2022-09-16 19:07:42 +08:00

3550 lines
114 KiB
Rust

use crate::def::{CtorKind, DefKind, Res};
use crate::def_id::DefId;
pub(crate) use crate::hir_id::{HirId, ItemLocalId};
use crate::intravisit::FnKind;
use crate::LangItem;
use rustc_ast as ast;
use rustc_ast::util::parser::ExprPrecedence;
use rustc_ast::{Attribute, FloatTy, IntTy, Label, LitKind, TraitObjectSyntax, UintTy};
pub use rustc_ast::{BindingAnnotation, BorrowKind, ByRef, ImplPolarity, IsAuto};
pub use rustc_ast::{CaptureBy, Movability, Mutability};
use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece};
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sorted_map::SortedMap;
use rustc_error_messages::MultiSpan;
use rustc_index::vec::IndexVec;
use rustc_macros::HashStable_Generic;
use rustc_span::hygiene::MacroKind;
use rustc_span::source_map::Spanned;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{def_id::LocalDefId, BytePos, Span, DUMMY_SP};
use rustc_target::asm::InlineAsmRegOrRegClass;
use rustc_target::spec::abi::Abi;
use smallvec::SmallVec;
use std::fmt;
#[derive(Debug, Copy, Clone, Encodable, HashStable_Generic)]
pub struct Lifetime {
pub hir_id: HirId,
pub span: Span,
/// Either "`'a`", referring to a named lifetime definition,
/// or "``" (i.e., `kw::Empty`), for elision placeholders.
///
/// HIR lowering inserts these placeholders in type paths that
/// refer to type definitions needing lifetime parameters,
/// `&T` and `&mut T`, and trait objects without `... + 'a`.
pub name: LifetimeName,
}
#[derive(Debug, Clone, PartialEq, Eq, Encodable, Hash, Copy)]
#[derive(HashStable_Generic)]
pub enum ParamName {
/// Some user-given name like `T` or `'x`.
Plain(Ident),
/// Synthetic name generated when user elided a lifetime in an impl header.
///
/// E.g., the lifetimes in cases like these:
/// ```ignore (fragment)
/// impl Foo for &u32
/// impl Foo<'_> for u32
/// ```
/// in that case, we rewrite to
/// ```ignore (fragment)
/// impl<'f> Foo for &'f u32
/// impl<'f> Foo<'f> for u32
/// ```
/// where `'f` is something like `Fresh(0)`. The indices are
/// unique per impl, but not necessarily continuous.
Fresh,
/// Indicates an illegal name was given and an error has been
/// reported (so we should squelch other derived errors). Occurs
/// when, e.g., `'_` is used in the wrong place.
Error,
}
impl ParamName {
pub fn ident(&self) -> Ident {
match *self {
ParamName::Plain(ident) => ident,
ParamName::Fresh | ParamName::Error => Ident::with_dummy_span(kw::UnderscoreLifetime),
}
}
pub fn normalize_to_macros_2_0(&self) -> ParamName {
match *self {
ParamName::Plain(ident) => ParamName::Plain(ident.normalize_to_macros_2_0()),
param_name => param_name,
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, Encodable, Hash, Copy)]
#[derive(HashStable_Generic)]
pub enum LifetimeName {
/// User-given names or fresh (synthetic) names.
Param(LocalDefId, ParamName),
/// Implicit lifetime in a context like `dyn Foo`. This is
/// distinguished from implicit lifetimes elsewhere because the
/// lifetime that they default to must appear elsewhere within the
/// enclosing type. This means that, in an `impl Trait` context, we
/// don't have to create a parameter for them. That is, `impl
/// Trait<Item = &u32>` expands to an opaque type like `type
/// Foo<'a> = impl Trait<Item = &'a u32>`, but `impl Trait<item =
/// dyn Bar>` expands to `type Foo = impl Trait<Item = dyn Bar +
/// 'static>`. The latter uses `ImplicitObjectLifetimeDefault` so
/// that surrounding code knows not to create a lifetime
/// parameter.
ImplicitObjectLifetimeDefault,
/// Indicates an error during lowering (usually `'_` in wrong place)
/// that was already reported.
Error,
/// User wrote an anonymous lifetime, either `'_` or nothing.
/// The semantics of this lifetime should be inferred by typechecking code.
Infer,
/// User wrote `'static`.
Static,
}
impl LifetimeName {
pub fn ident(&self) -> Ident {
match *self {
LifetimeName::ImplicitObjectLifetimeDefault | LifetimeName::Error => Ident::empty(),
LifetimeName::Infer => Ident::with_dummy_span(kw::UnderscoreLifetime),
LifetimeName::Static => Ident::with_dummy_span(kw::StaticLifetime),
LifetimeName::Param(_, param_name) => param_name.ident(),
}
}
pub fn is_anonymous(&self) -> bool {
match *self {
LifetimeName::ImplicitObjectLifetimeDefault
| LifetimeName::Infer
| LifetimeName::Param(_, ParamName::Fresh)
| LifetimeName::Error => true,
LifetimeName::Static | LifetimeName::Param(..) => false,
}
}
pub fn is_elided(&self) -> bool {
match self {
LifetimeName::ImplicitObjectLifetimeDefault | LifetimeName::Infer => true,
// It might seem surprising that `Fresh` counts as not *elided*
// -- but this is because, as far as the code in the compiler is
// concerned -- `Fresh` variants act equivalently to "some fresh name".
