Alex Crichton 5c3ddcb15d rollup merge of #20481: seanmonstar/fmt-show-string
Conflicts:
	src/compiletest/runtest.rs
	src/libcore/fmt/mod.rs
	src/libfmt_macros/lib.rs
	src/libregex/parse.rs
	src/librustc/middle/cfg/construct.rs
	src/librustc/middle/dataflow.rs
	src/librustc/middle/infer/higher_ranked/mod.rs
	src/librustc/middle/ty.rs
	src/librustc_back/archive.rs
	src/librustc_borrowck/borrowck/fragments.rs
	src/librustc_borrowck/borrowck/gather_loans/mod.rs
	src/librustc_resolve/lib.rs
	src/librustc_trans/back/link.rs
	src/librustc_trans/save/mod.rs
	src/librustc_trans/trans/base.rs
	src/librustc_trans/trans/callee.rs
	src/librustc_trans/trans/common.rs
	src/librustc_trans/trans/consts.rs
	src/librustc_trans/trans/controlflow.rs
	src/librustc_trans/trans/debuginfo.rs
	src/librustc_trans/trans/expr.rs
	src/librustc_trans/trans/monomorphize.rs
	src/librustc_typeck/astconv.rs
	src/librustc_typeck/check/method/mod.rs
	src/librustc_typeck/check/mod.rs
	src/librustc_typeck/check/regionck.rs
	src/librustc_typeck/collect.rs
	src/libsyntax/ext/format.rs
	src/libsyntax/ext/source_util.rs
	src/libsyntax/ext/tt/transcribe.rs
	src/libsyntax/parse/mod.rs
	src/libsyntax/parse/token.rs
	src/test/run-pass/issue-8898.rs
2015-01-06 15:22:24 -08:00

884 lines
32 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
///////////////////////////////////////////////////////////////////////////
// # Type combining
//
// There are four type combiners: equate, sub, lub, and glb. Each
// implements the trait `Combine` and contains methods for combining
// two instances of various things and yielding a new instance. These
// combiner methods always yield a `Result<T>`. There is a lot of
// common code for these operations, implemented as default methods on
// the `Combine` trait.
//
// Each operation may have side-effects on the inference context,
// though these can be unrolled using snapshots. On success, the
// LUB/GLB operations return the appropriate bound. The Eq and Sub
// operations generally return the first operand.
//
// ## Contravariance
//
// When you are relating two things which have a contravariant
// relationship, you should use `contratys()` or `contraregions()`,
// rather than inversing the order of arguments! This is necessary
// because the order of arguments is not relevant for LUB and GLB. It
// is also useful to track which value is the "expected" value in
// terms of error reporting.
use super::equate::Equate;
use super::glb::Glb;
use super::lub::Lub;
use super::sub::Sub;
use super::unify::InferCtxtMethodsForSimplyUnifiableTypes;
use super::{InferCtxt, cres};
use super::{MiscVariable, TypeTrace};
use super::type_variable::{RelationDir, EqTo, SubtypeOf, SupertypeOf};
use middle::subst;
use middle::subst::{ErasedRegions, NonerasedRegions, Substs};
use middle::ty::{FloatVar, FnSig, IntVar, TyVar};
use middle::ty::{IntType, UintType};
use middle::ty::{BuiltinBounds};
use middle::ty::{self, Ty};
use middle::ty_fold;
use middle::ty_fold::{TypeFoldable};
use util::ppaux::Repr;
use std::rc::Rc;
use syntax::ast::{Onceness, Unsafety};
use syntax::ast;
use syntax::abi;
use syntax::codemap::Span;
pub trait Combine<'tcx> : Sized {
fn infcx<'a>(&'a self) -> &'a InferCtxt<'a, 'tcx>;
fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx> { self.infcx().tcx }
fn tag(&self) -> String;
fn a_is_expected(&self) -> bool;
fn trace(&self) -> TypeTrace<'tcx>;
fn equate<'a>(&'a self) -> Equate<'a, 'tcx>;
fn sub<'a>(&'a self) -> Sub<'a, 'tcx>;
fn lub<'a>(&'a self) -> Lub<'a, 'tcx>;
fn glb<'a>(&'a self) -> Glb<'a, 'tcx>;
fn mts(&self, a: &ty::mt<'tcx>, b: &ty::mt<'tcx>) -> cres<'tcx, ty::mt<'tcx>>;
fn contratys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> cres<'tcx, Ty<'tcx>>;
fn tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> cres<'tcx, Ty<'tcx>>;
fn tps(&self,
_: subst::ParamSpace,
as_: &[Ty<'tcx>],
bs: &[Ty<'tcx>])
-> cres<'tcx, Vec<Ty<'tcx>>> {
// FIXME -- In general, we treat variance a bit wrong
// here. For historical reasons, we treat tps and Self
// as invariant. This is overly conservative.
