270 lines
11 KiB
Rust

use crate::util::{check_builtin_macro_attribute, warn_on_duplicate_attribute};
use rustc_ast as ast;
use rustc_ast::mut_visit::MutVisitor;
use rustc_ast::ptr::P;
use rustc_ast::visit::Visitor;
use rustc_ast::NodeId;
use rustc_ast::{mut_visit, visit};
use rustc_ast::{Attribute, HasAttrs, HasTokens};
use rustc_expand::base::{Annotatable, ExtCtxt};
use rustc_expand::config::StripUnconfigured;
use rustc_expand::configure;
use rustc_feature::Features;
use rustc_parse::parser::{ForceCollect, Parser};
use rustc_session::Session;
use rustc_span::symbol::sym;
use rustc_span::Span;
use smallvec::SmallVec;
pub(crate) fn expand(
ecx: &mut ExtCtxt<'_>,
_span: Span,
meta_item: &ast::MetaItem,
annotatable: Annotatable,
) -> Vec<Annotatable> {
check_builtin_macro_attribute(ecx, meta_item, sym::cfg_eval);
warn_on_duplicate_attribute(&ecx, &annotatable, sym::cfg_eval);
vec![cfg_eval(ecx.sess, ecx.ecfg.features, annotatable, ecx.current_expansion.lint_node_id)]
}
pub(crate) fn cfg_eval(
sess: &Session,
features: Option<&Features>,
annotatable: Annotatable,
lint_node_id: NodeId,
) -> Annotatable {
CfgEval { cfg: &mut StripUnconfigured { sess, features, config_tokens: true, lint_node_id } }
.configure_annotatable(annotatable)
// Since the item itself has already been configured by the `InvocationCollector`,
// we know that fold result vector will contain exactly one element.
.unwrap()
}
struct CfgEval<'a, 'b> {
cfg: &'a mut StripUnconfigured<'b>,
}
fn flat_map_annotatable(
vis: &mut impl MutVisitor,
annotatable: Annotatable,
) -> Option<Annotatable> {
match annotatable {
Annotatable::Item(item) => vis.flat_map_item(item).pop().map(Annotatable::Item),
Annotatable::TraitItem(item) => {
vis.flat_map_trait_item(item).pop().map(Annotatable::TraitItem)
}
Annotatable::ImplItem(item) => {
vis.flat_map_impl_item(item).pop().map(Annotatable::ImplItem)
}
Annotatable::ForeignItem(item) => {
vis.flat_map_foreign_item(item).pop().map(Annotatable::ForeignItem)
}
Annotatable::Stmt(stmt) => {
vis.flat_map_stmt(stmt.into_inner()).pop().map(P).map(Annotatable::Stmt)
}
Annotatable::Expr(mut expr) => {
vis.visit_expr(&mut expr);
Some(Annotatable::Expr(expr))
}
Annotatable::Arm(arm) => vis.flat_map_arm(arm).pop().map(Annotatable::Arm),
Annotatable::ExprField(field) => {
vis.flat_map_expr_field(field).pop().map(Annotatable::ExprField)
}
Annotatable::PatField(fp) => vis.flat_map_pat_field(fp).pop().map(Annotatable::PatField),
Annotatable::GenericParam(param) => {
vis.flat_map_generic_param(param).pop().map(Annotatable::GenericParam)
}
Annotatable::Param(param) => vis.flat_map_param(param).pop().map(Annotatable::Param),
Annotatable::FieldDef(sf) => vis.flat_map_field_def(sf).pop().map(Annotatable::FieldDef),
Annotatable::Variant(v) => vis.flat_map_variant(v).pop().map(Annotatable::Variant),
Annotatable::Crate(mut krate) => {
vis.visit_crate(&mut krate);
Some(Annotatable::Crate(krate))
}
}
}
struct CfgFinder {
has_cfg_or_cfg_attr: bool,
}
impl CfgFinder {
fn has_cfg_or_cfg_attr(annotatable: &Annotatable) -> bool {
let mut finder = CfgFinder { has_cfg_or_cfg_attr: false };
match annotatable {
Annotatable::Item(item) => finder.visit_item(&item),
Annotatable::TraitItem(item) => finder.visit_assoc_item(&item, visit::AssocCtxt::Trait),
Annotatable::ImplItem(item) => finder.visit_assoc_item(&item, visit::AssocCtxt::Impl),
Annotatable::ForeignItem(item) => finder.visit_foreign_item(&item),