// They correspond to early-bound regions on an impl, in other words.
LifetimeName::Error | LifetimeName::Param(..) | LifetimeName::Static => false,
}
}
fn is_static(&self) -> bool {
self == &LifetimeName::Static
}
pub fn normalize_to_macros_2_0(&self) -> LifetimeName {
match *self {
LifetimeName::Param(def_id, param_name) => {
LifetimeName::Param(def_id, param_name.normalize_to_macros_2_0())
}
lifetime_name => lifetime_name,
}
}
}
impl fmt::Display for Lifetime {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.name.ident().fmt(f)
}
}
impl Lifetime {
pub fn is_elided(&self) -> bool {
self.name.is_elided()
}
pub fn is_static(&self) -> bool {
self.name.is_static()
}
}
/// A `Path` is essentially Rust's notion of a name; for instance,
/// `std::cmp::PartialEq`. It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
#[derive(Debug, HashStable_Generic)]
pub struct Path<'hir> {
pub span: Span,
/// The resolution for the path.
pub res: Res,
/// The segments in the path: the things separated by `::`.
pub segments: &'hir [PathSegment<'hir>],
}
impl Path<'_> {
pub fn is_global(&self) -> bool {
!self.segments.is_empty() && self.segments[0].ident.name == kw::PathRoot
}
}
/// A segment of a path: an identifier, an optional lifetime, and a set of
/// types.
#[derive(Debug, HashStable_Generic)]
pub struct PathSegment<'hir> {
/// The identifier portion of this path segment.
pub ident: Ident,
pub hir_id: HirId,
pub res: Res,
/// Type/lifetime parameters attached to this path. They come in
/// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`. Note that
/// this is more than just simple syntactic sugar; the use of
/// parens affects the region binding rules, so we preserve the
/// distinction.
pub args: Option<&'hir GenericArgs<'hir>>,
/// Whether to infer remaining type parameters, if any.
/// This only applies to expression and pattern paths, and
/// out of those only the segments with no type parameters
/// to begin with, e.g., `Vec::new` is `<Vec<..>>::new::<..>`.
pub infer_args: bool,
}
impl<'hir> PathSegment<'hir> {
/// Converts an identifier to the corresponding segment.
pub fn new(ident: Ident, hir_id: HirId, res: Res) -> PathSegment<'hir> {
PathSegment { ident, hir_id, res, infer_args: true, args: None }
}
pub fn invalid() -> Self {
Self::new(Ident::empty(), HirId::INVALID, Res::Err)
}
pub fn args(&self) -> &GenericArgs<'hir> {
if let Some(ref args) = self.args {
args
} else {
const DUMMY: &GenericArgs<'_> = &GenericArgs::none();
DUMMY
}
}
}
#[derive(Encodable, Debug, HashStable_Generic)]
pub struct ConstArg {
pub value: AnonConst,
pub span: Span,
}
#[derive(Encodable, Debug, HashStable_Generic)]
pub struct InferArg {
pub hir_id: HirId,
pub span: Span,
}
impl InferArg {
pub fn to_ty(&self) -> Ty<'_> {
Ty { kind: TyKind::Infer, span: self.span, hir_id: self.hir_id }
}
}
#[derive(Debug, HashStable_Generic)]
pub enum GenericArg<'hir> {
Lifetime(&'hir Lifetime),
Type(&'hir Ty<'hir>),
Const(ConstArg),
Infer(InferArg),
}
impl GenericArg<'_> {
pub fn span(&self) -> Span {
match self {
GenericArg::Lifetime(l) => l.span,
GenericArg::Type(t) => t.span,
GenericArg::Const(c) => c.span,
GenericArg::Infer(i) => i.span,
}
}
pub fn hir_id(&self) -> HirId {
match self {
GenericArg::Lifetime(l) => l.hir_id,
GenericArg::Type(t) => t.hir_id,
GenericArg::Const(c) => c.value.hir_id,
GenericArg::Infer(i) => i.hir_id,
}
}
pub fn is_synthetic(&self) -> bool {
matches!(self, GenericArg::Lifetime(lifetime) if lifetime.name.ident() == Ident::empty())
}
pub fn descr(&self) -> &'static str {
match self {
GenericArg::Lifetime(_) => "lifetime",
GenericArg::Type(_) => "type",
GenericArg::Const(_) => "constant",
GenericArg::Infer(_) => "inferred",
}
}
pub fn to_ord(&self) -> ast::ParamKindOrd {
match self {
GenericArg::Lifetime(_) => ast::ParamKindOrd::Lifetime,
GenericArg::Type(_) | GenericArg::Const(_) | GenericArg::Infer(_) => {
ast::ParamKindOrd::TypeOrConst
}
}
}
pub fn is_ty_or_const(&self) -> bool {
match self {
GenericArg::Lifetime(_) => false,
GenericArg::Type(_) | GenericArg::Const(_) | GenericArg::Infer(_) => true,
}
}
}
#[derive(Debug, HashStable_Generic)]
pub struct GenericArgs<'hir> {
/// The generic arguments for this path segment.
pub args: &'hir [GenericArg<'hir>],
/// Bindings (equality constraints) on associated types, if present.