if as_.len() != bs.len() {
return Err(ty::terr_ty_param_size(expected_found(self,
as_.len(),
bs.len())));
}
try!(as_.iter().zip(bs.iter())
.map(|(a, b)| self.equate().tys(*a, *b))
.collect::<cres<Vec<Ty>>>());
Ok(as_.to_vec())
}
fn substs(&self,
item_def_id: ast::DefId,
a_subst: &subst::Substs<'tcx>,
b_subst: &subst::Substs<'tcx>)
-> cres<'tcx, subst::Substs<'tcx>>
{
let variances = if self.infcx().tcx.variance_computed.get() {
Some(ty::item_variances(self.infcx().tcx, item_def_id))
} else {
None
};
self.substs_variances(variances.as_ref().map(|v| &**v), a_subst, b_subst)
}
fn substs_variances(&self,
variances: Option<&ty::ItemVariances>,
a_subst: &subst::Substs<'tcx>,
b_subst: &subst::Substs<'tcx>)
-> cres<'tcx, subst::Substs<'tcx>>
{
let mut substs = subst::Substs::empty();
for &space in subst::ParamSpace::all().iter() {
let a_tps = a_subst.types.get_slice(space);
let b_tps = b_subst.types.get_slice(space);
let tps = try!(self.tps(space, a_tps, b_tps));
substs.types.replace(space, tps);
}
match (&a_subst.regions, &b_subst.regions) {
(&ErasedRegions, _) | (_, &ErasedRegions) => {
substs.regions = ErasedRegions;
}
(&NonerasedRegions(ref a), &NonerasedRegions(ref b)) => {
for &space in subst::ParamSpace::all().iter() {
let a_regions = a.get_slice(space);
let b_regions = b.get_slice(space);
let mut invariance = Vec::new();
let r_variances = match variances {
Some(variances) => {
variances.regions.get_slice(space)
}
None => {
for _ in a_regions.iter() {
invariance.push(ty::Invariant);
}
invariance.index(&FullRange)
}
};
let regions = try!(relate_region_params(self,
r_variances,
a_regions,
b_regions));
substs.mut_regions().replace(space, regions);
}
}
}
return Ok(substs);
fn relate_region_params<'tcx, C: Combine<'tcx>>(this: &C,
variances: &[ty::Variance],
a_rs: &[ty::Region],
b_rs: &[ty::Region])
-> cres<'tcx, Vec<ty::Region>> {
let tcx = this.infcx().tcx;
let num_region_params = variances.len();
debug!("relate_region_params(\
a_rs={}, \
b_rs={},
variances={})",
a_rs.repr(tcx),
b_rs.repr(tcx),
variances.repr(tcx));
assert_eq!(num_region_params, a_rs.len());
assert_eq!(num_region_params, b_rs.len());
let mut rs = vec!();
for i in range(0, num_region_params) {
let a_r = a_rs[i];
let b_r = b_rs[i];
let variance = variances[i];
let r = match variance {
ty::Invariant => this.equate().regions(a_r, b_r),
ty::Covariant => this.regions(a_r, b_r),
ty::Contravariant => this.contraregions(a_r, b_r),
ty::Bivariant => Ok(a_r),
};
rs.push(try!(r));
}
Ok(rs)
}
}
fn bare_fn_tys(&self, a: &ty::BareFnTy<'tcx>,
b: &ty::BareFnTy<'tcx>) -> cres<'tcx, ty::BareFnTy<'tcx>> {
let unsafety = try!(self.unsafeties(a.unsafety, b.unsafety));
let abi = try!(self.abi(a.abi, b.abi));
let sig = try!(self.binders(&a.sig, &b.sig));
Ok(ty::BareFnTy {unsafety: unsafety,
abi: abi,
sig: sig})
}
fn closure_tys(&self, a: &ty::ClosureTy<'tcx>,
b: &ty::ClosureTy<'tcx>) -> cres<'tcx, ty::ClosureTy<'tcx>> {
let store = match (a.store, b.store) {
(ty::RegionTraitStore(a_r, a_m),
ty::RegionTraitStore(b_r, b_m)) if a_m == b_m => {
let r = try!(self.contraregions(a_r, b_r));
ty::RegionTraitStore(r, a_m)
