rust/compiler/rustc_codegen_llvm/src/llvm_util.rs
2021-04-09 10:16:04 -05:00

368 lines
14 KiB
Rust

use crate::back::write::create_informational_target_machine;
use crate::llvm;
use libc::c_int;
use rustc_codegen_ssa::target_features::supported_target_features;
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::bug;
use rustc_session::config::PrintRequest;
use rustc_session::Session;
use rustc_span::symbol::Symbol;
use rustc_target::spec::{MergeFunctions, PanicStrategy};
use std::ffi::{CStr, CString};
use std::ptr;
use std::slice;
use std::str;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Once;
static POISONED: AtomicBool = AtomicBool::new(false);
static INIT: Once = Once::new();
pub(crate) fn init(sess: &Session) {
unsafe {
// Before we touch LLVM, make sure that multithreading is enabled.
INIT.call_once(|| {
if llvm::LLVMStartMultithreaded() != 1 {
// use an extra bool to make sure that all future usage of LLVM
// cannot proceed despite the Once not running more than once.
POISONED.store(true, Ordering::SeqCst);
}
configure_llvm(sess);
});
if POISONED.load(Ordering::SeqCst) {
bug!("couldn't enable multi-threaded LLVM");
}
}
}
fn require_inited() {
INIT.call_once(|| bug!("llvm is not initialized"));
if POISONED.load(Ordering::SeqCst) {
bug!("couldn't enable multi-threaded LLVM");
}
}
unsafe fn configure_llvm(sess: &Session) {
let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len();
let mut llvm_c_strs = Vec::with_capacity(n_args + 1);
let mut llvm_args = Vec::with_capacity(n_args + 1);
llvm::LLVMRustInstallFatalErrorHandler();
fn llvm_arg_to_arg_name(full_arg: &str) -> &str {
full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("")
}
let cg_opts = sess.opts.cg.llvm_args.iter();
let tg_opts = sess.target.llvm_args.iter();
let sess_args = cg_opts.chain(tg_opts);
let user_specified_args: FxHashSet<_> =
sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect();
{
// This adds the given argument to LLVM. Unless `force` is true
// user specified arguments are *not* overridden.
let mut add = |arg: &str, force: bool| {
if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) {
let s = CString::new(arg).unwrap();
llvm_args.push(s.as_ptr());
llvm_c_strs.push(s);
}
};
// Set the llvm "program name" to make usage and invalid argument messages more clear.
add("rustc -Cllvm-args=\"...\" with", true);
if sess.time_llvm_passes() {
add("-time-passes", false);
}
if sess.print_llvm_passes() {
add("-debug-pass=Structure", false);
}
if !sess.opts.debugging_opts.no_generate_arange_section {
add("-generate-arange-section", false);
}
match sess.opts.debugging_opts.merge_functions.unwrap_or(sess.target.merge_functions) {
MergeFunctions::Disabled | MergeFunctions::Trampolines => {}
MergeFunctions::Aliases => {
add("-mergefunc-use-aliases", false);
}
}
if sess.target.os == "emscripten" && sess.panic_strategy() == PanicStrategy::Unwind {
add("-enable-emscripten-cxx-exceptions", false);
}
// HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes
// during inlining. Unfortunately these may block other optimizations.
add("-preserve-alignment-assumptions-during-inlining=false", false);
// Use non-zero `import-instr-limit` multiplier for cold callsites.
add("-import-cold-multiplier=0.1", false);
for arg in sess_args {
add(&(*arg), true);
}
}
if sess.opts.debugging_opts.llvm_time_trace {
// time-trace is not thread safe and running it in parallel will cause seg faults.
if !sess.opts.debugging_opts.no_parallel_llvm {
bug!("`-Z llvm-time-trace` requires `-Z no-parallel-llvm")
}
llvm::LLVMTimeTraceProfilerInitialize();
}
llvm::LLVMInitializePasses();
rustc_llvm::initialize_available_targets();
llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr());
}
pub fn time_trace_profiler_finish(file_name: &str) {
unsafe {
let file_name = CString::new(file_name).unwrap();
llvm::LLVMTimeTraceProfilerFinish(file_name.as_ptr());
}
}
// WARNING: the features after applying `to_llvm_feature` must be known
// to LLVM or the feature detection code will walk past the end of the feature
// array, leading to crashes.