/// E.g., `Foo<A = Bar>`.
pub bindings: &'hir [TypeBinding<'hir>],
/// Were arguments written in parenthesized form `Fn(T) -> U`?
/// This is required mostly for pretty-printing and diagnostics,
/// but also for changing lifetime elision rules to be "function-like".
pub parenthesized: bool,
/// The span encompassing arguments and the surrounding brackets `<>` or `()`
/// Foo<A, B, AssocTy = D> Fn(T, U, V) -> W
/// ^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^
/// Note that this may be:
/// - empty, if there are no generic brackets (but there may be hidden lifetimes)
/// - dummy, if this was generated while desugaring
pub span_ext: Span,
}
impl<'hir> GenericArgs<'hir> {
pub const fn none() -> Self {
Self { args: &[], bindings: &[], parenthesized: false, span_ext: DUMMY_SP }
}
pub fn inputs(&self) -> &[Ty<'hir>] {
if self.parenthesized {
for arg in self.args {
match arg {
GenericArg::Lifetime(_) => {}
GenericArg::Type(ref ty) => {
if let TyKind::Tup(ref tys) = ty.kind {
return tys;
}
break;
}
GenericArg::Const(_) => {}
GenericArg::Infer(_) => {}
}
}
}
panic!("GenericArgs::inputs: not a `Fn(T) -> U`");
}
#[inline]
pub fn has_type_params(&self) -> bool {
self.args.iter().any(|arg| matches!(arg, GenericArg::Type(_)))
}
pub fn has_err(&self) -> bool {
self.args.iter().any(|arg| match arg {
GenericArg::Type(ty) => matches!(ty.kind, TyKind::Err),
_ => false,
}) || self.bindings.iter().any(|arg| match arg.kind {
TypeBindingKind::Equality { term: Term::Ty(ty) } => matches!(ty.kind, TyKind::Err),
_ => false,
})
}
#[inline]
pub fn num_type_params(&self) -> usize {
self.args.iter().filter(|arg| matches!(arg, GenericArg::Type(_))).count()
}
#[inline]
pub fn num_lifetime_params(&self) -> usize {
self.args.iter().filter(|arg| matches!(arg, GenericArg::Lifetime(_))).count()
}
#[inline]
pub fn has_lifetime_params(&self) -> bool {
self.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)))
}
#[inline]
pub fn num_generic_params(&self) -> usize {
self.args.iter().filter(|arg| !matches!(arg, GenericArg::Lifetime(_))).count()
}
/// The span encompassing the text inside the surrounding brackets.
/// It will also include bindings if they aren't in the form `-> Ret`
/// Returns `None` if the span is empty (e.g. no brackets) or dummy
pub fn span(&self) -> Option<Span> {
let span_ext = self.span_ext()?;
Some(span_ext.with_lo(span_ext.lo() + BytePos(1)).with_hi(span_ext.hi() - BytePos(1)))
}
/// Returns span encompassing arguments and their surrounding `<>` or `()`
pub fn span_ext(&self) -> Option<Span> {
Some(self.span_ext).filter(|span| !span.is_empty())
}
pub fn is_empty(&self) -> bool {
self.args.is_empty()
}
}
/// A modifier on a bound, currently this is only used for `?Sized`, where the
/// modifier is `Maybe`. Negative bounds should also be handled here.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Hash, Debug)]
#[derive(HashStable_Generic)]
pub enum TraitBoundModifier {
None,
Maybe,
MaybeConst,
}
/// The AST represents all type param bounds as types.
/// `typeck::collect::compute_bounds` matches these against
/// the "special" built-in traits (see `middle::lang_items`) and
/// detects `Copy`, `Send` and `Sync`.
#[derive(Clone, Debug, HashStable_Generic)]
pub enum GenericBound<'hir> {
Trait(PolyTraitRef<'hir>, TraitBoundModifier),
// FIXME(davidtwco): Introduce `PolyTraitRef::LangItem`
LangItemTrait(LangItem, Span, HirId, &'hir GenericArgs<'hir>),
Outlives(&'hir Lifetime),
}
impl GenericBound<'_> {
pub fn trait_ref(&self) -> Option<&TraitRef<'_>> {
match self {
GenericBound::Trait(data, _) => Some(&data.trait_ref),
_ => None,
}
}
pub fn span(&self) -> Span {
match self {
GenericBound::Trait(t, ..) => t.span,
GenericBound::LangItemTrait(_, span, ..) => *span,
GenericBound::Outlives(l) => l.span,
}
}
}
pub type GenericBounds<'hir> = &'hir [GenericBound<'hir>];
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Debug, HashStable_Generic)]
pub enum LifetimeParamKind {
// Indicates that the lifetime definition was explicitly declared (e.g., in
// `fn foo<'a>(x: &'a u8) -> &'a u8 { x }`).
Explicit,
// Indication that the lifetime was elided (e.g., in both cases in
// `fn foo(x: &u8) -> &'_ u8 { x }`).
