rust/src/librustc_trans/collector.rs
Alex Crichton afb85cfd33 rustc: Mostly remove ExportedSymbols
This is a big map that ends up inside of a `CrateContext` during translation for
all codegen units. This means that any change to the map may end up causing an
incremental recompilation of a codegen unit! In order to reduce the amount of
dependencies here between codegen units and the actual input crate this commit
refactors dealing with exported symbols and such into various queries.

The new queries are largely based on existing queries with filled out
implementations for the local crate in addition to external crates, but the main
idea is that while translating codegen untis no unit needs the entire set of
exported symbols, instead they only need queries about particulare `DefId`
instances every now and then.

The linking stage, however, still generates a full list of all exported symbols
from all crates, but that's going to always happen unconditionally anyway, so no
news there!
2017-09-17 09:41:43 -07:00

1050 lines
42 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Translation Item Collection
//! ===========================
//!
//! This module is responsible for discovering all items that will contribute to
//! to code generation of the crate. The important part here is that it not only
//! needs to find syntax-level items (functions, structs, etc) but also all
//! their monomorphized instantiations. Every non-generic, non-const function
//! maps to one LLVM artifact. Every generic function can produce
//! from zero to N artifacts, depending on the sets of type arguments it
//! is instantiated with.
//! This also applies to generic items from other crates: A generic definition
//! in crate X might produce monomorphizations that are compiled into crate Y.
//! We also have to collect these here.
//!
//! The following kinds of "translation items" are handled here:
//!
//! - Functions
//! - Methods
//! - Closures
//! - Statics
//! - Drop glue
//!
//! The following things also result in LLVM artifacts, but are not collected
//! here, since we instantiate them locally on demand when needed in a given
//! codegen unit:
//!
//! - Constants
//! - Vtables
//! - Object Shims
//!
//!
//! General Algorithm
//! -----------------
//! Let's define some terms first:
//!
//! - A "translation item" is something that results in a function or global in
//! the LLVM IR of a codegen unit. Translation items do not stand on their
//! own, they can reference other translation items. For example, if function
//! `foo()` calls function `bar()` then the translation item for `foo()`
//! references the translation item for function `bar()`. In general, the
//! definition for translation item A referencing a translation item B is that
//! the LLVM artifact produced for A references the LLVM artifact produced
//! for B.
//!
//! - Translation items and the references between them form a directed graph,
//! where the translation items are the nodes and references form the edges.
//! Let's call this graph the "translation item graph".
//!
//! - The translation item graph for a program contains all translation items
//! that are needed in order to produce the complete LLVM IR of the program.
//!
//! The purpose of the algorithm implemented in this module is to build the
//! translation item graph for the current crate. It runs in two phases:
//!
//! 1. Discover the roots of the graph by traversing the HIR of the crate.
//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
//! representation of the item corresponding to a given node, until no more
//! new nodes are found.
//!
//! ### Discovering roots
//!
//! The roots of the translation item graph correspond to the non-generic
//! syntactic items in the source code. We find them by walking the HIR of the
//! crate, and whenever we hit upon a function, method, or static item, we
//! create a translation item consisting of the items DefId and, since we only
//! consider non-generic items, an empty type-substitution set.
//!
//! ### Finding neighbor nodes
//! Given a translation item node, we can discover neighbors by inspecting its
//! MIR. We walk the MIR and any time we hit upon something that signifies a
//! reference to another translation item, we have found a neighbor. Since the
//! translation item we are currently at is always monomorphic, we also know the
//! concrete type arguments of its neighbors, and so all neighbors again will be
//! monomorphic. The specific forms a reference to a neighboring node can take
//! in MIR are quite diverse. Here is an overview:
//!
//! #### Calling Functions/Methods
//! The most obvious form of one translation item referencing another is a
//! function or method call (represented by a CALL terminator in MIR). But
//! calls are not the only thing that might introduce a reference between two
//! function translation items, and as we will see below, they are just a
//! specialized of the form described next, and consequently will don't get any
//! special treatment in the algorithm.
//!
//! #### Taking a reference to a function or method
//! A function does not need to actually be called in order to be a neighbor of
//! another function. It suffices to just take a reference in order to introduce
//! an edge. Consider the following example:
//!
//! ```rust
//! fn print_val<T: Display>(x: T) {
//! println!("{}", x);
//! }
//!