}
_ if a.store == b.store => {
a.store
}
_ => {
return Err(ty::terr_sigil_mismatch(expected_found(self, a.store, b.store)))
}
};
let unsafety = try!(self.unsafeties(a.unsafety, b.unsafety));
let onceness = try!(self.oncenesses(a.onceness, b.onceness));
let bounds = try!(self.existential_bounds(&a.bounds, &b.bounds));
let sig = try!(self.binders(&a.sig, &b.sig));
let abi = try!(self.abi(a.abi, b.abi));
Ok(ty::ClosureTy {
unsafety: unsafety,
onceness: onceness,
store: store,
bounds: bounds,
sig: sig,
abi: abi,
})
}
fn fn_sigs(&self, a: &ty::FnSig<'tcx>, b: &ty::FnSig<'tcx>) -> cres<'tcx, ty::FnSig<'tcx>> {
if a.variadic != b.variadic {
return Err(ty::terr_variadic_mismatch(expected_found(self, a.variadic, b.variadic)));
}
let inputs = try!(argvecs(self,
a.inputs.as_slice(),
b.inputs.as_slice()));
let output = try!(match (a.output, b.output) {
(ty::FnConverging(a_ty), ty::FnConverging(b_ty)) =>
Ok(ty::FnConverging(try!(self.tys(a_ty, b_ty)))),
(ty::FnDiverging, ty::FnDiverging) =>
Ok(ty::FnDiverging),
(a, b) =>
Err(ty::terr_convergence_mismatch(
expected_found(self, a != ty::FnDiverging, b != ty::FnDiverging))),
});
return Ok(ty::FnSig {inputs: inputs,
output: output,
variadic: a.variadic});
fn argvecs<'tcx, C: Combine<'tcx>>(combiner: &C,
a_args: &[Ty<'tcx>],
b_args: &[Ty<'tcx>])
-> cres<'tcx, Vec<Ty<'tcx>>>
{
if a_args.len() == b_args.len() {
a_args.iter().zip(b_args.iter())
.map(|(a, b)| combiner.args(*a, *b)).collect()
} else {
Err(ty::terr_arg_count)
}
}
}
fn args(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> cres<'tcx, Ty<'tcx>> {
self.contratys(a, b).and_then(|t| Ok(t))
}
fn unsafeties(&self, a: Unsafety, b: Unsafety) -> cres<'tcx, Unsafety>;
fn abi(&self, a: abi::Abi, b: abi::Abi) -> cres<'tcx, abi::Abi> {
if a == b {
Ok(a)
} else {
Err(ty::terr_abi_mismatch(expected_found(self, a, b)))
}
}
fn oncenesses(&self, a: Onceness, b: Onceness) -> cres<'tcx, Onceness>;
fn projection_tys(&self,
a: &ty::ProjectionTy<'tcx>,
b: &ty::ProjectionTy<'tcx>)
-> cres<'tcx, ty::ProjectionTy<'tcx>>
{
if a.item_name != b.item_name {
Err(ty::terr_projection_name_mismatched(
expected_found(self, a.item_name, b.item_name)))
} else {
let trait_ref = try!(self.trait_refs(&*a.trait_ref, &*b.trait_ref));
Ok(ty::ProjectionTy { trait_ref: Rc::new(trait_ref), item_name: a.item_name })
}
}
fn projection_predicates(&self,
a: &ty::ProjectionPredicate<'tcx>,
b: &ty::ProjectionPredicate<'tcx>)
-> cres<'tcx, ty::ProjectionPredicate<'tcx>>
{
let projection_ty = try!(self.projection_tys(&a.projection_ty, &b.projection_ty));
let ty = try!(self.tys(a.ty, b.ty));
Ok(ty::ProjectionPredicate { projection_ty: projection_ty, ty: ty })
}
fn projection_bounds(&self,
a: &Vec<ty::PolyProjectionPredicate<'tcx>>,
b: &Vec<ty::PolyProjectionPredicate<'tcx>>)
-> cres<'tcx, Vec<ty::PolyProjectionPredicate<'tcx>>>
{
// To be compatible, `a` and `b` must be for precisely the
// same set of traits and item names. We always require that
// projection bounds lists are sorted by trait-def-id and item-name,
// so we can just iterate through the lists pairwise, so long as they are the
// same length.