Annotatable::Stmt(stmt) => finder.visit_stmt(&stmt),
Annotatable::Expr(expr) => finder.visit_expr(&expr),
Annotatable::Arm(arm) => finder.visit_arm(&arm),
Annotatable::ExprField(field) => finder.visit_expr_field(&field),
Annotatable::PatField(field) => finder.visit_pat_field(&field),
Annotatable::GenericParam(param) => finder.visit_generic_param(&param),
Annotatable::Param(param) => finder.visit_param(&param),
Annotatable::FieldDef(field) => finder.visit_field_def(&field),
Annotatable::Variant(variant) => finder.visit_variant(&variant),
Annotatable::Crate(krate) => finder.visit_crate(krate),
};
finder.has_cfg_or_cfg_attr
}
}
impl<'ast> visit::Visitor<'ast> for CfgFinder {
fn visit_attribute(&mut self, attr: &'ast Attribute) {
// We want short-circuiting behavior, so don't use the '|=' operator.
self.has_cfg_or_cfg_attr = self.has_cfg_or_cfg_attr
|| attr
.ident()
.map_or(false, |ident| ident.name == sym::cfg || ident.name == sym::cfg_attr);
}
}
impl CfgEval<'_, '_> {
fn configure<T: HasAttrs + HasTokens>(&mut self, node: T) -> Option<T> {
self.cfg.configure(node)
}
fn configure_annotatable(&mut self, mut annotatable: Annotatable) -> Option<Annotatable> {
// Tokenizing and re-parsing the `Annotatable` can have a significant
// performance impact, so try to avoid it if possible
if !CfgFinder::has_cfg_or_cfg_attr(&annotatable) {
return Some(annotatable);
}
// The majority of parsed attribute targets will never need to have early cfg-expansion
// run (e.g. they are not part of a `#[derive]` or `#[cfg_eval]` macro input).
// Therefore, we normally do not capture the necessary information about `#[cfg]`
// and `#[cfg_attr]` attributes during parsing.
//
// Therefore, when we actually *do* run early cfg-expansion, we need to tokenize
// and re-parse the attribute target, this time capturing information about
// the location of `#[cfg]` and `#[cfg_attr]` in the token stream. The tokenization
// process is lossless, so this process is invisible to proc-macros.
let parse_annotatable_with: fn(&mut Parser<'_>) -> _ = match annotatable {
Annotatable::Item(_) => {
|parser| Annotatable::Item(parser.parse_item(ForceCollect::Yes).unwrap().unwrap())
}
Annotatable::TraitItem(_) => |parser| {
Annotatable::TraitItem(
parser.parse_trait_item(ForceCollect::Yes).unwrap().unwrap().unwrap(),
)
},
Annotatable::ImplItem(_) => |parser| {
Annotatable::ImplItem(
parser.parse_impl_item(ForceCollect::Yes).unwrap().unwrap().unwrap(),
)
},
Annotatable::ForeignItem(_) => |parser| {
Annotatable::ForeignItem(
parser.parse_foreign_item(ForceCollect::Yes).unwrap().unwrap().unwrap(),
)
},
Annotatable::Stmt(_) => |parser| {
Annotatable::Stmt(P(parser.parse_stmt(ForceCollect::Yes).unwrap().unwrap()))
},
Annotatable::Expr(_) => {
|parser| Annotatable::Expr(parser.parse_expr_force_collect().unwrap())
}
_ => unreachable!(),
};
// 'Flatten' all nonterminals (i.e. `TokenKind::Interpolated`)
// to `None`-delimited groups containing the corresponding tokens. This
// is normally delayed until the proc-macro server actually needs to
// provide a `TokenKind::Interpolated` to a proc-macro. We do this earlier,
// so that we can handle cases like:
//
// ```rust
// #[cfg_eval] #[cfg] $item
//```
//
// where `$item` is `#[cfg_attr] struct Foo {}`. We want to make
// sure to evaluate *all* `#[cfg]` and `#[cfg_attr]` attributes - the simplest
// way to do this is to do a single parse of a stream without any nonterminals.