//! fn call_fn(f: &Fn(i32), x: i32) {
//! f(x);
//! }
//!
//! fn main() {
//! let print_i32 = print_val::<i32>;
//! call_fn(&print_i32, 0);
//! }
//! ```
//! The MIR of none of these functions will contain an explicit call to
//! `print_val::<i32>`. Nonetheless, in order to translate this program, we need
//! an instance of this function. Thus, whenever we encounter a function or
//! method in operand position, we treat it as a neighbor of the current
//! translation item. Calls are just a special case of that.
//!
//! #### Closures
//! In a way, closures are a simple case. Since every closure object needs to be
//! constructed somewhere, we can reliably discover them by observing
//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
//! true for closures inlined from other crates.
//!
//! #### Drop glue
//! Drop glue translation items are introduced by MIR drop-statements. The
//! generated translation item will again have drop-glue item neighbors if the
//! type to be dropped contains nested values that also need to be dropped. It
//! might also have a function item neighbor for the explicit `Drop::drop`
//! implementation of its type.
//!
//! #### Unsizing Casts
//! A subtle way of introducing neighbor edges is by casting to a trait object.
//! Since the resulting fat-pointer contains a reference to a vtable, we need to
//! instantiate all object-save methods of the trait, as we need to store
//! pointers to these functions even if they never get called anywhere. This can
//! be seen as a special case of taking a function reference.
//!
//! #### Boxes
//! Since `Box` expression have special compiler support, no explicit calls to
//! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
//! compiler will generate them. We have to observe `Rvalue::Box` expressions
//! and Box-typed drop-statements for that purpose.
//!
//!
//! Interaction with Cross-Crate Inlining
//! -------------------------------------
//! The binary of a crate will not only contain machine code for the items
//! defined in the source code of that crate. It will also contain monomorphic
//! instantiations of any extern generic functions and of functions marked with
//! #[inline].
//! The collection algorithm handles this more or less transparently. If it is
//! about to create a translation item for something with an external `DefId`,
//! it will take a look if the MIR for that item is available, and if so just
//! proceed normally. If the MIR is not available, it assumes that the item is
//! just linked to and no node is created; which is exactly what we want, since
//! no machine code should be generated in the current crate for such an item.
//!
//! Eager and Lazy Collection Mode
//! ------------------------------
//! Translation item collection can be performed in one of two modes:
//!
//! - Lazy mode means that items will only be instantiated when actually
//! referenced. The goal is to produce the least amount of machine code
//! possible.
//!
//! - Eager mode is meant to be used in conjunction with incremental compilation
//! where a stable set of translation items is more important than a minimal
//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
//! in the crate, even of no drop call for that type exists (yet). It will
//! also instantiate default implementations of trait methods, something that
//! otherwise is only done on demand.
//!
//!
//! Open Issues
//! -----------
//! Some things are not yet fully implemented in the current version of this
//! module.
//!
//! ### Initializers of Constants and Statics
//! Since no MIR is constructed yet for initializer expressions of constants and
//! statics we cannot inspect these properly.
//!
//! ### Const Fns
//! Ideally, no translation item should be generated for const fns unless there
//! is a call to them that cannot be evaluated at compile time. At the moment
//! this is not implemented however: a translation item will be produced
//! regardless of whether it is actually needed or not.
use rustc::hir;
use rustc::hir::itemlikevisit::ItemLikeVisitor;
use rustc::hir::map as hir_map;
use rustc::hir::def_id::DefId;
use rustc::middle::const_val::ConstVal;
use rustc::middle::lang_items::{ExchangeMallocFnLangItem};
use rustc::traits;
use rustc::ty::subst::Substs;
use rustc::ty::{self, TypeFoldable, Ty, TyCtxt};
use rustc::ty::adjustment::CustomCoerceUnsized;
use rustc::mir::{self, Location};
use rustc::mir::visit::Visitor as MirVisitor;
use common::{def_ty, instance_ty, type_is_sized};
use monomorphize::{self, Instance};
use rustc::util::nodemap::{FxHashSet, FxHashMap, DefIdMap};
use trans_item::{TransItem, TransItemExt, DefPathBasedNames, InstantiationMode};
use rustc_data_structures::bitvec::BitVector;
#[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
pub enum TransItemCollectionMode {
Eager,
Lazy
}
/// Maps every translation item to all translation items it references in its
/// body.
pub struct InliningMap<'tcx> {
// Maps a source translation item to the range of translation items
// accessed by it.