if a.len() != b.len() {
Err(ty::terr_projection_bounds_length(expected_found(self, a.len(), b.len())))
} else {
a.iter()
.zip(b.iter())
.map(|(a, b)| self.binders(a, b))
.collect()
}
}
fn existential_bounds(&self,
a: &ty::ExistentialBounds<'tcx>,
b: &ty::ExistentialBounds<'tcx>)
-> cres<'tcx, ty::ExistentialBounds<'tcx>>
{
let r = try!(self.contraregions(a.region_bound, b.region_bound));
let nb = try!(self.builtin_bounds(a.builtin_bounds, b.builtin_bounds));
let pb = try!(self.projection_bounds(&a.projection_bounds, &b.projection_bounds));
Ok(ty::ExistentialBounds { region_bound: r,
builtin_bounds: nb,
projection_bounds: pb })
}
fn builtin_bounds(&self,
a: ty::BuiltinBounds,
b: ty::BuiltinBounds)
-> cres<'tcx, ty::BuiltinBounds>;
fn contraregions(&self, a: ty::Region, b: ty::Region)
-> cres<'tcx, ty::Region>;
fn regions(&self, a: ty::Region, b: ty::Region) -> cres<'tcx, ty::Region>;
fn trait_stores(&self,
vk: ty::terr_vstore_kind,
a: ty::TraitStore,
b: ty::TraitStore)
-> cres<'tcx, ty::TraitStore> {
debug!("{}.trait_stores(a={:?}, b={:?})", self.tag(), a, b);
match (a, b) {
(ty::RegionTraitStore(a_r, a_m),
ty::RegionTraitStore(b_r, b_m)) if a_m == b_m => {
self.contraregions(a_r, b_r).and_then(|r| {
Ok(ty::RegionTraitStore(r, a_m))
})
}
_ if a == b => {
Ok(a)
}
_ => {
Err(ty::terr_trait_stores_differ(vk, expected_found(self, a, b)))
}
}
}
fn trait_refs(&self,
a: &ty::TraitRef<'tcx>,
b: &ty::TraitRef<'tcx>)
-> cres<'tcx, ty::TraitRef<'tcx>>
{
// Different traits cannot be related
if a.def_id != b.def_id {
Err(ty::terr_traits(expected_found(self, a.def_id, b.def_id)))
} else {
let substs = try!(self.substs(a.def_id, a.substs, b.substs));
Ok(ty::TraitRef { def_id: a.def_id, substs: self.tcx().mk_substs(substs) })
}
}
fn binders<T>(&self, a: &ty::Binder<T>, b: &ty::Binder<T>) -> cres<'tcx, ty::Binder<T>>
where T : Combineable<'tcx>;
// this must be overridden to do correctly, so as to account for higher-ranked
// behavior
}
pub trait Combineable<'tcx> : Repr<'tcx> + TypeFoldable<'tcx> {
fn combine<C:Combine<'tcx>>(combiner: &C, a: &Self, b: &Self) -> cres<'tcx, Self>;
}
impl<'tcx,T> Combineable<'tcx> for Rc<T>
where T : Combineable<'tcx>
{
fn combine<C:Combine<'tcx>>(combiner: &C,
a: &Rc<T>,
b: &Rc<T>)
-> cres<'tcx, Rc<T>>
{
Ok(Rc::new(try!(Combineable::combine(combiner, &**a, &**b))))
}
}
impl<'tcx> Combineable<'tcx> for ty::TraitRef<'tcx> {
fn combine<C:Combine<'tcx>>(combiner: &C,
a: &ty::TraitRef<'tcx>,
b: &ty::TraitRef<'tcx>)
-> cres<'tcx, ty::TraitRef<'tcx>>
{
combiner.trait_refs(a, b)
}
}
impl<'tcx> Combineable<'tcx> for ty::ProjectionPredicate<'tcx> {
fn combine<C:Combine<'tcx>>(combiner: &C,
a: &ty::ProjectionPredicate<'tcx>,
b: &ty::ProjectionPredicate<'tcx>)
-> cres<'tcx, ty::ProjectionPredicate<'tcx>>
