696 lines
23 KiB
Rust
696 lines
23 KiB
Rust
//! Port of LLVM's APFloat software floating-point implementation from the
|
|
//! following C++ sources (please update commit hash when backporting):
|
|
//! <https://github.com/llvm-mirror/llvm/tree/23efab2bbd424ed13495a420ad8641cb2c6c28f9>
|
|
//!
|
|
//! * `include/llvm/ADT/APFloat.h` -> `Float` and `FloatConvert` traits
|
|
//! * `lib/Support/APFloat.cpp` -> `ieee` and `ppc` modules
|
|
//! * `unittests/ADT/APFloatTest.cpp` -> `tests` directory
|
|
//!
|
|
//! The port contains no unsafe code, global state, or side-effects in general,
|
|
//! and the only allocations are in the conversion to/from decimal strings.
|
|
//!
|
|
//! Most of the API and the testcases are intact in some form or another,
|
|
//! with some ergonomic changes, such as idiomatic short names, returning
|
|
//! new values instead of mutating the receiver, and having separate method
|
|
//! variants that take a non-default rounding mode (with the suffix `_r`).
|
|
//! Comments have been preserved where possible, only slightly adapted.
|
|
//!
|
|
//! Instead of keeping a pointer to a configuration struct and inspecting it
|
|
//! dynamically on every operation, types (e.g., `ieee::Double`), traits
|
|
//! (e.g., `ieee::Semantics`) and associated constants are employed for
|
|
//! increased type safety and performance.
|
|
//!
|
|
//! On-heap bigints are replaced everywhere (except in decimal conversion),
|
|
//! with short arrays of `type Limb = u128` elements (instead of `u64`),
|
|
//! This allows fitting the largest supported significands in one integer
|
|
//! (`ieee::Quad` and `ppc::Fallback` use slightly less than 128 bits).
|
|
//! All of the functions in the `ieee::sig` module operate on slices.
|
|
//!
|
|
//! # Note
|
|
//!
|
|
//! This API is completely unstable and subject to change.
|
|
|
|
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/")]
|
|
#![no_std]
|
|
#![forbid(unsafe_code)]
|
|
#![feature(nll)]
|
|
#![feature(or_patterns)]
|
|
|
|
#[macro_use]
|
|
extern crate alloc;
|
|
|
|
use core::cmp::Ordering;
|
|
use core::fmt;
|
|
use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
|
|
use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
|
|
use core::str::FromStr;
|
|
|
|
bitflags::bitflags! {
|
|
/// IEEE-754R 7: Default exception handling.
|
|
///
|
|
/// UNDERFLOW or OVERFLOW are always returned or-ed with INEXACT.
|
|
#[must_use]
|
|
pub struct Status: u8 {
|
|
const OK = 0x00;
|
|
const INVALID_OP = 0x01;
|
|
const DIV_BY_ZERO = 0x02;
|
|
const OVERFLOW = 0x04;
|
|
const UNDERFLOW = 0x08;
|
|
const INEXACT = 0x10;
|
|
}
|
|
}
|
|
|
|
#[must_use]
|
|
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
|
|
pub struct StatusAnd<T> {
|
|
pub status: Status,
|
|
pub value: T,
|
|
}
|
|
|
|
impl Status {
|
|
pub fn and<T>(self, value: T) -> StatusAnd<T> {
|
|
StatusAnd { status: self, value }
|
|
}
|
|
}
|
|
|
|
impl<T> StatusAnd<T> {
|
|
pub fn map<F: FnOnce(T) -> U, U>(self, f: F) -> StatusAnd<U> {
|
|
StatusAnd { status: self.status, value: f(self.value) }
|
|
}
|
|
}
|
|
|
|
#[macro_export]
|
|
macro_rules! unpack {
|
|
($status:ident|=, $e:expr) => {
|
|
match $e {
|
|
$crate::StatusAnd { status, value } => {
|
|
$status |= status;
|
|
value
|
|
}
|
|
}
|
|
};
|
|
($status:ident=, $e:expr) => {
|
|
match $e {
|
|
$crate::StatusAnd { status, value } => {
|
|
$status = status;
|
|
value
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Category of internally-represented number.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub enum Category {
|
|
Infinity,
|
|
NaN,
|
|
Normal,
|
|
Zero,
|
|
}
|
|
|
|
/// IEEE-754R 4.3: Rounding-direction attributes.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub enum Round {
|
|
NearestTiesToEven,
|
|
TowardPositive,
|
|
TowardNegative,
|
|
TowardZero,
|
|
NearestTiesToAway,
|
|
}
|
|
|
|
impl Neg for Round {
|
|
type Output = Round;
|
|
fn neg(self) -> Round {
|
|
match self {
|
|
Round::TowardPositive => Round::TowardNegative,
|
|
Round::TowardNegative => Round::TowardPositive,
|
|
Round::NearestTiesToEven | Round::TowardZero | Round::NearestTiesToAway => self,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A signed type to represent a floating point number's unbiased exponent.
