rust/src/librustc/middle/dead.rs
Alex Crichton 9d5d97b55d Remove a large amount of deprecated functionality
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.

This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.

[breaking-change]
2014-10-19 12:59:40 -07:00

598 lines
21 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// This implements the dead-code warning pass. It follows middle::reachable
// closely. The idea is that all reachable symbols are live, codes called
// from live codes are live, and everything else is dead.
use middle::def;
use middle::pat_util;
use middle::privacy;
use middle::ty;
use middle::typeck;
use lint;
use util::nodemap::NodeSet;
use std::collections::HashSet;
use syntax::ast;
use syntax::ast_map;
use syntax::ast_util::{local_def, is_local, PostExpansionMethod};
use syntax::attr::{mod, AttrMetaMethods};
use syntax::codemap;
use syntax::visit::{mod, Visitor};
// Any local node that may call something in its body block should be
// explored. For example, if it's a live NodeItem that is a
// function, then we should explore its block to check for codes that
// may need to be marked as live.
fn should_explore(tcx: &ty::ctxt, def_id: ast::DefId) -> bool {
if !is_local(def_id) {
return false;
}
match tcx.map.find(def_id.node) {
Some(ast_map::NodeItem(..))
| Some(ast_map::NodeImplItem(..))
| Some(ast_map::NodeForeignItem(..))
| Some(ast_map::NodeTraitItem(..)) => true,
_ => false
}
}
struct MarkSymbolVisitor<'a, 'tcx: 'a> {
worklist: Vec<ast::NodeId>,
tcx: &'a ty::ctxt<'tcx>,
live_symbols: Box<HashSet<ast::NodeId>>,
struct_has_extern_repr: bool,
ignore_paths: bool
}
impl<'a, 'tcx> MarkSymbolVisitor<'a, 'tcx> {
fn new(tcx: &'a ty::ctxt<'tcx>,
worklist: Vec<ast::NodeId>) -> MarkSymbolVisitor<'a, 'tcx> {
MarkSymbolVisitor {
worklist: worklist,
tcx: tcx,
live_symbols: box HashSet::new(),
struct_has_extern_repr: false,
ignore_paths: false
}
}
fn check_def_id(&mut self, def_id: ast::DefId) {
if should_explore(self.tcx, def_id) {
self.worklist.push(def_id.node);
}
self.live_symbols.insert(def_id.node);
}
fn lookup_and_handle_definition(&mut self, id: &ast::NodeId) {
self.tcx.def_map.borrow().find(id).map(|def| {
match def {
&def::DefPrimTy(_) => (),
&def::DefVariant(enum_id, variant_id, _) => {
self.check_def_id(enum_id);
self.check_def_id(variant_id);
}
_ => {
self.check_def_id(def.def_id());
}
}
});
}
fn lookup_and_handle_method(&mut self, id: ast::NodeId,
span: codemap::Span) {
let method_call = typeck::MethodCall::expr(id);
match self.tcx.method_map.borrow().find(&method_call) {
Some(method) => {
match method.origin {
typeck::MethodStatic(def_id) => {
match ty::provided_source(self.tcx, def_id) {
Some(p_did) => self.check_def_id(p_did),
None => self.check_def_id(def_id)
}
}
typeck::MethodStaticUnboxedClosure(_) => {}
typeck::MethodTypeParam(typeck::MethodParam {
trait_ref: ref trait_ref,
method_num: index,
..
}) |
typeck::MethodTraitObject(typeck::MethodObject {
trait_ref: ref trait_ref,
method_num: index,
..
}) => {
let trait_item = ty::trait_item(self.tcx,
trait_ref.def_id,
index);
match trait_item {
ty::MethodTraitItem(method) => {
self.check_def_id(method.def_id);
}
ty::TypeTraitItem(typedef) => {
self.check_def_id(typedef.def_id);
}
}
}
}
}
None => {
self.tcx.sess.span_bug(span,
"method call expression not \
in method map?!")
}
}
}
fn handle_field_access(&mut self, lhs: &ast::Expr, name: &ast::Ident) {
match ty::get(ty::expr_ty_adjusted(self.tcx, lhs)).sty {
ty::ty_struct(id, _) => {
let fields = ty::lookup_struct_fields(self.tcx, id);
let field_id = fields.iter()
.find(|field| field.name == name.name).unwrap().id;
self.live_symbols.insert(field_id.node);
},
_ => ()
}
}
fn handle_tup_field_access(&mut self, lhs: &ast::Expr, idx: uint) {
match ty::get(ty::expr_ty_adjusted(self.tcx, lhs)).sty {
ty::ty_struct(id, _) => {
let fields = ty::lookup_struct_fields(self.tcx, id);
let field_id = fields[idx].id;
self.live_symbols.insert(field_id.node);
},
_ => ()
}
}
fn handle_field_pattern_match(&mut self, lhs: &ast::Pat, pats: &[ast::FieldPat]) {
let id = match (*self.tcx.def_map.borrow())[lhs.id] {
def::DefVariant(_, id, _) => id,
_ => {
match ty::ty_to_def_id(ty::node_id_to_type(self.tcx,
lhs.id)) {
None => {
self.tcx.sess.span_bug(lhs.span,
"struct pattern wasn't of a \
type with a def ID?!")