// The two numbers in the tuple are the start (inclusive) and
// end index (exclusive) within the `targets` vecs.
index: FxHashMap<TransItem<'tcx>, (usize, usize)>,
targets: Vec<TransItem<'tcx>>,
// Contains one bit per translation item in the `targets` field. That bit
// is true if that translation item needs to be inlined into every CGU.
inlines: BitVector,
}
impl<'tcx> InliningMap<'tcx> {
fn new() -> InliningMap<'tcx> {
InliningMap {
index: FxHashMap(),
targets: Vec::new(),
inlines: BitVector::new(1024),
}
}
fn record_accesses<I>(&mut self,
source: TransItem<'tcx>,
new_targets: I)
where I: Iterator<Item=(TransItem<'tcx>, bool)> + ExactSizeIterator
{
assert!(!self.index.contains_key(&source));
let start_index = self.targets.len();
let new_items_count = new_targets.len();
let new_items_count_total = new_items_count + self.targets.len();
self.targets.reserve(new_items_count);
self.inlines.grow(new_items_count_total);
for (i, (target, inline)) in new_targets.enumerate() {
self.targets.push(target);
if inline {
self.inlines.insert(i + start_index);
}
}
let end_index = self.targets.len();
self.index.insert(source, (start_index, end_index));
}
// Internally iterate over all items referenced by `source` which will be
// made available for inlining.
pub fn with_inlining_candidates<F>(&self, source: TransItem<'tcx>, mut f: F)
where F: FnMut(TransItem<'tcx>)
{
if let Some(&(start_index, end_index)) = self.index.get(&source) {
for (i, candidate) in self.targets[start_index .. end_index]
.iter()
.enumerate() {
if self.inlines.contains(start_index + i) {
f(*candidate);
}
}
}
}
// Internally iterate over all items and the things each accesses.
pub fn iter_accesses<F>(&self, mut f: F)
where F: FnMut(TransItem<'tcx>, &[TransItem<'tcx>])
{
for (&accessor, &(start_index, end_index)) in &self.index {
f(accessor, &self.targets[start_index .. end_index])
}
}
}
pub fn collect_crate_translation_items<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
mode: TransItemCollectionMode)
-> (FxHashSet<TransItem<'tcx>>,
InliningMap<'tcx>) {
// We are not tracking dependencies of this pass as it has to be re-executed
// every time no matter what.
tcx.dep_graph.with_ignore(|| {
let roots = collect_roots(tcx, mode);
debug!("Building translation item graph, beginning at roots");
let mut visited = FxHashSet();
let mut recursion_depths = DefIdMap();
let mut inlining_map = InliningMap::new();
for root in roots {
collect_items_rec(tcx,
root,
&mut visited,
&mut recursion_depths,
&mut inlining_map);
}
(visited, inlining_map)
})
}
// Find all non-generic items by walking the HIR. These items serve as roots to
// start monomorphizing from.
fn collect_roots<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
mode: TransItemCollectionMode)
-> Vec<TransItem<'tcx>> {
debug!("Collecting roots");
let mut roots = Vec::new();
{
let mut visitor = RootCollector {
tcx,
mode,
output: &mut roots,
};
tcx.hir.krate().visit_all_item_likes(&mut visitor);
}
// We can only translate items that are instantiable - items all of
// whose predicates hold. Luckily, items that aren't instantiable
// can't actually be used, so we can just skip translating them.
roots.retain(|root| root.is_instantiable(tcx));
roots
}
// Collect all monomorphized translation items reachable from `starting_point`
fn collect_items_rec<'a, 'tcx: 'a>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
starting_point: TransItem<'tcx>,
visited: &mut FxHashSet<TransItem<'tcx>>,
recursion_depths: &mut DefIdMap<usize>,
inlining_map: &mut InliningMap<'tcx>) {
if !visited.insert(starting_point.clone()) {
// We've been here already, no need to search again.