|
|
pub type ExpInt = i16;
|
|
|
|
// \c ilogb error results.
|
|
pub const IEK_INF: ExpInt = ExpInt::MAX;
|
|
pub const IEK_NAN: ExpInt = ExpInt::MIN;
|
|
pub const IEK_ZERO: ExpInt = ExpInt::MIN + 1;
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub struct ParseError(pub &'static str);
|
|
|
|
/// A self-contained host- and target-independent arbitrary-precision
|
|
/// floating-point software implementation.
|
|
///
|
|
/// `apfloat` uses significand bignum integer arithmetic as provided by functions
|
|
/// in the `ieee::sig`.
|
|
///
|
|
/// Written for clarity rather than speed, in particular with a view to use in
|
|
/// the front-end of a cross compiler so that target arithmetic can be correctly
|
|
/// performed on the host. Performance should nonetheless be reasonable,
|
|
/// particularly for its intended use. It may be useful as a base
|
|
/// implementation for a run-time library during development of a faster
|
|
/// target-specific one.
|
|
///
|
|
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
|
|
/// implemented operations. Currently implemented operations are add, subtract,
|
|
/// multiply, divide, fused-multiply-add, conversion-to-float,
|
|
/// conversion-to-integer and conversion-from-integer. New rounding modes
|
|
/// (e.g., away from zero) can be added with three or four lines of code.
|
|
///
|
|
/// Four formats are built-in: IEEE single precision, double precision,
|
|
/// quadruple precision, and x87 80-bit extended double (when operating with
|
|
/// full extended precision). Adding a new format that obeys IEEE semantics
|
|
/// only requires adding two lines of code: a declaration and definition of the
|
|
/// format.
|
|
///
|
|
/// All operations return the status of that operation as an exception bit-mask,
|
|
/// so multiple operations can be done consecutively with their results or-ed
|
|
/// together. The returned status can be useful for compiler diagnostics; e.g.,
|
|
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
|
|
/// and compiler optimizers can determine what exceptions would be raised by
|
|
/// folding operations and optimize, or perhaps not optimize, accordingly.
|
|
///
|
|
/// At present, underflow tininess is detected after rounding; it should be
|
|
/// straight forward to add support for the before-rounding case too.
|
|
///
|
|
/// The library reads hexadecimal floating point numbers as per C99, and
|
|
/// correctly rounds if necessary according to the specified rounding mode.
|
|
/// Syntax is required to have been validated by the caller.
|
|
///
|
|
/// It also reads decimal floating point numbers and correctly rounds according
|
|
/// to the specified rounding mode.
