rust/clippy_lints/src/inherent_impl.rs

143 lines
4.9 KiB
Rust

//! lint on inherent implementations
use clippy_utils::diagnostics::span_lint_and_note;
use clippy_utils::is_lint_allowed;
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::{Item, ItemKind, Node};
use rustc_lint::{LateContext, LateLintPass};
use rustc_session::declare_lint_pass;
use rustc_span::Span;
use std::collections::hash_map::Entry;
declare_clippy_lint! {
/// ### What it does
/// Checks for multiple inherent implementations of a struct
///
/// ### Why is this bad?
/// Splitting the implementation of a type makes the code harder to navigate.
///
/// ### Example
/// ```no_run
/// struct X;
/// impl X {
/// fn one() {}
/// }
/// impl X {
/// fn other() {}
/// }
/// ```
///
/// Could be written:
///
/// ```no_run
/// struct X;
/// impl X {
/// fn one() {}
/// fn other() {}
/// }
/// ```
#[clippy::version = "pre 1.29.0"]
pub MULTIPLE_INHERENT_IMPL,
restriction,
"Multiple inherent impl that could be grouped"
}
declare_lint_pass!(MultipleInherentImpl => [MULTIPLE_INHERENT_IMPL]);
impl<'tcx> LateLintPass<'tcx> for MultipleInherentImpl {
fn check_crate_post(&mut self, cx: &LateContext<'tcx>) {
// Map from a type to it's first impl block. Needed to distinguish generic arguments.
// e.g. `Foo<Bar>` and `Foo<Baz>`
let mut type_map = FxHashMap::default();
// List of spans to lint. (lint_span, first_span)
let mut lint_spans = Vec::new();
let Ok(impls) = cx.tcx.crate_inherent_impls(()) else {
return;
};
let inherent_impls = cx
.tcx
.with_stable_hashing_context(|hcx| impls.inherent_impls.to_sorted(&hcx, true));
for (_, impl_ids) in inherent_impls.into_iter().filter(|(&id, impls)| {
impls.len() > 1
// Check for `#[allow]` on the type definition
&& !is_lint_allowed(
cx,
MULTIPLE_INHERENT_IMPL,
cx.tcx.local_def_id_to_hir_id(id),
)
}) {
for impl_id in impl_ids.iter().map(|id| id.expect_local()) {
let impl_ty = cx.tcx.type_of(impl_id).instantiate_identity();
match type_map.entry(impl_ty) {
Entry::Vacant(e) => {
// Store the id for the first impl block of this type. The span is retrieved lazily.
e.insert(IdOrSpan::Id(impl_id));
},
Entry::Occupied(mut e) => {
if let Some(span) = get_impl_span(cx, impl_id) {
let first_span = match *e.get() {
IdOrSpan::Span(s) => s,
IdOrSpan::Id(id) => {
if let Some(s) = get_impl_span(cx, id) {
// Remember the span of the first block.
*e.get_mut() = IdOrSpan::Span(s);
s
} else {
// The first impl block isn't considered by the lint. Replace it with the
// current one.
*e.get_mut() = IdOrSpan::Span(span);
continue;
}
},
};
lint_spans.push((span, first_span));
}
},
}
}
// Switching to the next type definition, no need to keep the current entries around.
type_map.clear();
}
// `TyCtxt::crate_inherent_impls` doesn't have a defined order. Sort the lint output first.
lint_spans.sort_by_key(|x| x.0.lo());
for (span, first_span) in lint_spans {
span_lint_and_note(
cx,
MULTIPLE_INHERENT_IMPL,
span,
"multiple implementations of this structure",
Some(first_span),
"first implementation here",
);
}
}
}
/// Gets the span for the given impl block unless it's not being considered by the lint.
fn get_impl_span(cx: &LateContext<'_>, id: LocalDefId) -> Option<Span> {
let id = cx.tcx.local_def_id_to_hir_id(id);
if let Node::Item(&Item {
kind: ItemKind::Impl(impl_item),
span,
..
}) = cx.tcx.hir_node(id)
{
(!span.from_expansion()
&& impl_item.generics.params.is_empty()
&& !is_lint_allowed(cx, MULTIPLE_INHERENT_IMPL, id))
.then_some(span)
} else {
None
}
}
enum IdOrSpan {
Id(LocalDefId),
Span(Span),
}