Elided,
// Indication that the lifetime name was somehow in error.
Error,
}
#[derive(Debug, HashStable_Generic)]
pub enum GenericParamKind<'hir> {
/// A lifetime definition (e.g., `'a: 'b + 'c + 'd`).
Lifetime {
kind: LifetimeParamKind,
},
Type {
default: Option<&'hir Ty<'hir>>,
synthetic: bool,
},
Const {
ty: &'hir Ty<'hir>,
/// Optional default value for the const generic param
default: Option<AnonConst>,
},
}
#[derive(Debug, HashStable_Generic)]
pub struct GenericParam<'hir> {
pub hir_id: HirId,
pub name: ParamName,
pub span: Span,
pub pure_wrt_drop: bool,
pub kind: GenericParamKind<'hir>,
pub colon_span: Option<Span>,
}
impl<'hir> GenericParam<'hir> {
/// Synthetic type-parameters are inserted after normal ones.
/// In order for normal parameters to be able to refer to synthetic ones,
/// scans them first.
pub fn is_impl_trait(&self) -> bool {
matches!(self.kind, GenericParamKind::Type { synthetic: true, .. })
}
/// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`.
///
/// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information.
pub fn is_elided_lifetime(&self) -> bool {
matches!(self.kind, GenericParamKind::Lifetime { kind: LifetimeParamKind::Elided })
}
}
#[derive(Default)]
pub struct GenericParamCount {
pub lifetimes: usize,
pub types: usize,
pub consts: usize,
pub infer: usize,
}
/// Represents lifetimes and type parameters attached to a declaration
/// of a function, enum, trait, etc.
#[derive(Debug, HashStable_Generic)]
pub struct Generics<'hir> {
pub params: &'hir [GenericParam<'hir>],
pub predicates: &'hir [WherePredicate<'hir>],
pub has_where_clause_predicates: bool,
pub where_clause_span: Span,
pub span: Span,
}
impl<'hir> Generics<'hir> {
pub const fn empty() -> &'hir Generics<'hir> {
const NOPE: Generics<'_> = Generics {
params: &[],
predicates: &[],
has_where_clause_predicates: false,
where_clause_span: DUMMY_SP,
span: DUMMY_SP,
};
&NOPE
}
pub fn get_named(&self, name: Symbol) -> Option<&GenericParam<'hir>> {
for param in self.params {
if name == param.name.ident().name {
return Some(param);
}
}
None
}
pub fn spans(&self) -> MultiSpan {
if self.params.is_empty() {
self.span.into()
} else {
self.params.iter().map(|p| p.span).collect::<Vec<Span>>().into()
}
}
/// If there are generic parameters, return where to introduce a new one.
pub fn span_for_param_suggestion(&self) -> Option<Span> {
if self.params.iter().any(|p| self.span.contains(p.span)) {
// `fn foo<A>(t: impl Trait)`
// ^ suggest `, T: Trait` here
let span = self.span.with_lo(self.span.hi() - BytePos(1)).shrink_to_lo();
Some(span)
} else {
None
}
}
/// `Span` where further predicates would be suggested, accounting for trailing commas, like
/// in `fn foo<T>(t: T) where T: Foo,` so we don't suggest two trailing commas.
pub fn tail_span_for_predicate_suggestion(&self) -> Span {
let end = self.where_clause_span.shrink_to_hi();
if self.has_where_clause_predicates {
self.predicates
.iter()
.rfind(|&p| p.in_where_clause())
.map_or(end, |p| p.span())
.shrink_to_hi()
.to(end)
} else {
end
}
}
pub fn add_where_or_trailing_comma(&self) -> &'static str {
if self.has_where_clause_predicates {
","
} else if self.where_clause_span.is_empty() {
" where"
} else {
// No where clause predicates, but we have `where` token
""
}
}
pub fn bounds_for_param(
&self,
param_def_id: LocalDefId,
) -> impl Iterator<Item = &WhereBoundPredicate<'hir>> {
self.predicates.iter().filter_map(move |pred| match pred {
WherePredicate::BoundPredicate(bp) if bp.is_param_bound(param_def_id.to_def_id()) => {
Some(bp)
}
_ => None,
})
}
pub fn outlives_for_param(
&self,
param_def_id: LocalDefId,
) -> impl Iterator<Item = &WhereRegionPredicate<'_>> {
self.predicates.iter().filter_map(move |pred| match pred {
WherePredicate::RegionPredicate(rp) if rp.is_param_bound(param_def_id) => Some(rp),
_ => None,
})
}
pub fn bounds_span_for_suggestions(&self, param_def_id: LocalDefId) -> Option<Span> {
self.bounds_for_param(param_def_id).flat_map(|bp| bp.bounds.iter().rev()).find_map(
|bound| {
// We include bounds that come from a `#[derive(_)]` but point at the user's code,
// as we use this method to get a span appropriate for suggestions.
let bs = bound.span();
if bs.can_be_used_for_suggestions() { Some(bs.shrink_to_hi()) } else { None }
},
)
}
pub fn span_for_predicate_removal(&self, pos: usize) -> Span {
let predicate = &self.predicates[pos];
let span = predicate.span();
if !predicate.in_where_clause() {
// <T: ?Sized, U>
// ^^^^^^^^
return span;
}
// We need to find out which comma to remove.
if pos < self.predicates.len() - 1 {
let next_pred = &self.predicates[pos + 1];
if next_pred.in_where_clause() {
// where T: ?Sized, Foo: Bar,
// ^^^^^^^^^^^
return span.until(next_pred.span());
}
}
if pos > 0 {
let prev_pred = &self.predicates[pos - 1];
if prev_pred.in_where_clause() {
// where Foo: Bar, T: ?Sized,
// ^^^^^^^^^^^
return prev_pred.span().shrink_to_hi().to(span);
}
}
// This is the only predicate in the where clause.