let orig_tokens = annotatable.to_tokens().flattened();
// Re-parse the tokens, setting the `capture_cfg` flag to save extra information
// to the captured `AttrAnnotatedTokenStream` (specifically, we capture
// `AttrAnnotatedTokenTree::AttributesData` for all occurrences of `#[cfg]` and `#[cfg_attr]`)
let mut parser =
rustc_parse::stream_to_parser(&self.cfg.sess.parse_sess, orig_tokens, None);
parser.capture_cfg = true;
annotatable = parse_annotatable_with(&mut parser);
// Now that we have our re-parsed `AttrAnnotatedTokenStream`, recursively configuring
// our attribute target will correctly the tokens as well.
flat_map_annotatable(self, annotatable)
}
}
impl MutVisitor for CfgEval<'_, '_> {
fn visit_expr(&mut self, expr: &mut P<ast::Expr>) {
self.cfg.configure_expr(expr);
mut_visit::noop_visit_expr(expr, self);
}
fn filter_map_expr(&mut self, expr: P<ast::Expr>) -> Option<P<ast::Expr>> {
let mut expr = configure!(self, expr);
mut_visit::noop_visit_expr(&mut expr, self);
Some(expr)
}
fn flat_map_generic_param(
&mut self,
param: ast::GenericParam,
) -> SmallVec<[ast::GenericParam; 1]> {
mut_visit::noop_flat_map_generic_param(configure!(self, param), self)
}
fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> {
mut_visit::noop_flat_map_stmt(configure!(self, stmt), self)
}
fn flat_map_item(&mut self, item: P<ast::Item>) -> SmallVec<[P<ast::Item>; 1]> {
mut_visit::noop_flat_map_item(configure!(self, item), self)
}
fn flat_map_impl_item(&mut self, item: P<ast::AssocItem>) -> SmallVec<[P<ast::AssocItem>; 1]> {
mut_visit::noop_flat_map_assoc_item(configure!(self, item), self)
}
fn flat_map_trait_item(&mut self, item: P<ast::AssocItem>) -> SmallVec<[P<ast::AssocItem>; 1]> {
mut_visit::noop_flat_map_assoc_item(configure!(self, item), self)
}
fn flat_map_foreign_item(
&mut self,
foreign_item: P<ast::ForeignItem>,
) -> SmallVec<[P<ast::ForeignItem>; 1]> {
mut_visit::noop_flat_map_foreign_item(configure!(self, foreign_item), self)
}
fn flat_map_arm(&mut self, arm: ast::Arm) -> SmallVec<[ast::Arm; 1]> {
mut_visit::noop_flat_map_arm(configure!(self, arm), self)
}
fn flat_map_expr_field(&mut self, field: ast::ExprField) -> SmallVec<[ast::ExprField; 1]> {
mut_visit::noop_flat_map_expr_field(configure!(self, field), self)
}
fn flat_map_pat_field(&mut self, fp: ast::PatField) -> SmallVec<[ast::PatField; 1]> {
mut_visit::noop_flat_map_pat_field(configure!(self, fp), self)
}
fn flat_map_param(&mut self, p: ast::Param) -> SmallVec<[ast::Param; 1]> {
mut_visit::noop_flat_map_param(configure!(self, p), self)
}
fn flat_map_field_def(&mut self, sf: ast::FieldDef) -> SmallVec<[ast::FieldDef; 1]> {
mut_visit::noop_flat_map_field_def(configure!(self, sf), self)
}
fn flat_map_variant(&mut self, variant: ast::Variant) -> SmallVec<[ast::Variant; 1]> {
mut_visit::noop_flat_map_variant(configure!(self, variant), self)
}
}