}
Some(def_id) => def_id,
}
}
};
let fields = ty::lookup_struct_fields(self.tcx, id);
for pat in pats.iter() {
let field_id = fields.iter()
.find(|field| field.name == pat.ident.name).unwrap().id;
self.live_symbols.insert(field_id.node);
}
}
fn mark_live_symbols(&mut self) {
let mut scanned = HashSet::new();
while self.worklist.len() > 0 {
let id = self.worklist.pop().unwrap();
if scanned.contains(&id) {
continue
}
scanned.insert(id);
match self.tcx.map.find(id) {
Some(ref node) => {
self.live_symbols.insert(id);
self.visit_node(node);
}
None => (),
}
}
}
fn visit_node(&mut self, node: &ast_map::Node) {
let had_extern_repr = self.struct_has_extern_repr;
self.struct_has_extern_repr = false;
match *node {
ast_map::NodeItem(item) => {
match item.node {
ast::ItemStruct(..) => {
self.struct_has_extern_repr = item.attrs.iter().any(|attr| {
attr::find_repr_attrs(self.tcx.sess.diagnostic(), attr)
.contains(&attr::ReprExtern)
});
visit::walk_item(self, &*item);
}
ast::ItemFn(..)
| ast::ItemEnum(..)
| ast::ItemTy(..)
| ast::ItemStatic(..)
| ast::ItemConst(..) => {
visit::walk_item(self, &*item);
}
_ => ()
}
}
ast_map::NodeTraitItem(trait_method) => {
visit::walk_trait_item(self, trait_method);
}
ast_map::NodeImplItem(impl_item) => {
match *impl_item {
ast::MethodImplItem(ref method) => {
visit::walk_block(self, method.pe_body());
}
ast::TypeImplItem(_) => {}
}
}
ast_map::NodeForeignItem(foreign_item) => {
visit::walk_foreign_item(self, &*foreign_item);
}
_ => ()
}
self.struct_has_extern_repr = had_extern_repr;
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for MarkSymbolVisitor<'a, 'tcx> {
fn visit_struct_def(&mut self, def: &ast::StructDef, _: ast::Ident,
_: &ast::Generics, _: ast::NodeId) {
let has_extern_repr = self.struct_has_extern_repr;
let live_fields = def.fields.iter().filter(|f| {
has_extern_repr || match f.node.kind {
ast::NamedField(_, ast::Public) => true,
_ => false
}
});
self.live_symbols.extend(live_fields.map(|f| f.node.id));
visit::walk_struct_def(self, def);
}
fn visit_expr(&mut self, expr: &ast::Expr) {
match expr.node {
ast::ExprMethodCall(..) => {
self.lookup_and_handle_method(expr.id, expr.span);
}
ast::ExprField(ref lhs, ref ident, _) => {
self.handle_field_access(&**lhs, &ident.node);
}
ast::ExprTupField(ref lhs, idx, _) => {
self.handle_tup_field_access(&**lhs, idx.node);
}
_ => ()
}
visit::walk_expr(self, expr);
}
fn visit_pat(&mut self, pat: &ast::Pat) {
let def_map = &self.tcx.def_map;
match pat.node {
ast::PatStruct(_, ref fields, _) => {
self.handle_field_pattern_match(pat, fields.as_slice());
}
_ if pat_util::pat_is_const(def_map, pat) => {
// it might be the only use of a static:
self.lookup_and_handle_definition(&pat.id)
}
_ => ()
}
self.ignore_paths = true;
visit::walk_pat(self, pat);
self.ignore_paths = false;
}
fn visit_path(&mut self, path: &ast::Path, id: ast::NodeId) {
if !self.ignore_paths {
self.lookup_and_handle_definition(&id);
}
visit::walk_path(self, path);
}
fn visit_item(&mut self, _: &ast::Item) {
// Do not recurse into items. These items will be added to the
// worklist and recursed into manually if necessary.