return;
}
debug!("BEGIN collect_items_rec({})", starting_point.to_string(tcx));
let mut neighbors = Vec::new();
let recursion_depth_reset;
match starting_point {
TransItem::Static(node_id) => {
let def_id = tcx.hir.local_def_id(node_id);
let instance = Instance::mono(tcx, def_id);
// Sanity check whether this ended up being collected accidentally
debug_assert!(should_trans_locally(tcx, &instance));
let ty = instance_ty(tcx, &instance);
visit_drop_use(tcx, ty, true, &mut neighbors);
recursion_depth_reset = None;
collect_neighbours(tcx, instance, true, &mut neighbors);
}
TransItem::Fn(instance) => {
// Sanity check whether this ended up being collected accidentally
debug_assert!(should_trans_locally(tcx, &instance));
// Keep track of the monomorphization recursion depth
recursion_depth_reset = Some(check_recursion_limit(tcx,
instance,
recursion_depths));
check_type_length_limit(tcx, instance);
collect_neighbours(tcx, instance, false, &mut neighbors);
}
TransItem::GlobalAsm(..) => {
recursion_depth_reset = None;
}
}
record_accesses(tcx, starting_point, &neighbors[..], inlining_map);
for neighbour in neighbors {
collect_items_rec(tcx, neighbour, visited, recursion_depths, inlining_map);
}
if let Some((def_id, depth)) = recursion_depth_reset {
recursion_depths.insert(def_id, depth);
}
debug!("END collect_items_rec({})", starting_point.to_string(tcx));
}
fn record_accesses<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
caller: TransItem<'tcx>,
callees: &[TransItem<'tcx>],
inlining_map: &mut InliningMap<'tcx>) {
let is_inlining_candidate = |trans_item: &TransItem<'tcx>| {
trans_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
};
let accesses = callees.into_iter()
.map(|trans_item| {
(*trans_item, is_inlining_candidate(trans_item))
});
inlining_map.record_accesses(caller, accesses);
}
fn check_recursion_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
instance: Instance<'tcx>,
recursion_depths: &mut DefIdMap<usize>)
-> (DefId, usize) {
let def_id = instance.def_id();
let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
debug!(" => recursion depth={}", recursion_depth);
let recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
// HACK: drop_in_place creates tight monomorphization loops. Give
// it more margin.
recursion_depth / 4
} else {
recursion_depth
};
// Code that needs to instantiate the same function recursively
// more than the recursion limit is assumed to be causing an
// infinite expansion.
if recursion_depth > tcx.sess.recursion_limit.get() {
let error = format!("reached the recursion limit while instantiating `{}`",
instance);
if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
tcx.sess.span_fatal(tcx.hir.span(node_id), &error);
} else {
tcx.sess.fatal(&error);
}
}
recursion_depths.insert(def_id, recursion_depth + 1);
(def_id, recursion_depth)
}
fn check_type_length_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
instance: Instance<'tcx>)
{
let type_length = instance.substs.types().flat_map(|ty| ty.walk()).count();
debug!(" => type length={}", type_length);
// Rust code can easily create exponentially-long types using only a
// polynomial recursion depth. Even with the default recursion
// depth, you can easily get cases that take >2^60 steps to run,
// which means that rustc basically hangs.
//
// Bail out in these cases to avoid that bad user experience.
let type_length_limit = tcx.sess.type_length_limit.get();
if type_length > type_length_limit {
// The instance name is already known to be too long for rustc. Use
// `{:.64}` to avoid blasting the user's terminal with thousands of
// lines of type-name.
let instance_name = instance.to_string();
let msg = format!("reached the type-length limit while instantiating `{:.64}...`",
instance_name);
let mut diag = if let Some(node_id) = tcx.hir.as_local_node_id(instance.def_id()) {
tcx.sess.struct_span_fatal(tcx.hir.span(node_id), &msg)
} else {
tcx.sess.struct_fatal(&msg)
};
diag.note(&format!(
"consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
type_length_limit*2));
diag.emit();
tcx.sess.abort_if_errors();
}
}
struct MirNeighborCollector<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
mir: &'a mir::Mir<'tcx>,
output: &'a mut Vec<TransItem<'tcx>>,
param_substs: &'tcx Substs<'tcx>,
const_context: bool,
}
impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
debug!("visiting rvalue {:?}", *rvalue);
match *rvalue {
// When doing an cast from a regular pointer to a fat pointer, we
// have to instantiate all methods of the trait being cast to, so we
// can build the appropriate vtable.
mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => {
let target_ty = self.tcx.trans_apply_param_substs(self.param_substs,
&target_ty);
let source_ty = operand.ty(self.mir, self.tcx);
let source_ty = self.tcx.trans_apply_param_substs(self.param_substs,
&source_ty);
let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.tcx,
source_ty,
target_ty);
// This could also be a different Unsize instruction, like
// from a fixed sized array to a slice. But we are only
// interested in things that produce a vtable.
if target_ty.is_trait() && !source_ty.is_trait() {
create_trans_items_for_vtable_methods(self.tcx,
target_ty,
source_ty,
self.output);
}
}
mir::Rvalue::Cast(mir::CastKind::ReifyFnPointer, ref operand, _) => {
let fn_ty = operand.ty(self.mir, self.tcx);
let fn_ty = self.tcx.trans_apply_param_substs(self.param_substs,
&fn_ty);
visit_fn_use(self.tcx, fn_ty, false, &mut self.output);
}
mir::Rvalue::Cast(mir::CastKind::ClosureFnPointer, ref operand, _) => {
let source_ty = operand.ty(self.mir, self.tcx);
let source_ty = self.tcx.trans_apply_param_substs(self.param_substs,
&source_ty);
match source_ty.sty {
ty::TyClosure(def_id, substs) => {
let instance = monomorphize::resolve_closure(
self.tcx, def_id, substs, ty::ClosureKind::FnOnce);
self.output.push(create_fn_trans_item(instance));
}
_ => bug!(),
}
}
mir::Rvalue::NullaryOp(mir::NullOp::Box, _) => {
let tcx = self.tcx;
let exchange_malloc_fn_def_id = tcx
.lang_items()
.require(ExchangeMallocFnLangItem)
.unwrap_or_else(|e| tcx.sess.fatal(&e));
let instance = Instance::mono(tcx, exchange_malloc_fn_def_id);
if should_trans_locally(tcx, &instance) {
self.output.push(create_fn_trans_item(instance));
}
}
_ => { /* not interesting */ }
}
self.super_rvalue(rvalue, location);
}
fn visit_const(&mut self, constant: &&'tcx ty::Const<'tcx>, location: Location) {
debug!("visiting const {:?} @ {:?}", *constant, location);
if let ConstVal::Unevaluated(def_id, substs) = constant.val {
let substs = self.tcx.trans_apply_param_substs(self.param_substs,
&substs);
let instance = monomorphize::resolve(self.tcx, def_id, substs);
collect_neighbours(self.tcx, instance, true, self.output);
}
self.super_const(constant);
}
fn visit_terminator_kind(&mut self,
block: mir::BasicBlock,
kind: &mir::TerminatorKind<'tcx>,
location: Location) {
debug!("visiting terminator {:?} @ {:?}", kind, location);
let tcx = self.tcx;
match *kind {
mir::TerminatorKind::Call { ref func, .. } => {
let callee_ty = func.ty(self.mir, tcx);
let callee_ty = tcx.trans_apply_param_substs(self.param_substs, &callee_ty);
let constness = match (self.const_context, &callee_ty.sty) {
(true, &ty::TyFnDef(def_id, substs)) if self.tcx.is_const_fn(def_id) => {
let instance = monomorphize::resolve(self.tcx, def_id, substs);
Some(instance)
}
_ => None
};
if let Some(const_fn_instance) = constness {
// If this is a const fn, called from a const context, we
// have to visit its body in order to find any fn reifications
// it might contain.
