rust/src/libcore/option.rs
Corey Farwell 9af324a673 Remove Result and Option reexports
Brief note: This does *not* affect anything in the prelude

Part of #19253

All this does is remove the reexporting of Result and Option from their
respective modules. More core reexports might be removed, but these ones
are the safest to remove since these enums (and their variants) are included in
the prelude.

[breaking-change]
2014-12-08 21:40:16 -05:00

860 lines
24 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Optional values
//!
//! Type `Option` represents an optional value: every `Option`
//! is either `Some` and contains a value, or `None`, and
//! does not. `Option` types are very common in Rust code, as
//! they have a number of uses:
//!
//! * Initial values
//! * Return values for functions that are not defined
//! over their entire input range (partial functions)
//! * Return value for otherwise reporting simple errors, where `None` is
//! returned on error
//! * Optional struct fields
//! * Struct fields that can be loaned or "taken"
//! * Optional function arguments
//! * Nullable pointers
//! * Swapping things out of difficult situations
//!
//! Options are commonly paired with pattern matching to query the presence
//! of a value and take action, always accounting for the `None` case.
//!
//! ```
//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
//! if denominator == 0.0 {
//! None
//! } else {
//! Some(numerator / denominator)
//! }
//! }
//!
//! // The return value of the function is an option
//! let result = divide(2.0, 3.0);
//!
//! // Pattern match to retrieve the value
//! match result {
//! // The division was valid
//! Some(x) => println!("Result: {}", x),
//! // The division was invalid
//! None => println!("Cannot divide by 0")
//! }
//! ```
//!
//
// FIXME: Show how `Option` is used in practice, with lots of methods
//
//! # Options and pointers ("nullable" pointers)
//!
//! Rust's pointer types must always point to a valid location; there are
//! no "null" pointers. Instead, Rust has *optional* pointers, like
//! the optional owned box, `Option<Box<T>>`.
//!
//! The following example uses `Option` to create an optional box of
//! `int`. Notice that in order to use the inner `int` value first the
//! `check_optional` function needs to use pattern matching to
//! determine whether the box has a value (i.e. it is `Some(...)`) or
//! not (`None`).
//!
//! ```
//! let optional: Option<Box<int>> = None;
//! check_optional(&optional);
//!
//! let optional: Option<Box<int>> = Some(box 9000);
//! check_optional(&optional);
//!
//! fn check_optional(optional: &Option<Box<int>>) {
//! match *optional {
//! Some(ref p) => println!("have value {}", p),
//! None => println!("have no value")
//! }
//! }
//! ```
//!
//! This usage of `Option` to create safe nullable pointers is so
//! common that Rust does special optimizations to make the
//! representation of `Option<Box<T>>` a single pointer. Optional pointers
//! in Rust are stored as efficiently as any other pointer type.
//!
//! # Examples
//!
//! Basic pattern matching on `Option`:
//!
//! ```
//! let msg = Some("howdy");
//!
//! // Take a reference to the contained string
//! match msg {
//! Some(ref m) => println!("{}", *m),
//! None => ()
//! }
//!
//! // Remove the contained string, destroying the Option
//! let unwrapped_msg = match msg {
//! Some(m) => m,
//! None => "default message"
//! };
//! ```
//!
//! Initialize a result to `None` before a loop:
//!
//! ```
//! enum Kingdom { Plant(uint, &'static str), Animal(uint, &'static str) }
//!
//! // A list of data to search through.
//! let all_the_big_things = [
//! Kingdom::Plant(250, "redwood"),
//! Kingdom::Plant(230, "noble fir"),
//! Kingdom::Plant(229, "sugar pine"),
//! Kingdom::Animal(25, "blue whale"),
//! Kingdom::Animal(19, "fin whale"),
//! Kingdom::Animal(15, "north pacific right whale"),
//! ];
//!
//! // We're going to search for the name of the biggest animal,
//! // but to start with we've just got `None`.
//! let mut name_of_biggest_animal = None;
//! let mut size_of_biggest_animal = 0;
//! for big_thing in all_the_big_things.iter() {
//! match *big_thing {
//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
//! // Now we've found the name of some big animal
//! size_of_biggest_animal = size;
//! name_of_biggest_animal = Some(name);
//! }
//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
//! }
//! }
//!