|
|
///
|
|
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
|
|
/// signed exponent, and the significand as an array of integer limbs. After
|
|
/// normalization of a number of precision P the exponent is within the range of
|
|
/// the format, and if the number is not denormal the P-th bit of the
|
|
/// significand is set as an explicit integer bit. For denormals the most
|
|
/// significant bit is shifted right so that the exponent is maintained at the
|
|
/// format's minimum, so that the smallest denormal has just the least
|
|
/// significant bit of the significand set. The sign of zeros and infinities
|
|
/// is significant; the exponent and significand of such numbers is not stored,
|
|
/// but has a known implicit (deterministic) value: 0 for the significands, 0
|
|
/// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
|
|
/// significand are deterministic, although not really meaningful, and preserved
|
|
/// in non-conversion operations. The exponent is implicitly all 1 bits.
|
|
///
|
|
/// `apfloat` does not provide any exception handling beyond default exception
|
|
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
|
|
/// by encoding Signaling NaNs with the first bit of its trailing significand
|
|
/// as 0.
|
|
///
|
|
/// Future work
|
|
/// ===========
|
|
///
|
|
/// Some features that may or may not be worth adding:
|
|
///
|
|
/// Optional ability to detect underflow tininess before rounding.
|
|
///
|
|
/// New formats: x87 in single and double precision mode (IEEE apart from
|
|
/// extended exponent range) (hard).
|
|
///
|
|
/// New operations: sqrt, nexttoward.
|
|
///
|
|
pub trait Float:
|
|
Copy
|
|
+ Default
|
|
+ FromStr<Err = ParseError>
|
|
+ PartialOrd
|
|
+ fmt::Display
|
|
+ Neg<Output = Self>
|
|
+ AddAssign
|
|
+ SubAssign
|
|
+ MulAssign
|
|
+ DivAssign
|
|
+ RemAssign
|
|
+ Add<Output = StatusAnd<Self>>
|
|
+ Sub<Output = StatusAnd<Self>>
|
|
+ Mul<Output = StatusAnd<Self>>
|
|
+ Div<Output = StatusAnd<Self>>
|
|
+ Rem<Output = StatusAnd<Self>>
|
|
{
|
|
/// Total number of bits in the in-memory format.
|
|
const BITS: usize;
|
|
|
|
/// Number of bits in the significand. This includes the integer bit.
|
|
const PRECISION: usize;
|
|
|
|
/// The largest E such that 2<sup>E</sup> is representable; this matches the
|
|
/// definition of IEEE 754.
|
|
const MAX_EXP: ExpInt;
|
|
|
|
/// The smallest E such that 2<sup>E</sup> is a normalized number; this
|
|
/// matches the definition of IEEE 754.
|
|
const MIN_EXP: ExpInt;
|
|
|
|
/// Positive Zero.
|
|
const ZERO: Self;
|
|
|
|
/// Positive Infinity.
|
|
const INFINITY: Self;
|
|
|
|
/// NaN (Not a Number).
|
|
// FIXME(eddyb) provide a default when qnan becomes const fn.
|
|
const NAN: Self;
|
|
|
|
/// Factory for QNaN values.
|
|
// FIXME(eddyb) should be const fn.
|
|
fn qnan(payload: Option<u128>) -> Self;
|
|
|
|
/// Factory for SNaN values.
|
|
// FIXME(eddyb) should be const fn.
|
|
fn snan(payload: Option<u128>) -> Self;
|
|
|
|
/// Largest finite number.
|
|
// FIXME(eddyb) should be const (but FloatPair::largest is nontrivial).
|
|
fn largest() -> Self;
|
|
|
|
/// Smallest (by magnitude) finite number.
|
|
/// Might be denormalized, which implies a relative loss of precision.
|
|
const SMALLEST: Self;
|
|
|
|
/// Smallest (by magnitude) normalized finite number.
|
|
// FIXME(eddyb) should be const (but FloatPair::smallest_normalized is nontrivial).