// where T: ?Sized
// ^^^^^^^^^^^^^^^
self.where_clause_span
}
pub fn span_for_bound_removal(&self, predicate_pos: usize, bound_pos: usize) -> Span {
let predicate = &self.predicates[predicate_pos];
let bounds = predicate.bounds();
if bounds.len() == 1 {
return self.span_for_predicate_removal(predicate_pos);
}
let span = bounds[bound_pos].span();
if bound_pos == 0 {
// where T: ?Sized + Bar, Foo: Bar,
// ^^^^^^^^^
span.to(bounds[1].span().shrink_to_lo())
} else {
// where T: Bar + ?Sized, Foo: Bar,
// ^^^^^^^^^
bounds[bound_pos - 1].span().shrink_to_hi().to(span)
}
}
}
/// A single predicate in a where-clause.
#[derive(Debug, HashStable_Generic)]
pub enum WherePredicate<'hir> {
/// A type binding (e.g., `for<'c> Foo: Send + Clone + 'c`).
BoundPredicate(WhereBoundPredicate<'hir>),
/// A lifetime predicate (e.g., `'a: 'b + 'c`).
RegionPredicate(WhereRegionPredicate<'hir>),
/// An equality predicate (unsupported).
EqPredicate(WhereEqPredicate<'hir>),
}
impl<'hir> WherePredicate<'hir> {
pub fn span(&self) -> Span {
match self {
WherePredicate::BoundPredicate(p) => p.span,
WherePredicate::RegionPredicate(p) => p.span,
WherePredicate::EqPredicate(p) => p.span,
}
}
pub fn in_where_clause(&self) -> bool {
match self {
WherePredicate::BoundPredicate(p) => p.origin == PredicateOrigin::WhereClause,
WherePredicate::RegionPredicate(p) => p.in_where_clause,
WherePredicate::EqPredicate(_) => false,
}
}
pub fn bounds(&self) -> GenericBounds<'hir> {
match self {
WherePredicate::BoundPredicate(p) => p.bounds,
WherePredicate::RegionPredicate(p) => p.bounds,
WherePredicate::EqPredicate(_) => &[],
}
}
}
#[derive(Copy, Clone, Debug, HashStable_Generic, PartialEq, Eq)]
pub enum PredicateOrigin {
WhereClause,
GenericParam,
ImplTrait,
}
/// A type bound (e.g., `for<'c> Foo: Send + Clone + 'c`).
#[derive(Debug, HashStable_Generic)]
pub struct WhereBoundPredicate<'hir> {
pub span: Span,
/// Origin of the predicate.
pub origin: PredicateOrigin,
/// Any generics from a `for` binding.
pub bound_generic_params: &'hir [GenericParam<'hir>],
/// The type being bounded.
pub bounded_ty: &'hir Ty<'hir>,
/// Trait and lifetime bounds (e.g., `Clone + Send + 'static`).
pub bounds: GenericBounds<'hir>,
}
impl<'hir> WhereBoundPredicate<'hir> {
/// Returns `true` if `param_def_id` matches the `bounded_ty` of this predicate.
pub fn is_param_bound(&self, param_def_id: DefId) -> bool {
self.bounded_ty.as_generic_param().map_or(false, |(def_id, _)| def_id == param_def_id)
}
}
/// A lifetime predicate (e.g., `'a: 'b + 'c`).
#[derive(Debug, HashStable_Generic)]
pub struct WhereRegionPredicate<'hir> {
pub span: Span,
pub in_where_clause: bool,
pub lifetime: &'hir Lifetime,
pub bounds: GenericBounds<'hir>,
}
impl<'hir> WhereRegionPredicate<'hir> {
/// Returns `true` if `param_def_id` matches the `lifetime` of this predicate.
pub fn is_param_bound(&self, param_def_id: LocalDefId) -> bool {
match self.lifetime.name {
LifetimeName::Param(id, _) => id == param_def_id,
_ => false,
}
}
}
/// An equality predicate (e.g., `T = int`); currently unsupported.
#[derive(Debug, HashStable_Generic)]
pub struct WhereEqPredicate<'hir> {
pub span: Span,
pub lhs_ty: &'hir Ty<'hir>,
pub rhs_ty: &'hir Ty<'hir>,
}
/// HIR node coupled with its parent's id in the same HIR owner.
///
/// The parent is trash when the node is a HIR owner.