// To find a list of LLVM's names, check llvm-project/llvm/include/llvm/Support/*TargetParser.def
// where the * matches the architecture's name
// Beware to not use the llvm github project for this, but check the git submodule
// found in src/llvm-project
// Though note that Rust can also be build with an external precompiled version of LLVM
// which might lead to failures if the oldest tested / supported LLVM version
// doesn't yet support the relevant intrinsics
pub fn to_llvm_feature<'a>(sess: &Session, s: &'a str) -> &'a str {
let arch = if sess.target.arch == "x86_64" { "x86" } else { &*sess.target.arch };
match (arch, s) {
("x86", "pclmulqdq") => "pclmul",
("x86", "rdrand") => "rdrnd",
("x86", "bmi1") => "bmi",
("x86", "cmpxchg16b") => "cx16",
("x86", "avx512vaes") => "vaes",
("x86", "avx512gfni") => "gfni",
("x86", "avx512vpclmulqdq") => "vpclmulqdq",
("aarch64", "fp") => "fp-armv8",
("aarch64", "fp16") => "fullfp16",
(_, s) => s,
}
}
pub fn target_features(sess: &Session) -> Vec<Symbol> {
let target_machine = create_informational_target_machine(sess);
supported_target_features(sess)
.iter()
.filter_map(
|&(feature, gate)| {
if sess.is_nightly_build() || gate.is_none() { Some(feature) } else { None }
},
)
.filter(|feature| {
let llvm_feature = to_llvm_feature(sess, feature);
let cstr = CString::new(llvm_feature).unwrap();
unsafe { llvm::LLVMRustHasFeature(target_machine, cstr.as_ptr()) }
})
.map(|feature| Symbol::intern(feature))
.collect()
}
pub fn print_version() {
let (major, minor, patch) = get_version();
println!("LLVM version: {}.{}.{}", major, minor, patch);
}
pub fn get_version() -> (u32, u32, u32) {
// Can be called without initializing LLVM
unsafe {
(llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch())
}
}
pub fn print_passes() {
// Can be called without initializing LLVM
unsafe {
llvm::LLVMRustPrintPasses();
}
}
fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> {
let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) };
let mut ret = Vec::with_capacity(len);
for i in 0..len {
unsafe {
let mut feature = ptr::null();
let mut desc = ptr::null();
llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc);
if feature.is_null() || desc.is_null() {
bug!("LLVM returned a `null` target feature string");
}
let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| {
bug!("LLVM returned a non-utf8 feature string: {}", e);
});
let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| {
bug!("LLVM returned a non-utf8 feature string: {}", e);
});
ret.push((feature, desc));
}
}
ret
}
fn print_target_features(sess: &Session, tm: &llvm::TargetMachine) {
let mut target_features = llvm_target_features(tm);
let mut rustc_target_features = supported_target_features(sess)
.iter()
.filter_map(|(feature, _gate)| {
let llvm_feature = to_llvm_feature(sess, *feature);
// LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these strings.