|
|
fn smallest_normalized() -> Self;
|
|
|
|
// Arithmetic
|
|
|
|
fn add_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
|
|
fn sub_r(self, rhs: Self, round: Round) -> StatusAnd<Self> {
|
|
self.add_r(-rhs, round)
|
|
}
|
|
fn mul_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
|
|
fn mul_add_r(self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self>;
|
|
fn mul_add(self, multiplicand: Self, addend: Self) -> StatusAnd<Self> {
|
|
self.mul_add_r(multiplicand, addend, Round::NearestTiesToEven)
|
|
}
|
|
fn div_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
|
|
/// IEEE remainder.
|
|
// This is not currently correct in all cases.
|
|
fn ieee_rem(self, rhs: Self) -> StatusAnd<Self> {
|
|
let mut v = self;
|
|
|
|
let status;
|
|
v = unpack!(status=, v / rhs);
|
|
if status == Status::DIV_BY_ZERO {
|
|
return status.and(self);
|
|
}
|
|
|
|
assert!(Self::PRECISION < 128);
|
|
|
|
let status;
|
|
let x = unpack!(status=, v.to_i128_r(128, Round::NearestTiesToEven, &mut false));
|
|
if status == Status::INVALID_OP {
|
|
return status.and(self);
|
|
}
|
|
|
|
let status;
|
|
let mut v = unpack!(status=, Self::from_i128(x));
|
|
assert_eq!(status, Status::OK); // should always work
|
|
|
|
let status;
|
|
v = unpack!(status=, v * rhs);
|
|
assert_eq!(status - Status::INEXACT, Status::OK); // should not overflow or underflow
|
|
|
|
let status;
|
|
v = unpack!(status=, self - v);
|
|
assert_eq!(status - Status::INEXACT, Status::OK); // likewise
|
|
|
|
if v.is_zero() {
|
|
status.and(v.copy_sign(self)) // IEEE754 requires this
|
|
} else {
|
|
status.and(v)
|
|
}
|
|
}
|
|
/// C fmod, or llvm frem.
|
|
fn c_fmod(self, rhs: Self) -> StatusAnd<Self>;
|
|
fn round_to_integral(self, round: Round) -> StatusAnd<Self>;
|
|
|
|
/// IEEE-754R 2008 5.3.1: nextUp.
|
|
fn next_up(self) -> StatusAnd<Self>;
|
|
|
|
/// IEEE-754R 2008 5.3.1: nextDown.
|
|
///
|
|
/// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
|
|
/// appropriate sign switching before/after the computation.
|
|
fn next_down(self) -> StatusAnd<Self> {
|
|
(-self).next_up().map(|r| -r)
|
|
}
|
|
|
|
fn abs(self) -> Self {
|
|
if self.is_negative() { -self } else { self }
|
|
}
|
|
fn copy_sign(self, rhs: Self) -> Self {
|
|
if self.is_negative() != rhs.is_negative() { -self } else { self }
|
|
}
|
|
|
|
// Conversions
|
|
fn from_bits(input: u128) -> Self;
|
|
fn from_i128_r(input: i128, round: Round) -> StatusAnd<Self> {
|
|
if input < 0 {
|
|
Self::from_u128_r(input.wrapping_neg() as u128, -round).map(|r| -r)
|
|
} else {
|
|
Self::from_u128_r(input as u128, round)
|
|
}
|
|
}
|
|
fn from_i128(input: i128) -> StatusAnd<Self> {
|
|
Self::from_i128_r(input, Round::NearestTiesToEven)
|
|
}
|
|
fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self>;
|
|
fn from_u128(input: u128) -> StatusAnd<Self> {
|
|
Self::from_u128_r(input, Round::NearestTiesToEven)
|
|
}
|
|
fn from_str_r(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError>;
|
|
fn to_bits(self) -> u128;
|
|
|
|
/// Converts a floating point number to an integer according to the
|
|
/// rounding mode. In case of an invalid operation exception,
|
|
/// deterministic values are returned, namely zero for NaNs and the
|
|
/// minimal or maximal value respectively for underflow or overflow.