{
combiner.projection_predicates(a, b)
}
}
impl<'tcx> Combineable<'tcx> for ty::FnSig<'tcx> {
fn combine<C:Combine<'tcx>>(combiner: &C,
a: &ty::FnSig<'tcx>,
b: &ty::FnSig<'tcx>)
-> cres<'tcx, ty::FnSig<'tcx>>
{
combiner.fn_sigs(a, b)
}
}
#[derive(Clone)]
pub struct CombineFields<'a, 'tcx: 'a> {
pub infcx: &'a InferCtxt<'a, 'tcx>,
pub a_is_expected: bool,
pub trace: TypeTrace<'tcx>,
}
pub fn expected_found<'tcx, C: Combine<'tcx>, T>(
this: &C, a: T, b: T) -> ty::expected_found<T> {
if this.a_is_expected() {
ty::expected_found {expected: a, found: b}
} else {
ty::expected_found {expected: b, found: a}
}
}
pub fn super_tys<'tcx, C: Combine<'tcx>>(this: &C,
a: Ty<'tcx>,
b: Ty<'tcx>)
-> cres<'tcx, Ty<'tcx>>
{
let tcx = this.infcx().tcx;
let a_sty = &a.sty;
let b_sty = &b.sty;
debug!("super_tys: a_sty={:?} b_sty={:?}", a_sty, b_sty);
return match (a_sty, b_sty) {
// The "subtype" ought to be handling cases involving var:
(&ty::ty_infer(TyVar(_)), _) |
(_, &ty::ty_infer(TyVar(_))) => {
tcx.sess.bug(
format!("{}: bot and var types should have been handled ({},{})",
this.tag(),
a.repr(this.infcx().tcx),
b.repr(this.infcx().tcx)).index(&FullRange));
}
(&ty::ty_err, _) | (_, &ty::ty_err) => {
Ok(tcx.types.err)
}
// Relate integral variables to other types
(&ty::ty_infer(IntVar(a_id)), &ty::ty_infer(IntVar(b_id))) => {
try!(this.infcx().simple_vars(this.a_is_expected(),
a_id, b_id));
Ok(a)
}
(&ty::ty_infer(IntVar(v_id)), &ty::ty_int(v)) => {
unify_integral_variable(this, this.a_is_expected(),
v_id, IntType(v))
}
(&ty::ty_int(v), &ty::ty_infer(IntVar(v_id))) => {
unify_integral_variable(this, !this.a_is_expected(),
v_id, IntType(v))
}
(&ty::ty_infer(IntVar(v_id)), &ty::ty_uint(v)) => {
unify_integral_variable(this, this.a_is_expected(),
v_id, UintType(v))
}
(&ty::ty_uint(v), &ty::ty_infer(IntVar(v_id))) => {
unify_integral_variable(this, !this.a_is_expected(),
v_id, UintType(v))
}
// Relate floating-point variables to other types
(&ty::ty_infer(FloatVar(a_id)), &ty::ty_infer(FloatVar(b_id))) => {
try!(this.infcx().simple_vars(this.a_is_expected(), a_id, b_id));
Ok(a)
}
(&ty::ty_infer(FloatVar(v_id)), &ty::ty_float(v)) => {
unify_float_variable(this, this.a_is_expected(), v_id, v)
}
(&ty::ty_float(v), &ty::ty_infer(FloatVar(v_id))) => {
unify_float_variable(this, !this.a_is_expected(), v_id, v)
}
(&ty::ty_char, _) |
(&ty::ty_bool, _) |
(&ty::ty_int(_), _) |
(&ty::ty_uint(_), _) |
(&ty::ty_float(_), _) => {
if a == b {
Ok(a)
} else {
Err(ty::terr_sorts(expected_found(this, a, b)))
}
}
(&ty::ty_param(ref a_p), &ty::ty_param(ref b_p)) if
a_p.idx == b_p.idx && a_p.space == b_p.space => {
Ok(a)
}
(&ty::ty_enum(a_id, a_substs),
&ty::ty_enum(b_id, b_substs))
if a_id == b_id => {