}
}
fn has_allow_dead_code_or_lang_attr(attrs: &[ast::Attribute]) -> bool {
if attr::contains_name(attrs.as_slice(), "lang") {
return true;
}
let dead_code = lint::builtin::DEAD_CODE.name_lower();
for attr in lint::gather_attrs(attrs).into_iter() {
match attr {
Ok((ref name, lint::Allow, _))
if name.get() == dead_code.as_slice() => return true,
_ => (),
}
}
false
}
// This visitor seeds items that
// 1) We want to explicitly consider as live:
// * Item annotated with #[allow(dead_code)]
// - This is done so that if we want to suppress warnings for a
// group of dead functions, we only have to annotate the "root".
// For example, if both `f` and `g` are dead and `f` calls `g`,
// then annotating `f` with `#[allow(dead_code)]` will suppress
// warning for both `f` and `g`.
// * Item annotated with #[lang=".."]
// - This is because lang items are always callable from elsewhere.
// or
// 2) We are not sure to be live or not
// * Implementation of a trait method
struct LifeSeeder {
worklist: Vec<ast::NodeId>
}
impl<'v> Visitor<'v> for LifeSeeder {
fn visit_item(&mut self, item: &ast::Item) {
let allow_dead_code = has_allow_dead_code_or_lang_attr(item.attrs.as_slice());
if allow_dead_code {
self.worklist.push(item.id);
}
match item.node {
ast::ItemEnum(ref enum_def, _) if allow_dead_code => {
self.worklist.extend(enum_def.variants.iter().map(|variant| variant.node.id));
}
ast::ItemImpl(_, Some(ref _trait_ref), _, ref impl_items) => {
for impl_item in impl_items.iter() {
match *impl_item {
ast::MethodImplItem(ref method) => {
self.worklist.push(method.id);
}
ast::TypeImplItem(_) => {}
}
}
}
_ => ()
}
visit::walk_item(self, item);
}
fn visit_fn(&mut self, fk: visit::FnKind<'v>,
_: &'v ast::FnDecl, block: &'v ast::Block,
_: codemap::Span, id: ast::NodeId) {
// Check for method here because methods are not ast::Item
match fk {
visit::FkMethod(_, _, method) => {
if has_allow_dead_code_or_lang_attr(method.attrs.as_slice()) {
self.worklist.push(id);
}
}
_ => ()
}
visit::walk_block(self, block);
}
}
fn create_and_seed_worklist(tcx: &ty::ctxt,
exported_items: &privacy::ExportedItems,
reachable_symbols: &NodeSet,
krate: &ast::Crate) -> Vec<ast::NodeId> {
let mut worklist = Vec::new();
// Preferably, we would only need to seed the worklist with reachable
// symbols. However, since the set of reachable symbols differs
// depending on whether a crate is built as bin or lib, and we want
// the warning to be consistent, we also seed the worklist with
// exported symbols.
for id in exported_items.iter() {
worklist.push(*id);
}
for id in reachable_symbols.iter() {
worklist.push(*id);
}
// Seed entry point
match *tcx.sess.entry_fn.borrow() {
Some((id, _)) => worklist.push(id),
None => ()
}
// Seed implemented trait methods
let mut life_seeder = LifeSeeder {
worklist: worklist
};
visit::walk_crate(&mut life_seeder, krate);
return life_seeder.worklist;
}
fn find_live(tcx: &ty::ctxt,
exported_items: &privacy::ExportedItems,
reachable_symbols: &NodeSet,
krate: &ast::Crate)
-> Box<HashSet<ast::NodeId>> {
let worklist = create_and_seed_worklist(tcx, exported_items,
reachable_symbols, krate);
let mut symbol_visitor = MarkSymbolVisitor::new(tcx, worklist);
symbol_visitor.mark_live_symbols();
symbol_visitor.live_symbols
}
fn get_struct_ctor_id(item: &ast::Item) -> Option<ast::NodeId> {
match item.node {
ast::ItemStruct(ref struct_def, _) => struct_def.ctor_id,
_ => None
}
}
struct DeadVisitor<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
live_symbols: Box<HashSet<ast::NodeId>>,
}
impl<'a, 'tcx> DeadVisitor<'a, 'tcx> {
fn should_warn_about_item(&mut self, item: &ast::Item) -> bool {
let should_warn = match item.node {
ast::ItemStatic(..)
| ast::ItemConst(..)
| ast::ItemFn(..)
| ast::ItemEnum(..)
| ast::ItemStruct(..) => true,
_ => false
};
let ctor_id = get_struct_ctor_id(item);
should_warn && !self.symbol_is_live(item.id, ctor_id)
}
fn should_warn_about_field(&mut self, node: &ast::StructField_) -> bool {
let is_named = node.ident().is_some();
let field_type = ty::node_id_to_type(self.tcx, node.id);
let is_marker_field = match ty::ty_to_def_id(field_type) {
Some(def_id) => self.tcx.lang_items.items().any(|(_, item)| *item == Some(def_id)),
_ => false
};
is_named
&& !self.symbol_is_live(node.id, None)
&& !is_marker_field
&& !has_allow_dead_code_or_lang_attr(node.attrs.as_slice())
}
fn should_warn_about_variant(&mut self, variant: &ast::Variant_) -> bool {
!self.symbol_is_live(variant.id, None)
&& !has_allow_dead_code_or_lang_attr(variant.attrs.as_slice())
}
// id := node id of an item's definition.