|
|
/// If the rounded value is in range but the floating point number is
|
|
/// not the exact integer, the C standard doesn't require an inexact
|
|
/// exception to be raised. IEEE-854 does require it so we do that.
|
|
///
|
|
/// Note that for conversions to integer type the C standard requires
|
|
/// round-to-zero to always be used.
|
|
///
|
|
/// The *is_exact output tells whether the result is exact, in the sense
|
|
/// that converting it back to the original floating point type produces
|
|
/// the original value. This is almost equivalent to `result == Status::OK`,
|
|
/// except for negative zeroes.
|
|
fn to_i128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<i128> {
|
|
let status;
|
|
if self.is_negative() {
|
|
if self.is_zero() {
|
|
// Negative zero can't be represented as an int.
|
|
*is_exact = false;
|
|
}
|
|
let r = unpack!(status=, (-self).to_u128_r(width, -round, is_exact));
|
|
|
|
// Check for values that don't fit in the signed integer.
|
|
if r > (1 << (width - 1)) {
|
|
// Return the most negative integer for the given width.
|
|
*is_exact = false;
|
|
Status::INVALID_OP.and(-1 << (width - 1))
|
|
} else {
|
|
status.and(r.wrapping_neg() as i128)
|
|
}
|
|
} else {
|
|
// Positive case is simpler, can pretend it's a smaller unsigned
|
|
// integer, and `to_u128` will take care of all the edge cases.
|
|
self.to_u128_r(width - 1, round, is_exact).map(|r| r as i128)
|
|
}
|
|
}
|
|
fn to_i128(self, width: usize) -> StatusAnd<i128> {
|
|
self.to_i128_r(width, Round::TowardZero, &mut true)
|
|
}
|
|
fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128>;
|
|
fn to_u128(self, width: usize) -> StatusAnd<u128> {
|
|
self.to_u128_r(width, Round::TowardZero, &mut true)
|
|
}
|
|
|
|
fn cmp_abs_normal(self, rhs: Self) -> Ordering;
|
|
|
|
/// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
|
|
fn bitwise_eq(self, rhs: Self) -> bool;
|
|
|
|
// IEEE-754R 5.7.2 General operations.
|
|
|
|
/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
|
|
/// both are not NaN. If either argument is a NaN, returns the other argument.
|
|
fn min(self, other: Self) -> Self {
|
|
if self.is_nan() {
|
|
other
|
|
} else if other.is_nan() {
|
|
self
|
|
} else if other.partial_cmp(&self) == Some(Ordering::Less) {
|
|
other
|
|
} else {
|
|
self
|
|
}
|
|
}
|
|
|
|
/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
|
|
/// both are not NaN. If either argument is a NaN, returns the other argument.
|
|
fn max(self, other: Self) -> Self {
|
|
if self.is_nan() {
|
|
other
|
|
} else if other.is_nan() {
|
|
self
|
|
} else if self.partial_cmp(&other) == Some(Ordering::Less) {
|
|
other
|
|
} else {
|
|
self
|
|
}
|
|
}
|
|
|
|
/// IEEE-754R isSignMinus: Returns whether the current value is
|
|
/// negative.
|
|
///
|
|
/// This applies to zeros and NaNs as well.
|
|
fn is_negative(self) -> bool;
|
|
|
|
/// IEEE-754R isNormal: Returns whether the current value is normal.
|
|
///
|
|
/// This implies that the current value of the float is not zero, subnormal,
|
|
/// infinite, or NaN following the definition of normality from IEEE-754R.
|
|
fn is_normal(self) -> bool {
|
|
!self.is_denormal() && self.is_finite_non_zero()
|
|
}
|
|
|
|
/// Returns `true` if the current value is zero, subnormal, or
|
|
/// normal.
|
|
///
|
|
/// This means that the value is not infinite or NaN.