let substs = try!(this.substs(a_id,
a_substs,
b_substs));
Ok(ty::mk_enum(tcx, a_id, tcx.mk_substs(substs)))
}
(&ty::ty_trait(ref a_),
&ty::ty_trait(ref b_)) => {
debug!("Trying to match traits {:?} and {:?}", a, b);
let principal = try!(this.binders(&a_.principal, &b_.principal));
let bounds = try!(this.existential_bounds(&a_.bounds, &b_.bounds));
Ok(ty::mk_trait(tcx, principal, bounds))
}
(&ty::ty_struct(a_id, a_substs), &ty::ty_struct(b_id, b_substs))
if a_id == b_id => {
let substs = try!(this.substs(a_id, a_substs, b_substs));
Ok(ty::mk_struct(tcx, a_id, tcx.mk_substs(substs)))
}
(&ty::ty_unboxed_closure(a_id, a_region, a_substs),
&ty::ty_unboxed_closure(b_id, b_region, b_substs))
if a_id == b_id => {
// All ty_unboxed_closure types with the same id represent
// the (anonymous) type of the same closure expression. So
// all of their regions should be equated.
let region = try!(this.equate().regions(*a_region, *b_region));
let substs = try!(this.substs_variances(None, a_substs, b_substs));
Ok(ty::mk_unboxed_closure(tcx, a_id, tcx.mk_region(region), tcx.mk_substs(substs)))
}
(&ty::ty_uniq(a_inner), &ty::ty_uniq(b_inner)) => {
let typ = try!(this.tys(a_inner, b_inner));
Ok(ty::mk_uniq(tcx, typ))
}
(&ty::ty_ptr(ref a_mt), &ty::ty_ptr(ref b_mt)) => {
let mt = try!(this.mts(a_mt, b_mt));
Ok(ty::mk_ptr(tcx, mt))
}
(&ty::ty_rptr(a_r, ref a_mt), &ty::ty_rptr(b_r, ref b_mt)) => {
let r = try!(this.contraregions(*a_r, *b_r));
// FIXME(14985) If we have mutable references to trait objects, we
// used to use covariant subtyping. I have preserved this behaviour,
// even though it is probably incorrect. So don't go down the usual
// path which would require invariance.
let mt = match (&a_mt.ty.sty, &b_mt.ty.sty) {
(&ty::ty_trait(..), &ty::ty_trait(..)) if a_mt.mutbl == b_mt.mutbl => {
let ty = try!(this.tys(a_mt.ty, b_mt.ty));
ty::mt { ty: ty, mutbl: a_mt.mutbl }
}
_ => try!(this.mts(a_mt, b_mt))
};
Ok(ty::mk_rptr(tcx, tcx.mk_region(r), mt))
}
(&ty::ty_vec(a_t, Some(sz_a)), &ty::ty_vec(b_t, Some(sz_b))) => {
this.tys(a_t, b_t).and_then(|t| {
if sz_a == sz_b {
Ok(ty::mk_vec(tcx, t, Some(sz_a)))
} else {
Err(ty::terr_fixed_array_size(expected_found(this, sz_a, sz_b)))
}
})
}
(&ty::ty_vec(a_t, sz_a), &ty::ty_vec(b_t, sz_b)) => {
this.tys(a_t, b_t).and_then(|t| {
if sz_a == sz_b {
Ok(ty::mk_vec(tcx, t, sz_a))
} else {
Err(ty::terr_sorts(expected_found(this, a, b)))
}
})
}
(&ty::ty_str, &ty::ty_str) => {
Ok(ty::mk_str(tcx))
}
(&ty::ty_tup(ref as_), &ty::ty_tup(ref bs)) => {
if as_.len() == bs.len() {
as_.iter().zip(bs.iter())
.map(|(a, b)| this.tys(*a, *b))
.collect::<Result<_, _>>()
.map(|ts| ty::mk_tup(tcx, ts))
} else if as_.len() != 0 && bs.len() != 0 {
Err(ty::terr_tuple_size(
expected_found(this, as_.len(), bs.len())))