// ctor_id := `Some` if the item is a struct_ctor (tuple struct),
// `None` otherwise.
// If the item is a struct_ctor, then either its `id` or
// `ctor_id` (unwrapped) is in the live_symbols set. More specifically,
// DefMap maps the ExprPath of a struct_ctor to the node referred by
// `ctor_id`. On the other hand, in a statement like
// `type <ident> <generics> = <ty>;` where <ty> refers to a struct_ctor,
// DefMap maps <ty> to `id` instead.
fn symbol_is_live(&mut self, id: ast::NodeId,
ctor_id: Option<ast::NodeId>) -> bool {
if self.live_symbols.contains(&id)
|| ctor_id.map_or(false,
|ctor| self.live_symbols.contains(&ctor)) {
return true;
}
// If it's a type whose methods are live, then it's live, too.
// This is done to handle the case where, for example, the static
// method of a private type is used, but the type itself is never
// called directly.
let impl_items = self.tcx.impl_items.borrow();
match self.tcx.inherent_impls.borrow().find(&local_def(id)) {
None => (),
Some(impl_list) => {
for impl_did in impl_list.iter() {
for item_did in (*impl_items)[*impl_did].iter() {
if self.live_symbols.contains(&item_did.def_id()
.node) {
return true;
}
}
}
}
}
false
}
fn warn_dead_code(&mut self,
id: ast::NodeId,
span: codemap::Span,
ident: ast::Ident,
node_type: &str) {
let name = ident.as_str();
if !name.starts_with("_") {
self.tcx
.sess
.add_lint(lint::builtin::DEAD_CODE,
id,
span,
format!("{} is never used: `{}`", node_type, name));
}
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for DeadVisitor<'a, 'tcx> {
fn visit_item(&mut self, item: &ast::Item) {
if self.should_warn_about_item(item) {
self.warn_dead_code(item.id, item.span, item.ident, item.node.descriptive_variant());
} else {
match item.node {
ast::ItemEnum(ref enum_def, _) => {
for variant in enum_def.variants.iter() {
if self.should_warn_about_variant(&variant.node) {
self.warn_dead_code(variant.node.id, variant.span,
variant.node.name, "variant");
}
}
},
_ => ()
}
}
visit::walk_item(self, item);
}
fn visit_foreign_item(&mut self, fi: &ast::ForeignItem) {
if !self.symbol_is_live(fi.id, None) {
self.warn_dead_code(fi.id, fi.span, fi.ident, fi.node.descriptive_variant());
}
visit::walk_foreign_item(self, fi);
}
fn visit_fn(&mut self, fk: visit::FnKind<'v>,
_: &'v ast::FnDecl, block: &'v ast::Block,
span: codemap::Span, id: ast::NodeId) {
// Have to warn method here because methods are not ast::Item
match fk {
visit::FkMethod(name, _, _) => {
if !self.symbol_is_live(id, None) {
self.warn_dead_code(id, span, name, "method");
}
}
_ => ()
}
visit::walk_block(self, block);
}
fn visit_struct_field(&mut self, field: &ast::StructField) {
if self.should_warn_about_field(&field.node) {
self.warn_dead_code(field.node.id, field.span,
field.node.ident().unwrap(), "struct field");
}
visit::walk_struct_field(self, field);
}
// Overwrite so that we don't warn the trait method itself.
fn visit_trait_item(&mut self, trait_method: &ast::TraitItem) {
match *trait_method {
ast::ProvidedMethod(ref method) => {
visit::walk_block(self, &*method.pe_body())
}
ast::RequiredMethod(_) => {}
ast::TypeTraitItem(_) => {}
}
}
}
pub fn check_crate(tcx: &ty::ctxt,
exported_items: &privacy::ExportedItems,
reachable_symbols: &NodeSet) {
let krate = tcx.map.krate();
let live_symbols = find_live(tcx, exported_items,
reachable_symbols, krate);
let mut visitor = DeadVisitor { tcx: tcx, live_symbols: live_symbols };
visit::walk_crate(&mut visitor, krate);
}