collect_neighbours(self.tcx,
const_fn_instance,
true,
self.output);
} else {
visit_fn_use(self.tcx, callee_ty, true, &mut self.output);
}
}
mir::TerminatorKind::Drop { ref location, .. } |
mir::TerminatorKind::DropAndReplace { ref location, .. } => {
let ty = location.ty(self.mir, self.tcx)
.to_ty(self.tcx);
let ty = tcx.trans_apply_param_substs(self.param_substs, &ty);
visit_drop_use(self.tcx, ty, true, self.output);
}
mir::TerminatorKind::Goto { .. } |
mir::TerminatorKind::SwitchInt { .. } |
mir::TerminatorKind::Resume |
mir::TerminatorKind::Return |
mir::TerminatorKind::Unreachable |
mir::TerminatorKind::Assert { .. } => {}
mir::TerminatorKind::GeneratorDrop |
mir::TerminatorKind::Yield { .. } => bug!(),
}
self.super_terminator_kind(block, kind, location);
}
fn visit_static(&mut self,
static_: &mir::Static<'tcx>,
context: mir::visit::LvalueContext<'tcx>,
location: Location) {
debug!("visiting static {:?} @ {:?}", static_.def_id, location);
let tcx = self.tcx;
let instance = Instance::mono(tcx, static_.def_id);
if should_trans_locally(tcx, &instance) {
let node_id = tcx.hir.as_local_node_id(static_.def_id).unwrap();
self.output.push(TransItem::Static(node_id));
}
self.super_static(static_, context, location);
}
}
fn visit_drop_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
ty: Ty<'tcx>,
is_direct_call: bool,
output: &mut Vec<TransItem<'tcx>>)
{
let instance = monomorphize::resolve_drop_in_place(tcx, ty);
visit_instance_use(tcx, instance, is_direct_call, output);
}
fn visit_fn_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
ty: Ty<'tcx>,
is_direct_call: bool,
output: &mut Vec<TransItem<'tcx>>)
{
if let ty::TyFnDef(def_id, substs) = ty.sty {
let instance = monomorphize::resolve(tcx, def_id, substs);
visit_instance_use(tcx, instance, is_direct_call, output);
}
}
fn visit_instance_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
instance: ty::Instance<'tcx>,
is_direct_call: bool,
output: &mut Vec<TransItem<'tcx>>)
{
debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
if !should_trans_locally(tcx, &instance) {
return
}
match instance.def {
ty::InstanceDef::Intrinsic(def_id) => {
if !is_direct_call {
bug!("intrinsic {:?} being reified", def_id);
}
}
ty::InstanceDef::Virtual(..) |
ty::InstanceDef::DropGlue(_, None) => {
// don't need to emit shim if we are calling directly.
if !is_direct_call {
output.push(create_fn_trans_item(instance));
}
}
ty::InstanceDef::DropGlue(_, Some(_)) => {
output.push(create_fn_trans_item(instance));
}
ty::InstanceDef::ClosureOnceShim { .. } |
ty::InstanceDef::Item(..) |
ty::InstanceDef::FnPtrShim(..) |
ty::InstanceDef::CloneShim(..) => {
output.push(create_fn_trans_item(instance));
}
}
}
// Returns true if we should translate an instance in the local crate.
// Returns false if we can just link to the upstream crate and therefore don't
// need a translation item.
fn should_trans_locally<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: &Instance<'tcx>)
-> bool {
let def_id = match instance.def {
ty::InstanceDef::Item(def_id) => def_id,
ty::InstanceDef::ClosureOnceShim { .. } |
ty::InstanceDef::Virtual(..) |
ty::InstanceDef::FnPtrShim(..) |
ty::InstanceDef::DropGlue(..) |
ty::InstanceDef::Intrinsic(_) |
ty::InstanceDef::CloneShim(..) => return true
};
match tcx.hir.get_if_local(def_id) {
Some(hir_map::NodeForeignItem(..)) => {
false // foreign items are linked against, not translated.
}
Some(_) => true,
None => {
if tcx.is_exported_symbol(def_id) ||
tcx.is_foreign_item(def_id)
{
// We can link to the item in question, no instance needed
// in this crate
false
} else {
if !tcx.is_mir_available(def_id) {
bug!("Cannot create local trans-item for {:?}", def_id)
}
true
}
}
}
}
/// For given pair of source and target type that occur in an unsizing coercion,
/// this function finds the pair of types that determines the vtable linking
/// them.
///
/// For example, the source type might be `&SomeStruct` and the target type\
/// might be `&SomeTrait` in a cast like:
///
/// let src: &SomeStruct = ...;
/// let target = src as &SomeTrait;
///
/// Then the output of this function would be (SomeStruct, SomeTrait) since for
/// constructing the `target` fat-pointer we need the vtable for that pair.
///
/// Things can get more complicated though because there's also the case where
/// the unsized type occurs as a field:
///
/// ```rust
/// struct ComplexStruct<T: ?Sized> {
/// a: u32,
/// b: f64,
/// c: T
/// }
/// ```
///
/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
/// for the pair of `T` (which is a trait) and the concrete type that `T` was
/// originally coerced from:
///
/// let src: &ComplexStruct<SomeStruct> = ...;
/// let target = src as &ComplexStruct<SomeTrait>;
///
/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
/// `(SomeStruct, SomeTrait)`.