//! match name_of_biggest_animal {
//! Some(name) => println!("the biggest animal is {}", name),
//! None => println!("there are no animals :(")
//! }
//! ```
#![stable]
use self::Option::*;
use cmp::{Eq, Ord};
use default::Default;
use iter::{Iterator, IteratorExt, DoubleEndedIterator, FromIterator, ExactSizeIterator};
use mem;
use result::Result;
use result::Result::{Ok, Err};
use slice;
use slice::AsSlice;
use clone::Clone;
use ops::Deref;
// Note that this is not a lang item per se, but it has a hidden dependency on
// `Iterator`, which is one. The compiler assumes that the `next` method of
// `Iterator` is an enumeration with one type parameter and two variants,
// which basically means it must be `Option`.
/// The `Option` type.
#[deriving(Clone, PartialEq, PartialOrd, Eq, Ord, Show)]
#[stable]
pub enum Option<T> {
/// No value
None,
/// Some value `T`
Some(T)
}
/////////////////////////////////////////////////////////////////////////////
// Type implementation
/////////////////////////////////////////////////////////////////////////////
impl<T> Option<T> {
/////////////////////////////////////////////////////////////////////////
// Querying the contained values
/////////////////////////////////////////////////////////////////////////
/// Returns `true` if the option is a `Some` value
///
/// # Example
///
/// ```
/// let x: Option<uint> = Some(2);
/// assert_eq!(x.is_some(), true);
///
/// let x: Option<uint> = None;
/// assert_eq!(x.is_some(), false);
/// ```
#[inline]
#[stable]
pub fn is_some(&self) -> bool {
match *self {
Some(_) => true,
None => false
}
}
/// Returns `true` if the option is a `None` value
///
/// # Example
///
/// ```
/// let x: Option<uint> = Some(2);
/// assert_eq!(x.is_none(), false);
///
/// let x: Option<uint> = None;
/// assert_eq!(x.is_none(), true);
/// ```
#[inline]
#[stable]
pub fn is_none(&self) -> bool {
!self.is_some()
}
/////////////////////////////////////////////////////////////////////////
// Adapter for working with references
/////////////////////////////////////////////////////////////////////////
/// Convert from `Option<T>` to `Option<&T>`
///
/// # Example
///
/// Convert an `Option<String>` into an `Option<int>`, preserving the original.
/// The `map` method takes the `self` argument by value, consuming the original,
/// so this technique uses `as_ref` to first take an `Option` to a reference
/// to the value inside the original.
///
/// ```
/// let num_as_str: Option<String> = Some("10".to_string());
/// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
/// // then consume *that* with `map`, leaving `num_as_str` on the stack.
/// let num_as_int: Option<uint> = num_as_str.as_ref().map(|n| n.len());
/// println!("still can print num_as_str: {}", num_as_str);
/// ```
#[inline]
#[stable]
pub fn as_ref<'r>(&'r self) -> Option<&'r T> {
match *self {
Some(ref x) => Some(x),
None => None
}
}
/// Convert from `Option<T>` to `Option<&mut T>`
///
/// # Example
///
/// ```
/// let mut x = Some(2u);
/// match x.as_mut() {
/// Some(v) => *v = 42,
/// None => {},
/// }
/// assert_eq!(x, Some(42u));
/// ```
#[inline]
#[unstable = "waiting for mut conventions"]
pub fn as_mut<'r>(&'r mut self) -> Option<&'r mut T> {
match *self {
Some(ref mut x) => Some(x),
None => None
}
}
/// Convert from `Option<T>` to `&mut [T]` (without copying)
///
/// # Example
///
/// ```
/// let mut x = Some("Diamonds");
/// {
/// let v = x.as_mut_slice();
/// assert!(v == ["Diamonds"]);
/// v[0] = "Dirt";
/// assert!(v == ["Dirt"]);
/// }
/// assert_eq!(x, Some("Dirt"));
/// ```
#[inline]
#[unstable = "waiting for mut conventions"]
pub fn as_mut_slice<'r>(&'r mut self) -> &'r mut [T] {
match *self {
Some(ref mut x) => {
let result: &mut [T] = slice::mut_ref_slice(x);
result
}
None => {
let result: &mut [T] = &mut [];
result
}
}
}
/////////////////////////////////////////////////////////////////////////
// Getting to contained values
/////////////////////////////////////////////////////////////////////////
/// Unwraps an option, yielding the content of a `Some`
///
/// # Panics
///
/// Panics if the value is a `None` with a custom panic message provided by
/// `msg`.
///
/// # Example
///
/// ```
/// let x = Some("value");
/// assert_eq!(x.expect("the world is ending"), "value");
/// ```
///
/// ```{.should_fail}
/// let x: Option<&str> = None;
/// x.expect("the world is ending"); // panics with `world is ending`
/// ```
#[inline]
#[unstable = "waiting for conventions"]
pub fn expect(self, msg: &str) -> T {
match self {
Some(val) => val,
None => panic!("{}", msg),
}
}
/// Returns the inner `T` of a `Some(T)`.