target_features.binary_search_by_key(&llvm_feature, |(f, _d)| *f).ok().map(|index| {
let (_f, desc) = target_features.remove(index);
(*feature, desc)
})
})
.collect::<Vec<_>>();
rustc_target_features.extend_from_slice(&[(
"crt-static",
"Enables C Run-time Libraries to be statically linked",
)]);
let max_feature_len = target_features
.iter()
.chain(rustc_target_features.iter())
.map(|(feature, _desc)| feature.len())
.max()
.unwrap_or(0);
println!("Features supported by rustc for this target:");
for (feature, desc) in &rustc_target_features {
println!(" {1:0$} - {2}.", max_feature_len, feature, desc);
}
println!("\nCode-generation features supported by LLVM for this target:");
for (feature, desc) in &target_features {
println!(" {1:0$} - {2}.", max_feature_len, feature, desc);
}
if target_features.len() == 0 {
println!(" Target features listing is not supported by this LLVM version.");
}
println!("\nUse +feature to enable a feature, or -feature to disable it.");
println!("For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n");
println!("Code-generation features cannot be used in cfg or #[target_feature],");
println!("and may be renamed or removed in a future version of LLVM or rustc.\n");
}
pub(crate) fn print(req: PrintRequest, sess: &Session) {
require_inited();
let tm = create_informational_target_machine(sess);
match req {
PrintRequest::TargetCPUs => unsafe { llvm::LLVMRustPrintTargetCPUs(tm) },
PrintRequest::TargetFeatures => print_target_features(sess, tm),
_ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req),
}
}
fn handle_native(name: &str) -> &str {
if name != "native" {
return name;
}
unsafe {
let mut len = 0;
let ptr = llvm::LLVMRustGetHostCPUName(&mut len);
str::from_utf8(slice::from_raw_parts(ptr as *const u8, len)).unwrap()
}
}
pub fn target_cpu(sess: &Session) -> &str {
let name = sess.opts.cg.target_cpu.as_ref().unwrap_or(&sess.target.cpu);
handle_native(name)
}
/// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`,
/// `--target` and similar).
// FIXME(nagisa): Cache the output of this somehow? Maybe make this a query? We're calling this
// for every function that has `#[target_feature]` on it. The global features won't change between
// the functions; only crates, maybe…
pub fn llvm_global_features(sess: &Session) -> Vec<String> {
// FIXME(nagisa): this should definitely be available more centrally and to other codegen backends.
/// These features control behaviour of rustc rather than llvm.
const RUSTC_SPECIFIC_FEATURES: &[&str] = &["crt-static"];
// Features that come earlier are overriden by conflicting features later in the string.
// Typically we'll want more explicit settings to override the implicit ones, so:
//
// * Features from -Ctarget-cpu=*; are overriden by [^1]
// * Features implied by --target; are overriden by
// * Features from -Ctarget-feature; are overriden by
// * function specific features.
//
// [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly
// through LLVM TargetMachine implementation.
//
// FIXME(nagisa): it isn't clear what's the best interaction between features implied by
// `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always
// override anything that's implicit, so e.g. when there's no `--target` flag, features implied
// the host target are overriden by `-Ctarget-cpu=*`. On the other hand, what about when both
// `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both
// flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence
// should be taken in cases like these.
let mut features = vec![];
// -Ctarget-cpu=native
match sess.opts.cg.target_cpu {
Some(ref s) if s == "native" => {
let features_string = unsafe {
let ptr = llvm::LLVMGetHostCPUFeatures();
let features_string = if !ptr.is_null() {
CStr::from_ptr(ptr)
.to_str()
.unwrap_or_else(|e| {
bug!("LLVM returned a non-utf8 features string: {}", e);
})
.to_owned()
} else {
bug!("could not allocate host CPU features, LLVM returned a `null` string");
};
llvm::LLVMDisposeMessage(ptr);
features_string
};
features.extend(features_string.split(",").map(String::from));
}
Some(_) | None => {}
};
// Features implied by an implicit or explicit `--target`.
features.extend(
sess.target
.features
.split(',')
.filter(|f| !f.is_empty() && !RUSTC_SPECIFIC_FEATURES.iter().any(|s| f.contains(s)))
.map(String::from),
);
// -Ctarget-features
features.extend(
sess.opts
.cg
.target_feature
.split(',')
.filter(|f| !f.is_empty() && !RUSTC_SPECIFIC_FEATURES.iter().any(|s| f.contains(s)))
.map(String::from),
);
features
}
pub fn tune_cpu(sess: &Session) -> Option<&str> {
let name = sess.opts.debugging_opts.tune_cpu.as_ref()?;
Some(handle_native(name))
}