#[derive(Clone, Debug)]
pub struct ParentedNode<'tcx> {
pub parent: ItemLocalId,
pub node: Node<'tcx>,
}
/// Attributes owned by a HIR owner.
#[derive(Debug)]
pub struct AttributeMap<'tcx> {
pub map: SortedMap<ItemLocalId, &'tcx [Attribute]>,
pub hash: Fingerprint,
}
impl<'tcx> AttributeMap<'tcx> {
pub const EMPTY: &'static AttributeMap<'static> =
&AttributeMap { map: SortedMap::new(), hash: Fingerprint::ZERO };
#[inline]
pub fn get(&self, id: ItemLocalId) -> &'tcx [Attribute] {
self.map.get(&id).copied().unwrap_or(&[])
}
}
/// Map of all HIR nodes inside the current owner.
/// These nodes are mapped by `ItemLocalId` alongside the index of their parent node.
/// The HIR tree, including bodies, is pre-hashed.
pub struct OwnerNodes<'tcx> {
/// Pre-computed hash of the full HIR.
pub hash_including_bodies: Fingerprint,
/// Pre-computed hash of the item signature, sithout recursing into the body.
pub hash_without_bodies: Fingerprint,
/// Full HIR for the current owner.
// The zeroth node's parent should never be accessed: the owner's parent is computed by the
// hir_owner_parent query. It is set to `ItemLocalId::INVALID` to force an ICE if accidentally
// used.
pub nodes: IndexVec<ItemLocalId, Option<ParentedNode<'tcx>>>,
/// Content of local bodies.
pub bodies: SortedMap<ItemLocalId, &'tcx Body<'tcx>>,
/// Non-owning definitions contained in this owner.
pub local_id_to_def_id: SortedMap<ItemLocalId, LocalDefId>,
}
impl<'tcx> OwnerNodes<'tcx> {
pub fn node(&self) -> OwnerNode<'tcx> {
use rustc_index::vec::Idx;
let node = self.nodes[ItemLocalId::new(0)].as_ref().unwrap().node;
let node = node.as_owner().unwrap(); // Indexing must ensure it is an OwnerNode.
node
}
}
impl fmt::Debug for OwnerNodes<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("OwnerNodes")
// Do not print all the pointers to all the nodes, as it would be unreadable.
.field("node", &self.nodes[ItemLocalId::from_u32(0)])
.field(
"parents",
&self
.nodes
.iter_enumerated()
.map(|(id, parented_node)| (id, parented_node.as_ref().map(|node| node.parent)))
.collect::<Vec<_>>(),
)
.field("bodies", &self.bodies)
.field("local_id_to_def_id", &self.local_id_to_def_id)
.field("hash_without_bodies", &self.hash_without_bodies)
.field("hash_including_bodies", &self.hash_including_bodies)
.finish()
}
}
/// Full information resulting from lowering an AST node.
#[derive(Debug, HashStable_Generic)]
pub struct OwnerInfo<'hir> {
/// Contents of the HIR.
pub nodes: OwnerNodes<'hir>,
/// Map from each nested owner to its parent's local id.
pub parenting: FxHashMap<LocalDefId, ItemLocalId>,
/// Collected attributes of the HIR nodes.
pub attrs: AttributeMap<'hir>,
/// Map indicating what traits are in scope for places where this
/// is relevant; generated by resolve.
pub trait_map: FxHashMap<ItemLocalId, Box<[TraitCandidate]>>,
}
impl<'tcx> OwnerInfo<'tcx> {
#[inline]
pub fn node(&self) -> OwnerNode<'tcx> {
self.nodes.node()
}
}
#[derive(Copy, Clone, Debug, HashStable_Generic)]
pub enum MaybeOwner<T> {
Owner(T),
NonOwner(HirId),
/// Used as a placeholder for unused LocalDefId.
Phantom,
}
impl<T> MaybeOwner<T> {
pub fn as_owner(self) -> Option<T> {
match self {
MaybeOwner::Owner(i) => Some(i),
MaybeOwner::NonOwner(_) | MaybeOwner::Phantom => None,
}
}
pub fn map<U>(self, f: impl FnOnce(T) -> U) -> MaybeOwner<U> {
match self {
MaybeOwner::Owner(i) => MaybeOwner::Owner(f(i)),
MaybeOwner::NonOwner(hir_id) => MaybeOwner::NonOwner(hir_id),
MaybeOwner::Phantom => MaybeOwner::Phantom,
}
}
pub fn unwrap(self) -> T {
match self {
MaybeOwner::Owner(i) => i,
MaybeOwner::NonOwner(_) | MaybeOwner::Phantom => panic!("Not a HIR owner"),
}
}
}
/// The top-level data structure that stores the entire contents of
/// the crate currently being compiled.
///
/// For more details, see the [rustc dev guide].