} else {
Err(ty::terr_sorts(expected_found(this, a, b)))
}
}
(&ty::ty_bare_fn(a_opt_def_id, a_fty), &ty::ty_bare_fn(b_opt_def_id, b_fty))
if a_opt_def_id == b_opt_def_id =>
{
let fty = try!(this.bare_fn_tys(a_fty, b_fty));
Ok(ty::mk_bare_fn(tcx, a_opt_def_id, tcx.mk_bare_fn(fty)))
}
(&ty::ty_projection(ref a_data), &ty::ty_projection(ref b_data)) => {
let projection_ty = try!(this.projection_tys(a_data, b_data));
Ok(ty::mk_projection(tcx, projection_ty.trait_ref, projection_ty.item_name))
}
_ => Err(ty::terr_sorts(expected_found(this, a, b)))
};
fn unify_integral_variable<'tcx, C: Combine<'tcx>>(
this: &C,
vid_is_expected: bool,
vid: ty::IntVid,
val: ty::IntVarValue) -> cres<'tcx, Ty<'tcx>>
{
try!(this.infcx().simple_var_t(vid_is_expected, vid, val));
match val {
IntType(v) => Ok(ty::mk_mach_int(this.tcx(), v)),
UintType(v) => Ok(ty::mk_mach_uint(this.tcx(), v))
}
}
fn unify_float_variable<'tcx, C: Combine<'tcx>>(
this: &C,
vid_is_expected: bool,
vid: ty::FloatVid,
val: ast::FloatTy) -> cres<'tcx, Ty<'tcx>>
{
try!(this.infcx().simple_var_t(vid_is_expected, vid, val));
Ok(ty::mk_mach_float(this.tcx(), val))
}
}
impl<'f, 'tcx> CombineFields<'f, 'tcx> {
pub fn switch_expected(&self) -> CombineFields<'f, 'tcx> {
CombineFields {
a_is_expected: !self.a_is_expected,
..(*self).clone()
}
}
fn equate(&self) -> Equate<'f, 'tcx> {
Equate((*self).clone())
}
fn sub(&self) -> Sub<'f, 'tcx> {
Sub((*self).clone())
}
pub fn instantiate(&self,
a_ty: Ty<'tcx>,
dir: RelationDir,
b_vid: ty::TyVid)
-> cres<'tcx, ()>
{
let tcx = self.infcx.tcx;
let mut stack = Vec::new();
stack.push((a_ty, dir, b_vid));
loop {
// For each turn of the loop, we extract a tuple
//
// (a_ty, dir, b_vid)
//
// to relate. Here dir is either SubtypeOf or
// SupertypeOf. The idea is that we should ensure that
// the type `a_ty` is a subtype or supertype (respectively) of the
// type to which `b_vid` is bound.
//
// If `b_vid` has not yet been instantiated with a type
// (which is always true on the first iteration, but not
// necessarily true on later iterations), we will first
// instantiate `b_vid` with a *generalized* version of
// `a_ty`. Generalization introduces other inference
// variables wherever subtyping could occur (at time of
// this writing, this means replacing free regions with
// region variables).
let (a_ty, dir, b_vid) = match stack.pop() {
None => break,
Some(e) => e,
};
debug!("instantiate(a_ty={} dir={:?} b_vid={})",
a_ty.repr(tcx),
dir,
b_vid.repr(tcx));
// Check whether `vid` has been instantiated yet. If not,
// make a generalized form of `ty` and instantiate with
// that.
let b_ty = self.infcx.type_variables.borrow().probe(b_vid);
let b_ty = match b_ty {
Some(t) => t, // ...already instantiated.