///
/// Finally, there is also the case of custom unsizing coercions, e.g. for
/// smart pointers such as `Rc` and `Arc`.
fn find_vtable_types_for_unsizing<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
source_ty: Ty<'tcx>,
target_ty: Ty<'tcx>)
-> (Ty<'tcx>, Ty<'tcx>) {
let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
if !type_is_sized(tcx, inner_source) {
(inner_source, inner_target)
} else {
tcx.struct_lockstep_tails(inner_source, inner_target)
}
};
match (&source_ty.sty, &target_ty.sty) {
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
&ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
(&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
ptr_vtable(a, b)
}
(&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
}
(&ty::TyAdt(source_adt_def, source_substs),
&ty::TyAdt(target_adt_def, target_substs)) => {
assert_eq!(source_adt_def, target_adt_def);
let kind =
monomorphize::custom_coerce_unsize_info(tcx, source_ty, target_ty);
let coerce_index = match kind {
CustomCoerceUnsized::Struct(i) => i
};
let source_fields = &source_adt_def.struct_variant().fields;
let target_fields = &target_adt_def.struct_variant().fields;
assert!(coerce_index < source_fields.len() &&
source_fields.len() == target_fields.len());
find_vtable_types_for_unsizing(tcx,
source_fields[coerce_index].ty(tcx,
source_substs),
target_fields[coerce_index].ty(tcx,
target_substs))
}
_ => bug!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
source_ty,
target_ty)
}
}
fn create_fn_trans_item<'a, 'tcx>(instance: Instance<'tcx>) -> TransItem<'tcx> {
debug!("create_fn_trans_item(instance={})", instance);
TransItem::Fn(instance)
}
/// Creates a `TransItem` for each method that is referenced by the vtable for
/// the given trait/impl pair.
fn create_trans_items_for_vtable_methods<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
trait_ty: Ty<'tcx>,
impl_ty: Ty<'tcx>,
output: &mut Vec<TransItem<'tcx>>) {
assert!(!trait_ty.needs_subst() && !trait_ty.has_escaping_regions() &&
!impl_ty.needs_subst() && !impl_ty.has_escaping_regions());
if let ty::TyDynamic(ref trait_ty, ..) = trait_ty.sty {
if let Some(principal) = trait_ty.principal() {
let poly_trait_ref = principal.with_self_ty(tcx, impl_ty);
assert!(!poly_trait_ref.has_escaping_regions());
// Walk all methods of the trait, including those of its supertraits
let methods = traits::get_vtable_methods(tcx, poly_trait_ref);
let methods = methods.filter_map(|method| method)
.map(|(def_id, substs)| monomorphize::resolve(tcx, def_id, substs))
.filter(|&instance| should_trans_locally(tcx, &instance))
.map(|instance| create_fn_trans_item(instance));
output.extend(methods);
}
// Also add the destructor
visit_drop_use(tcx, impl_ty, false, output);
}
}
//=-----------------------------------------------------------------------------
// Root Collection
//=-----------------------------------------------------------------------------
struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
mode: TransItemCollectionMode,
output: &'b mut Vec<TransItem<'tcx>>,
}
impl<'b, 'a, 'v> ItemLikeVisitor<'v> for RootCollector<'b, 'a, 'v> {
fn visit_item(&mut self, item: &'v hir::Item) {
match item.node {
hir::ItemExternCrate(..) |
hir::ItemUse(..) |
hir::ItemForeignMod(..) |
hir::ItemTy(..) |
hir::ItemDefaultImpl(..) |
hir::ItemTrait(..) |
hir::ItemMod(..) => {
// Nothing to do, just keep recursing...