///
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/hir.html
#[derive(Debug)]
pub struct Crate<'hir> {
pub owners: IndexVec<LocalDefId, MaybeOwner<&'hir OwnerInfo<'hir>>>,
pub hir_hash: Fingerprint,
}
#[derive(Debug, HashStable_Generic)]
pub struct Closure<'hir> {
pub binder: ClosureBinder,
pub capture_clause: CaptureBy,
pub bound_generic_params: &'hir [GenericParam<'hir>],
pub fn_decl: &'hir FnDecl<'hir>,
pub body: BodyId,
pub fn_decl_span: Span,
pub movability: Option<Movability>,
}
/// A block of statements `{ .. }`, which may have a label (in this case the
/// `targeted_by_break` field will be `true`) and may be `unsafe` by means of
/// the `rules` being anything but `DefaultBlock`.
#[derive(Debug, HashStable_Generic)]
pub struct Block<'hir> {
/// Statements in a block.
pub stmts: &'hir [Stmt<'hir>],
/// An expression at the end of the block
/// without a semicolon, if any.
pub expr: Option<&'hir Expr<'hir>>,
#[stable_hasher(ignore)]
pub hir_id: HirId,
/// Distinguishes between `unsafe { ... }` and `{ ... }`.
pub rules: BlockCheckMode,
pub span: Span,
/// If true, then there may exist `break 'a` values that aim to
/// break out of this block early.
/// Used by `'label: {}` blocks and by `try {}` blocks.
pub targeted_by_break: bool,
}
impl<'hir> Block<'hir> {
pub fn innermost_block(&self) -> &Block<'hir> {
let mut block = self;
while let Some(Expr { kind: ExprKind::Block(inner_block, _), .. }) = block.expr {
block = inner_block;
}
block
}
}
#[derive(Debug, HashStable_Generic)]
pub struct Pat<'hir> {
#[stable_hasher(ignore)]
pub hir_id: HirId,
pub kind: PatKind<'hir>,
pub span: Span,
// Whether to use default binding modes.
// At present, this is false only for destructuring assignment.
pub default_binding_modes: bool,
}
impl<'hir> Pat<'hir> {
// FIXME(#19596) this is a workaround, but there should be a better way
fn walk_short_(&self, it: &mut impl FnMut(&Pat<'hir>) -> bool) -> bool {
if !it(self) {
return false;
}
use PatKind::*;
match self.kind {
Wild | Lit(_) | Range(..) | Binding(.., None) | Path(_) => true,
Box(s) | Ref(s, _) | Binding(.., Some(s)) => s.walk_short_(it),
Struct(_, fields, _) => fields.iter().all(|field| field.pat.walk_short_(it)),
TupleStruct(_, s, _) | Tuple(s, _) | Or(s) => s.iter().all(|p| p.walk_short_(it)),
Slice(before, slice, after) => {
before.iter().chain(slice).chain(after.iter()).all(|p| p.walk_short_(it))
}
}
}
/// Walk the pattern in left-to-right order,
/// short circuiting (with `.all(..)`) if `false` is returned.
///
/// Note that when visiting e.g. `Tuple(ps)`,
/// if visiting `ps[0]` returns `false`,
/// then `ps[1]` will not be visited.
pub fn walk_short(&self, mut it: impl FnMut(&Pat<'hir>) -> bool) -> bool {
self.walk_short_(&mut it)
}
// FIXME(#19596) this is a workaround, but there should be a better way
fn walk_(&self, it: &mut impl FnMut(&Pat<'hir>) -> bool) {
if !it(self) {
return;
}
use PatKind::*;
match self.kind {
Wild | Lit(_) | Range(..) | Binding(.., None) | Path(_) => {}
Box(s) | Ref(s, _) | Binding(.., Some(s)) => s.walk_(it),
Struct(_, fields, _) => fields.iter().for_each(|field| field.pat.walk_(it)),
TupleStruct(_, s, _) | Tuple(s, _) | Or(s) => s.iter().for_each(|p| p.walk_(it)),
Slice(before, slice, after) => {
before.iter().chain(slice).chain(after.iter()).for_each(|p| p.walk_(it))
}
}
}
/// Walk the pattern in left-to-right order.
///
/// If `it(pat)` returns `false`, the children are not visited.
pub fn walk(&self, mut it: impl FnMut(&Pat<'hir>) -> bool) {
self.walk_(&mut it)
}
/// Walk the pattern in left-to-right order.
///
/// If you always want to recurse, prefer this method over `walk`.
pub fn walk_always(&self, mut it: impl FnMut(&Pat<'_>)) {
self.walk(|p| {
it(p);
true
})
}
}
/// A single field in a struct pattern.
///
/// Patterns like the fields of Foo `{ x, ref y, ref mut z }`
/// are treated the same as` x: x, y: ref y, z: ref mut z`,
/// except `is_shorthand` is true.
#[derive(Debug, HashStable_Generic)]
pub struct PatField<'hir> {
#[stable_hasher(ignore)]
pub hir_id: HirId,
/// The identifier for the field.
pub ident: Ident,
/// The pattern the field is destructured to.
pub pat: &'hir Pat<'hir>,
pub is_shorthand: bool,
pub span: Span,
}
#[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)]
pub enum RangeEnd {
Included,
Excluded,
}
impl fmt::Display for RangeEnd {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
RangeEnd::Included => "..=",
RangeEnd::Excluded => "..",
})
}
}
// Equivalent to `Option<usize>`. That type takes up 16 bytes on 64-bit, but
// this type only takes up 4 bytes, at the cost of being restricted to a
// maximum value of `u32::MAX - 1`. In practice, this is more than enough.