|
|
fn is_finite(self) -> bool {
|
|
!self.is_nan() && !self.is_infinite()
|
|
}
|
|
|
|
/// Returns `true` if the float is plus or minus zero.
|
|
fn is_zero(self) -> bool {
|
|
self.category() == Category::Zero
|
|
}
|
|
|
|
/// IEEE-754R isSubnormal(): Returns whether the float is a
|
|
/// denormal.
|
|
fn is_denormal(self) -> bool;
|
|
|
|
/// IEEE-754R isInfinite(): Returns whether the float is infinity.
|
|
fn is_infinite(self) -> bool {
|
|
self.category() == Category::Infinity
|
|
}
|
|
|
|
/// Returns `true` if the float is a quiet or signaling NaN.
|
|
fn is_nan(self) -> bool {
|
|
self.category() == Category::NaN
|
|
}
|
|
|
|
/// Returns `true` if the float is a signaling NaN.
|
|
fn is_signaling(self) -> bool;
|
|
|
|
// Simple Queries
|
|
|
|
fn category(self) -> Category;
|
|
fn is_non_zero(self) -> bool {
|
|
!self.is_zero()
|
|
}
|
|
fn is_finite_non_zero(self) -> bool {
|
|
self.is_finite() && !self.is_zero()
|
|
}
|
|
fn is_pos_zero(self) -> bool {
|
|
self.is_zero() && !self.is_negative()
|
|
}
|
|
fn is_neg_zero(self) -> bool {
|
|
self.is_zero() && self.is_negative()
|
|
}
|
|
|
|
/// Returns `true` if the number has the smallest possible non-zero
|
|
/// magnitude in the current semantics.
|
|
fn is_smallest(self) -> bool {
|
|
Self::SMALLEST.copy_sign(self).bitwise_eq(self)
|
|
}
|
|
|
|
/// Returns `true` if the number has the largest possible finite
|
|
/// magnitude in the current semantics.
|
|
fn is_largest(self) -> bool {
|
|
Self::largest().copy_sign(self).bitwise_eq(self)
|
|
}
|
|
|
|
/// Returns `true` if the number is an exact integer.
|
|
fn is_integer(self) -> bool {
|
|
// This could be made more efficient; I'm going for obviously correct.
|
|
if !self.is_finite() {
|
|
return false;
|
|
}
|
|
self.round_to_integral(Round::TowardZero).value.bitwise_eq(self)
|
|
}
|
|
|
|
/// If this value has an exact multiplicative inverse, return it.
|
|
fn get_exact_inverse(self) -> Option<Self>;
|
|
|
|
/// Returns the exponent of the internal representation of the Float.
|
|
///
|
|
/// Because the radix of Float is 2, this is equivalent to floor(log2(x)).
|
|
/// For special Float values, this returns special error codes:
|
|
///
|
|
/// NaN -> \c IEK_NAN
|
|
/// 0 -> \c IEK_ZERO
|
|
/// Inf -> \c IEK_INF
|
|
///
|
|
fn ilogb(self) -> ExpInt;
|
|
|
|
/// Returns: self * 2<sup>exp</sup> for integral exponents.
|
|
/// Equivalent to C standard library function `ldexp`.
|
|
fn scalbn_r(self, exp: ExpInt, round: Round) -> Self;
|
|
fn scalbn(self, exp: ExpInt) -> Self {
|
|
self.scalbn_r(exp, Round::NearestTiesToEven)
|
|
}
|
|
|
|
/// Equivalent to C standard library function with the same name.
|
|
///
|
|
/// While the C standard says exp is an unspecified value for infinity and nan,
|
|
/// this returns INT_MAX for infinities, and INT_MIN for NaNs (see `ilogb`).
|
|
fn frexp_r(self, exp: &mut ExpInt, round: Round) -> Self;
|
|
fn frexp(self, exp: &mut ExpInt) -> Self {
|
|
self.frexp_r(exp, Round::NearestTiesToEven)
|
|
}
|
|
}
|
|
|
|
pub trait FloatConvert<T: Float>: Float {
|
|
/// Converts a value of one floating point type to another.