///
/// # Panics
///
/// Panics if the self value equals `None`.
///
/// # Safety note
///
/// In general, because this function may panic, its use is discouraged.
/// Instead, prefer to use pattern matching and handle the `None`
/// case explicitly.
///
/// # Example
///
/// ```
/// let x = Some("air");
/// assert_eq!(x.unwrap(), "air");
/// ```
///
/// ```{.should_fail}
/// let x: Option<&str> = None;
/// assert_eq!(x.unwrap(), "air"); // fails
/// ```
#[inline]
#[unstable = "waiting for conventions"]
pub fn unwrap(self) -> T {
match self {
Some(val) => val,
None => panic!("called `Option::unwrap()` on a `None` value"),
}
}
/// Returns the contained value or a default.
///
/// # Example
///
/// ```
/// assert_eq!(Some("car").unwrap_or("bike"), "car");
/// assert_eq!(None.unwrap_or("bike"), "bike");
/// ```
#[inline]
#[unstable = "waiting for conventions"]
pub fn unwrap_or(self, def: T) -> T {
match self {
Some(x) => x,
None => def
}
}
/// Returns the contained value or computes it from a closure.
///
/// # Example
///
/// ```
/// let k = 10u;
/// assert_eq!(Some(4u).unwrap_or_else(|| 2 * k), 4u);
/// assert_eq!(None.unwrap_or_else(|| 2 * k), 20u);
/// ```
#[inline]
#[unstable = "waiting for conventions"]
pub fn unwrap_or_else(self, f: || -> T) -> T {
match self {
Some(x) => x,
None => f()
}
}
/////////////////////////////////////////////////////////////////////////
// Transforming contained values
/////////////////////////////////////////////////////////////////////////
/// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value
///
/// # Example
///
/// Convert an `Option<String>` into an `Option<uint>`, consuming the original:
///
/// ```
/// let num_as_str: Option<String> = Some("10".to_string());
/// // `Option::map` takes self *by value*, consuming `num_as_str`
/// let num_as_int: Option<uint> = num_as_str.map(|n| n.len());
/// ```
#[inline]
#[unstable = "waiting for unboxed closures"]
pub fn map<U>(self, f: |T| -> U) -> Option<U> {
match self {
Some(x) => Some(f(x)),
None => None
}
}
/// Applies a function to the contained value or returns a default.
///
/// # Example
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.map_or(42u, |v| v.len()), 3u);
///
/// let x: Option<&str> = None;
/// assert_eq!(x.map_or(42u, |v| v.len()), 42u);
/// ```
#[inline]
#[unstable = "waiting for unboxed closures"]
pub fn map_or<U>(self, def: U, f: |T| -> U) -> U {
match self {
Some(t) => f(t),
None => def
}
}
/// Applies a function to the contained value or computes a default.
///
/// # Example
///
/// ```
/// let k = 21u;
///
/// let x = Some("foo");
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3u);
///
/// let x: Option<&str> = None;
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42u);
/// ```
#[inline]
#[unstable = "waiting for unboxed closures"]
pub fn map_or_else<U>(self, def: || -> U, f: |T| -> U) -> U {
match self {
Some(t) => f(t),
None => def()
}
}
/// Transforms the `Option<T>` into a `Result<T, E>`, mapping `Some(v)` to
/// `Ok(v)` and `None` to `Err(err)`.
///
/// # Example
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.ok_or(0i), Ok("foo"));
///
/// let x: Option<&str> = None;
/// assert_eq!(x.ok_or(0i), Err(0i));
/// ```
#[inline]
#[experimental]
pub fn ok_or<E>(self, err: E) -> Result<T, E> {
match self {
Some(v) => Ok(v),
None => Err(err),
}
}
/// Transforms the `Option<T>` into a `Result<T, E>`, mapping `Some(v)` to
/// `Ok(v)` and `None` to `Err(err())`.
///
/// # Example
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.ok_or_else(|| 0i), Ok("foo"));
///
/// let x: Option<&str> = None;
/// assert_eq!(x.ok_or_else(|| 0i), Err(0i));
/// ```
#[inline]
#[experimental]
pub fn ok_or_else<E>(self, err: || -> E) -> Result<T, E> {
match self {
Some(v) => Ok(v),
None => Err(err()),
}
}
/////////////////////////////////////////////////////////////////////////
// Iterator constructors
/////////////////////////////////////////////////////////////////////////
/// Returns an iterator over the possibly contained value.
