec();
elaborate_predicates(tcx, predicates)
.any(|predicate| {
match predicate {
ty::Predicate::Trait(ref trait_pred) if trait_pred.def_id() == sized_def_id => {
let self_ty = trait_pred.0.self_ty();
match self_ty.sty {
ty::ty_param(ref data) => data.space == subst::SelfSpace,
_ => false,
}
}
ty::Predicate::Projection(..) |
ty::Predicate::Trait(..) |
ty::Predicate::Equate(..) |
ty::Predicate::RegionOutlives(..) |
ty::Predicate::TypeOutlives(..) => {
false
}
}
})
}
fn object_safety_violations_for_method<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId,
method: &ty::Method<'tcx>)
-> Option<MethodViolationCode>
{
// The method's first parameter must be something that derefs to
// `&self`. For now, we only accept `&self` and `Box<Self>`.
match method.explicit_self {
ty::ByValueExplicitSelfCategory => {
return Some(MethodViolationCode::ByValueSelf);
}
ty::StaticExplicitSelfCategory => {
return Some(MethodViolationCode::StaticMethod);
}
ty::ByReferenceExplicitSelfCategory(..) |
ty::ByBoxExplicitSelfCategory => {
}
}
// The `Self` type is erased, so it should not appear in list of
// arguments or return type apart from the receiver.
let ref sig = method.fty.sig;
for &input_ty in &sig.0.inputs[1..] {
if contains_illegal_self_type_reference(tcx, trait_def_id, input_ty) {
return Some(MethodViolationCode::ReferencesSelf);
}
}
if let ty::FnConverging(result_type) = sig.0.output {
if contains_illegal_self_type_reference(tcx, trait_def_id, result_type) {
return Some(MethodViolationCode::ReferencesSelf);
}
}
// We can't monomorphize things like `fn foo<A>(...)`.
if !method.generics.types.is_empty_in(subst::FnSpace) {
return Some(MethodViolationCode::Generic);
}
None
}
fn contains_illegal_self_type_reference<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_def_id: ast::DefId,
ty: Ty<'tcx>)
-> bool
{
// This is somewhat subtle. In general, we want to forbid
// references to `Self` in the argument and return types,
// since the value of `Self` is erased. However, there is one
// exception: it is ok to reference `Self` in order to access
// an associated type of the current trait, since we retain
// the value of those associated types in the object type
// itself.
//
// ```rust
// trait SuperTrait {
// type X;
// }
//
// trait Trait : SuperTrait {
// type Y;
// fn foo(&self, x: Self) // bad
// fn foo(&self) -> Self // bad
// fn foo(&self) -> Option<Self> // bad
// fn foo(&self) -> Self::Y // OK, desugars to next example
// fn foo(&self) -> <Self as Trait>::Y // OK
// fn foo(&self) -> Self::X // OK, desugars to next example
// fn foo(&self) -> <Self as SuperTrait>::X // OK
// }
// ```
//
// However, it is not as simple as allowing `Self` in a projected
// type, because there are illegal ways to use `Self` as well:
//
// ```rust
// trait Trait : SuperTrait {
// ...
// fn foo(&self) -> <Self as SomeOtherTrait>::X;
// }
// ```
//
// Here we will not have the type of `X` recorded in the
// object type, and we cannot resolve `Self as SomeOtherTrait`
// without knowing what `Self` is.
let mut supertraits: Option<Vec<ty::PolyTraitRef<'tcx>>> = None;
let mut error = false;
ty::maybe_walk_ty(ty, |ty| {
match ty.sty {
ty::ty_param(ref param_ty) => {
if param_ty.space == SelfSpace {
error = true;
}
false // no contained types to walk
}
ty::ty_projection(ref data) => {
// This is a projected type `<Foo as SomeTrait>::X`.
// Compute supertraits of current trait lazily.
if supertraits.is_none() {
let trait_def = ty::lookup_trait_def(tcx, trait_def_id);
let trait_ref = ty::Binder(trait_def.trait_ref.clone());
supertraits = Some(traits::supertraits(tcx, trait_ref).collect());
}
// Determine whether the trait reference `Foo as
// SomeTrait` is in fact a supertrait of the
// current trait. In that case, this type is
// legal, because the type `X` will be specified
// in the object type. Note that we can just use
// direct equality here because all of these types
// are part of the formal parameter listing, and
// hence there should be no inference variables.
let projection_trait_ref = ty::Binder(data.trait_ref.clone());
let is_supertrait_of_current_trait =
supertraits.as_ref().unwrap().contains(&projection_trait_ref);
if is_supertrait_of_current_trait {
false // do not walk contained types, do not report error, do collect $200
} else {
true // DO walk contained types, POSSIBLY reporting an error
}
}
_ => true, // walk contained types, if any
}
});
error
}
impl<'tcx> Repr<'tcx> for ObjectSafetyViolation<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
match *self {
ObjectSafetyViolation::SizedSelf =>
format!("SizedSelf"),
ObjectSafetyViolation::Method(ref m, code) =>
format!("Method({},{:?})", m.repr(tcx), code),
}
}
}