}
hir::ItemImpl(..) => {
if self.mode == TransItemCollectionMode::Eager {
create_trans_items_for_default_impls(self.tcx,
item,
self.output);
}
}
hir::ItemEnum(_, ref generics) |
hir::ItemStruct(_, ref generics) |
hir::ItemUnion(_, ref generics) => {
if !generics.is_parameterized() {
if self.mode == TransItemCollectionMode::Eager {
let def_id = self.tcx.hir.local_def_id(item.id);
debug!("RootCollector: ADT drop-glue for {}",
def_id_to_string(self.tcx, def_id));
let ty = def_ty(self.tcx, def_id, Substs::empty());
visit_drop_use(self.tcx, ty, true, self.output);
}
}
}
hir::ItemGlobalAsm(..) => {
debug!("RootCollector: ItemGlobalAsm({})",
def_id_to_string(self.tcx,
self.tcx.hir.local_def_id(item.id)));
self.output.push(TransItem::GlobalAsm(item.id));
}
hir::ItemStatic(..) => {
debug!("RootCollector: ItemStatic({})",
def_id_to_string(self.tcx,
self.tcx.hir.local_def_id(item.id)));
self.output.push(TransItem::Static(item.id));
}
hir::ItemConst(..) => {
// const items only generate translation items if they are
// actually used somewhere. Just declaring them is insufficient.
}
hir::ItemFn(..) => {
let tcx = self.tcx;
let def_id = tcx.hir.local_def_id(item.id);
if (self.mode == TransItemCollectionMode::Eager ||
!tcx.is_const_fn(def_id) || tcx.is_exported_symbol(def_id)) &&
!item_has_type_parameters(tcx, def_id) {
debug!("RootCollector: ItemFn({})",
def_id_to_string(tcx, def_id));
let instance = Instance::mono(tcx, def_id);
self.output.push(TransItem::Fn(instance));
}
}
}
}
fn visit_trait_item(&mut self, _: &'v hir::TraitItem) {
// Even if there's a default body with no explicit generics,
// it's still generic over some `Self: Trait`, so not a root.
}
fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
match ii.node {
hir::ImplItemKind::Method(hir::MethodSig { .. }, _) => {
let tcx = self.tcx;
let def_id = tcx.hir.local_def_id(ii.id);
if (self.mode == TransItemCollectionMode::Eager ||
!tcx.is_const_fn(def_id) ||
tcx.is_exported_symbol(def_id)) &&
!item_has_type_parameters(tcx, def_id) {
debug!("RootCollector: MethodImplItem({})",
def_id_to_string(tcx, def_id));
let instance = Instance::mono(tcx, def_id);
self.output.push(TransItem::Fn(instance));
}
}
_ => { /* Nothing to do here */ }
}
}
}
fn item_has_type_parameters<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool {
let generics = tcx.generics_of(def_id);
generics.parent_types as usize + generics.types.len() > 0
}
fn create_trans_items_for_default_impls<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
item: &'tcx hir::Item,
output: &mut Vec<TransItem<'tcx>>) {
match item.node {
hir::ItemImpl(_,
_,
_,
ref generics,
..,
ref impl_item_refs) => {
if generics.is_type_parameterized() {
return
}
let impl_def_id = tcx.hir.local_def_id(item.id);
debug!("create_trans_items_for_default_impls(item={})",
def_id_to_string(tcx, impl_def_id));
if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
let callee_substs = tcx.erase_regions(&trait_ref.substs);
let overridden_methods: FxHashSet<_> =
impl_item_refs.iter()
.map(|iiref| iiref.name)
.collect();
for method in tcx.provided_trait_methods(trait_ref.def_id) {
if overridden_methods.contains(&method.name) {
continue;
}
if !tcx.generics_of(method.def_id).types.is_empty() {
continue;
}
let instance =
monomorphize::resolve(tcx, method.def_id, callee_substs);
let trans_item = create_fn_trans_item(instance);
if trans_item.is_instantiable(tcx) && should_trans_locally(tcx, &instance) {
output.push(trans_item);
}
}
}
}
_ => {
bug!()
}
}
}
/// Scan the MIR in order to find function calls, closures, and drop-glue
fn collect_neighbours<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
instance: Instance<'tcx>,
const_context: bool,
output: &mut Vec<TransItem<'tcx>>)
{
let mir = tcx.instance_mir(instance.def);
let mut visitor = MirNeighborCollector {
tcx,
mir: &mir,
output,
param_substs: instance.substs,
const_context,
};
visitor.visit_mir(&mir);
for promoted in &mir.promoted {
visitor.mir = promoted;
visitor.visit_mir(promoted);
}
}
fn def_id_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId)
-> String {
let mut output = String::new();
let printer = DefPathBasedNames::new(tcx, false, false);
printer.push_def_path(def_id, &mut output);
output
}