///
/// # Example
///
/// ```
/// let x = Some(4u);
/// assert_eq!(x.iter().next(), Some(&4));
///
/// let x: Option<uint> = None;
/// assert_eq!(x.iter().next(), None);
/// ```
#[inline]
#[unstable = "waiting for iterator conventions"]
pub fn iter<'r>(&'r self) -> Item<&'r T> {
Item{opt: self.as_ref()}
}
/// Returns a mutable iterator over the possibly contained value.
///
/// # Example
///
/// ```
/// let mut x = Some(4u);
/// match x.iter_mut().next() {
/// Some(&ref mut v) => *v = 42u,
/// None => {},
/// }
/// assert_eq!(x, Some(42));
///
/// let mut x: Option<uint> = None;
/// assert_eq!(x.iter_mut().next(), None);
/// ```
#[inline]
#[unstable = "waiting for iterator conventions"]
pub fn iter_mut<'r>(&'r mut self) -> Item<&'r mut T> {
Item{opt: self.as_mut()}
}
/// Returns a consuming iterator over the possibly contained value.
///
/// # Example
///
/// ```
/// let x = Some("string");
/// let v: Vec<&str> = x.into_iter().collect();
/// assert_eq!(v, vec!["string"]);
///
/// let x = None;
/// let v: Vec<&str> = x.into_iter().collect();
/// assert!(v.is_empty());
/// ```
#[inline]
#[unstable = "waiting for iterator conventions"]
pub fn into_iter(self) -> Item<T> {
Item{opt: self}
}
/////////////////////////////////////////////////////////////////////////
// Boolean operations on the values, eager and lazy
/////////////////////////////////////////////////////////////////////////
/// Returns `None` if the option is `None`, otherwise returns `optb`.
///
/// # Example
///
/// ```
/// let x = Some(2u);
/// let y: Option<&str> = None;
/// assert_eq!(x.and(y), None);
///
/// let x: Option<uint> = None;
/// let y = Some("foo");
/// assert_eq!(x.and(y), None);
///
/// let x = Some(2u);
/// let y = Some("foo");
/// assert_eq!(x.and(y), Some("foo"));
///
/// let x: Option<uint> = None;
/// let y: Option<&str> = None;
/// assert_eq!(x.and(y), None);
/// ```
#[inline]
#[stable]
pub fn and<U>(self, optb: Option<U>) -> Option<U> {
match self {
Some(_) => optb,
None => None,
}
}
/// Returns `None` if the option is `None`, otherwise calls `f` with the
/// wrapped value and returns the result.
///
/// # Example
///
/// ```
/// fn sq(x: uint) -> Option<uint> { Some(x * x) }
/// fn nope(_: uint) -> Option<uint> { None }
///
/// assert_eq!(Some(2).and_then(sq).and_then(sq), Some(16));
/// assert_eq!(Some(2).and_then(sq).and_then(nope), None);
/// assert_eq!(Some(2).and_then(nope).and_then(sq), None);
/// assert_eq!(None.and_then(sq).and_then(sq), None);
/// ```
#[inline]
#[unstable = "waiting for unboxed closures"]
pub fn and_then<U>(self, f: |T| -> Option<U>) -> Option<U> {
match self {
Some(x) => f(x),
None => None,
}
}
/// Returns the option if it contains a value, otherwise returns `optb`.
///
/// # Example
///
/// ```
/// let x = Some(2u);
/// let y = None;
/// assert_eq!(x.or(y), Some(2u));
///
/// let x = None;
/// let y = Some(100u);
/// assert_eq!(x.or(y), Some(100u));
///
/// let x = Some(2u);
/// let y = Some(100u);
/// assert_eq!(x.or(y), Some(2u));
///
/// let x: Option<uint> = None;
/// let y = None;
/// assert_eq!(x.or(y), None);
/// ```
#[inline]
#[stable]
pub fn or(self, optb: Option<T>) -> Option<T> {
match self {
Some(_) => self,
None => optb
}
}
/// Returns the option if it contains a value, otherwise calls `f` and
/// returns the result.
///
/// # Example
///
/// ```
/// fn nobody() -> Option<&'static str> { None }
/// fn vikings() -> Option<&'static str> { Some("vikings") }
///
/// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
/// assert_eq!(None.or_else(vikings), Some("vikings"));
/// assert_eq!(None.or_else(nobody), None);
/// ```
#[inline]
#[unstable = "waiting for unboxed closures"]
pub fn or_else(self, f: || -> Option<T>) -> Option<T> {
match self {
Some(_) => self,
None => f()
}
}
/////////////////////////////////////////////////////////////////////////
// Misc
/////////////////////////////////////////////////////////////////////////
/// Takes the value out of the option, leaving a `None` in its place.