|
|
/// The return value corresponds to the IEEE754 exceptions. *loses_info
|
|
/// records whether the transformation lost information, i.e., whether
|
|
/// converting the result back to the original type will produce the
|
|
/// original value (this is almost the same as return `value == Status::OK`,
|
|
/// but there are edge cases where this is not so).
|
|
fn convert_r(self, round: Round, loses_info: &mut bool) -> StatusAnd<T>;
|
|
fn convert(self, loses_info: &mut bool) -> StatusAnd<T> {
|
|
self.convert_r(Round::NearestTiesToEven, loses_info)
|
|
}
|
|
}
|
|
|
|
macro_rules! float_common_impls {
|
|
($ty:ident<$t:tt>) => {
|
|
impl<$t> Default for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
fn default() -> Self {
|
|
Self::ZERO
|
|
}
|
|
}
|
|
|
|
impl<$t> ::core::str::FromStr for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
type Err = ParseError;
|
|
fn from_str(s: &str) -> Result<Self, ParseError> {
|
|
Self::from_str_r(s, Round::NearestTiesToEven).map(|x| x.value)
|
|
}
|
|
}
|
|
|
|
// Rounding ties to the nearest even, by default.
|
|
|
|
impl<$t> ::core::ops::Add for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
type Output = StatusAnd<Self>;
|
|
fn add(self, rhs: Self) -> StatusAnd<Self> {
|
|
self.add_r(rhs, Round::NearestTiesToEven)
|
|
}
|
|
}
|
|
|
|
impl<$t> ::core::ops::Sub for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
type Output = StatusAnd<Self>;
|
|
fn sub(self, rhs: Self) -> StatusAnd<Self> {
|
|
self.sub_r(rhs, Round::NearestTiesToEven)
|
|
}
|
|
}
|
|
|
|
impl<$t> ::core::ops::Mul for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
type Output = StatusAnd<Self>;
|
|
fn mul(self, rhs: Self) -> StatusAnd<Self> {
|
|
self.mul_r(rhs, Round::NearestTiesToEven)
|
|
}
|
|
}
|
|
|
|
impl<$t> ::core::ops::Div for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
type Output = StatusAnd<Self>;
|
|
fn div(self, rhs: Self) -> StatusAnd<Self> {
|
|
self.div_r(rhs, Round::NearestTiesToEven)
|
|
}
|
|
}
|
|
|
|
impl<$t> ::core::ops::Rem for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
type Output = StatusAnd<Self>;
|
|
fn rem(self, rhs: Self) -> StatusAnd<Self> {
|
|
self.c_fmod(rhs)
|
|
}
|
|
}
|
|
|
|
impl<$t> ::core::ops::AddAssign for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
fn add_assign(&mut self, rhs: Self) {
|
|
*self = (*self + rhs).value;
|
|
}
|
|
}
|
|
|
|
impl<$t> ::core::ops::SubAssign for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
fn sub_assign(&mut self, rhs: Self) {
|
|
*self = (*self - rhs).value;
|
|
}
|
|
}
|
|
|
|
impl<$t> ::core::ops::MulAssign for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
fn mul_assign(&mut self, rhs: Self) {
|
|
*self = (*self * rhs).value;
|
|
}
|
|
}
|
|
|
|
impl<$t> ::core::ops::DivAssign for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
fn div_assign(&mut self, rhs: Self) {
|
|
*self = (*self / rhs).value;
|
|
}
|
|
}
|
|
|
|
impl<$t> ::core::ops::RemAssign for $ty<$t>
|
|
where
|
|
Self: Float,
|
|
{
|
|
fn rem_assign(&mut self, rhs: Self) {
|
|
*self = (*self % rhs).value;
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
pub mod ieee;
|
|
pub mod ppc;
|