None => { // ...not yet instantiated:
// Generalize type if necessary.
let generalized_ty = try!(match dir {
EqTo => {
self.generalize(a_ty, b_vid, false)
}
SupertypeOf | SubtypeOf => {
self.generalize(a_ty, b_vid, true)
}
});
debug!("instantiate(a_ty={}, dir={:?}, \
b_vid={}, generalized_ty={})",
a_ty.repr(tcx), dir, b_vid.repr(tcx),
generalized_ty.repr(tcx));
self.infcx.type_variables
.borrow_mut()
.instantiate_and_push(
b_vid, generalized_ty, &mut stack);
generalized_ty
}
};
// The original triple was `(a_ty, dir, b_vid)` -- now we have
// resolved `b_vid` to `b_ty`, so apply `(a_ty, dir, b_ty)`:
//
// FIXME(#16847): This code is non-ideal because all these subtype
// relations wind up attributed to the same spans. We need
// to associate causes/spans with each of the relations in
// the stack to get this right.
match dir {
EqTo => {
try!(self.equate().tys(a_ty, b_ty));
}
SubtypeOf => {
try!(self.sub().tys(a_ty, b_ty));
}
SupertypeOf => {
try!(self.sub().contratys(a_ty, b_ty));
}
}
}
Ok(())
}
/// Attempts to generalize `ty` for the type variable `for_vid`. This checks for cycle -- that
/// is, whether the type `ty` references `for_vid`. If `make_region_vars` is true, it will also
/// replace all regions with fresh variables. Returns `ty_err` in the case of a cycle, `Ok`
/// otherwise.
fn generalize(&self,
ty: Ty<'tcx>,
for_vid: ty::TyVid,
make_region_vars: bool)
-> cres<'tcx, Ty<'tcx>>
{
let mut generalize = Generalizer { infcx: self.infcx,
span: self.trace.origin.span(),
for_vid: for_vid,
make_region_vars: make_region_vars,
cycle_detected: false };
let u = ty.fold_with(&mut generalize);
if generalize.cycle_detected {
Err(ty::terr_cyclic_ty)
} else {
Ok(u)
}
}
}
struct Generalizer<'cx, 'tcx:'cx> {
infcx: &'cx InferCtxt<'cx, 'tcx>,
span: Span,
for_vid: ty::TyVid,
make_region_vars: bool,
cycle_detected: bool,
}
impl<'cx, 'tcx> ty_fold::TypeFolder<'tcx> for Generalizer<'cx, 'tcx> {
fn tcx(&self) -> &ty::ctxt<'tcx> {
self.infcx.tcx
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
// Check to see whether the type we are genealizing references
// `vid`. At the same time, also update any type variables to
// the values that they are bound to. This is needed to truly
// check for cycles, but also just makes things readable.
//
// (In particular, you could have something like `$0 = Box<$1>`
// where `$1` has already been instantiated with `Box<$0>`)
match t.sty {
ty::ty_infer(ty::TyVar(vid)) => {
if vid == self.for_vid {
self.cycle_detected = true;
self.tcx().types.err
} else {
match self.infcx.type_variables.borrow().probe(vid) {
Some(u) => self.fold_ty(u),
None => t,
}
}
}
_ => {
ty_fold::super_fold_ty(self, t)
}
}
}
fn fold_region(&mut self, r: ty::Region) -> ty::Region {
match r {
// Never make variables for regions bound within the type itself.
ty::ReLateBound(..) => { return r; }
// Early-bound regions should really have been substituted away before
// we get to this point.
ty::ReEarlyBound(..) => {
self.tcx().sess.span_bug(
self.span,
format!("Encountered early bound region when generalizing: {}",
r.repr(self.tcx())).index(&FullRange));
}
// Always make a fresh region variable for skolemized regions;
// the higher-ranked decision procedures rely on this.
ty::ReInfer(ty::ReSkolemized(..)) => { }
// For anything else, we make a region variable, unless we
// are *equating*, in which case it's just wasteful.
ty::ReEmpty |
ty::ReStatic |
ty::ReScope(..) |
ty::ReInfer(ty::ReVar(..)) |
ty::ReFree(..) => {
if !self.make_region_vars {
return r;
}
}
}
// FIXME: This is non-ideal because we don't give a
// very descriptive origin for this region variable.
self.infcx.next_region_var(MiscVariable(self.span))
}
}