///
/// # Example
///
/// ```
/// let mut x = Some(2u);
/// x.take();
/// assert_eq!(x, None);
///
/// let mut x: Option<uint> = None;
/// x.take();
/// assert_eq!(x, None);
/// ```
#[inline]
#[stable]
pub fn take(&mut self) -> Option<T> {
mem::replace(self, None)
}
}
impl<'a, T: Clone, D: Deref<T>> Option<D> {
/// Maps an Option<D> to an Option<T> by dereffing and cloning the contents of the Option.
/// Useful for converting an Option<&T> to an Option<T>.
#[unstable = "recently added as part of collections reform"]
pub fn cloned(self) -> Option<T> {
self.map(|t| t.deref().clone())
}
}
impl<T: Default> Option<T> {
/// Returns the contained value or a default
///
/// Consumes the `self` argument then, if `Some`, returns the contained
/// value, otherwise if `None`, returns the default value for that
/// type.
///
/// # Example
///
/// Convert a string to an integer, turning poorly-formed strings
/// into 0 (the default value for integers). `from_str` converts
/// a string to any other type that implements `FromStr`, returning
/// `None` on error.
///
/// ```
/// let good_year_from_input = "1909";
/// let bad_year_from_input = "190blarg";
/// let good_year = from_str(good_year_from_input).unwrap_or_default();
/// let bad_year = from_str(bad_year_from_input).unwrap_or_default();
///
/// assert_eq!(1909i, good_year);
/// assert_eq!(0i, bad_year);
/// ```
#[inline]
#[unstable = "waiting for conventions"]
pub fn unwrap_or_default(self) -> T {
match self {
Some(x) => x,
None => Default::default()
}
}
}
/////////////////////////////////////////////////////////////////////////////
// Trait implementations
/////////////////////////////////////////////////////////////////////////////
impl<T> AsSlice<T> for Option<T> {
/// Convert from `Option<T>` to `&[T]` (without copying)
#[inline]
fn as_slice<'a>(&'a self) -> &'a [T] {
match *self {
Some(ref x) => slice::ref_slice(x),
None => {
let result: &[_] = &[];
result
}
}
}
}
#[stable]
impl<T> Default for Option<T> {
#[inline]
fn default() -> Option<T> { None }
}
/////////////////////////////////////////////////////////////////////////////
// The Option Iterator
/////////////////////////////////////////////////////////////////////////////
/// An `Option` iterator that yields either one or zero elements
///
/// The `Item` iterator is returned by the `iter`, `iter_mut` and `into_iter`
/// methods on `Option`.
#[deriving(Clone)]
#[unstable = "waiting for iterator conventions"]
pub struct Item<A> {
opt: Option<A>
}
impl<A> Iterator<A> for Item<A> {
#[inline]
fn next(&mut self) -> Option<A> {
self.opt.take()
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
match self.opt {
Some(_) => (1, Some(1)),
None => (0, Some(0)),
}
}
}
impl<A> DoubleEndedIterator<A> for Item<A> {
#[inline]
fn next_back(&mut self) -> Option<A> {
self.opt.take()
}
}
impl<A> ExactSizeIterator<A> for Item<A> {}
/////////////////////////////////////////////////////////////////////////////
// FromIterator
/////////////////////////////////////////////////////////////////////////////
#[stable]
impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
/// Takes each element in the `Iterator`: if it is `None`, no further
/// elements are taken, and the `None` is returned. Should no `None` occur, a
/// container with the values of each `Option` is returned.
///
/// Here is an example which increments every integer in a vector,
/// checking for overflow:
///
/// ```rust
/// use std::uint;
///
/// let v = vec!(1u, 2u);
/// let res: Option<Vec<uint>> = v.iter().map(|&x: &uint|
/// if x == uint::MAX { None }
/// else { Some(x + 1) }
/// ).collect();
/// assert!(res == Some(vec!(2u, 3u)));
/// ```
#[inline]
fn from_iter<I: Iterator<Option<A>>>(iter: I) -> Option<V> {
// FIXME(#11084): This could be replaced with Iterator::scan when this
// performance bug is closed.
struct Adapter<Iter> {
iter: Iter,
found_none: bool,
}
impl<T, Iter: Iterator<Option<T>>> Iterator<T> for Adapter<Iter> {
#[inline]
fn next(&mut self) -> Option<T> {
match self.iter.next() {
Some(Some(value)) => Some(value),
Some(None) => {
self.found_none = true;
None
}
None => None,
}
}
}
let mut adapter = Adapter { iter: iter, found_none: false };
let v: V = FromIterator::from_iter(adapter.by_ref());
if adapter.found_none {
None
} else {
Some(v)
}
}
}