#[derive(Clone, Copy, PartialEq, Eq, Hash, HashStable_Generic)]
pub struct DotDotPos(u32);
impl DotDotPos {
// Panics if n >= u32::MAX.
pub fn new(n: Option<usize>) -> Self {
match n {
Some(n) => {
assert!(n < u32::MAX as usize);
Self(n as u32)
}
None => Self(u32::MAX),
}
}
pub fn as_opt_usize(&self) -> Option<usize> {
if self.0 == u32::MAX { None } else { Some(self.0 as usize) }
}
}
impl fmt::Debug for DotDotPos {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.as_opt_usize().fmt(f)
}
}
#[derive(Debug, HashStable_Generic)]
pub enum PatKind<'hir> {
/// Represents a wildcard pattern (i.e., `_`).
Wild,
/// A fresh binding `ref mut binding @ OPT_SUBPATTERN`.
/// The `HirId` is the canonical ID for the variable being bound,
/// (e.g., in `Ok(x) | Err(x)`, both `x` use the same canonical ID),
/// which is the pattern ID of the first `x`.
Binding(BindingAnnotation, HirId, Ident, Option<&'hir Pat<'hir>>),
/// A struct or struct variant pattern (e.g., `Variant {x, y, ..}`).
/// The `bool` is `true` in the presence of a `..`.
Struct(QPath<'hir>, &'hir [PatField<'hir>], bool),
/// A tuple struct/variant pattern `Variant(x, y, .., z)`.
/// If the `..` pattern fragment is present, then `DotDotPos` denotes its position.
/// `0 <= position <= subpats.len()`
TupleStruct(QPath<'hir>, &'hir [Pat<'hir>], DotDotPos),
/// An or-pattern `A | B | C`.
/// Invariant: `pats.len() >= 2`.
Or(&'hir [Pat<'hir>]),
/// A path pattern for a unit struct/variant or a (maybe-associated) constant.
Path(QPath<'hir>),
/// A tuple pattern (e.g., `(a, b)`).
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// `0 <= position <= subpats.len()`
Tuple(&'hir [Pat<'hir>], DotDotPos),
/// A `box` pattern.
Box(&'hir Pat<'hir>),
/// A reference pattern (e.g., `&mut (a, b)`).
Ref(&'hir Pat<'hir>, Mutability),
/// A literal.
Lit(&'hir Expr<'hir>),
/// A range pattern (e.g., `1..=2` or `1..2`).
Range(Option<&'hir Expr<'hir>>, Option<&'hir Expr<'hir>>, RangeEnd),
/// A slice pattern, `[before_0, ..., before_n, (slice, after_0, ..., after_n)?]`.
///
/// Here, `slice` is lowered from the syntax `($binding_mode $ident @)? ..`.
/// If `slice` exists, then `after` can be non-empty.
///
/// The representation for e.g., `[a, b, .., c, d]` is:
/// ```ignore (illustrative)
/// PatKind::Slice([Binding(a), Binding(b)], Some(Wild), [Binding(c), Binding(d)])
/// ```
Slice(&'hir [Pat<'hir>], Option<&'hir Pat<'hir>>, &'hir [Pat<'hir>]),
}
#[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)]
pub enum BinOpKind {
/// The `+` operator (addition).
Add,
/// The `-` operator (subtraction).
Sub,
/// The `*` operator (multiplication).
Mul,
/// The `/` operator (division).
Div,
/// The `%` operator (modulus).
Rem,
/// The `&&` operator (logical and).
And,
/// The `||` operator (logical or).
Or,
/// The `^` operator (bitwise xor).
BitXor,
/// The `&` operator (bitwise and).
BitAnd,
/// The `|` operator (bitwise or).
BitOr,
/// The `<<` operator (shift left).
Shl,
/// The `>>` operator (shift right).
Shr,
/// The `==` operator (equality).
Eq,
/// The `<` operator (less than).
Lt,
/// The `<=` operator (less than or equal to).
Le,
/// The `!=` operator (not equal to).
Ne,
/// The `>=` operator (greater than or equal to).
Ge,
/// The `>` operator (greater than).
Gt,
}
impl BinOpKind {
pub fn as_str(self) -> &'static str {
match self {
BinOpKind::Add => "+",
BinOpKind::Sub => "-",
BinOpKind::Mul => "*",
BinOpKind::Div => "/",
BinOpKind::Rem => "%",
BinOpKind::And => "&&",
BinOpKind::Or => "||",
BinOpKind::BitXor => "^",
BinOpKind::BitAnd => "&",
BinOpKind::BitOr => "|",
BinOpKind::Shl => "<<",
BinOpKind::Shr => ">>",
BinOpKind::Eq => "==",
BinOpKind::Lt => "<",
BinOpKind::Le => "<=",
BinOpKind::Ne => "!=",
BinOpKind::Ge => ">=",
BinOpKind::Gt => ">",
}
}
pub fn is_lazy(self) -> bool {
matches!(self, BinOpKind::And | BinOpKind::Or)
}
pub fn is_shift(self) -> bool {
matches!(self, BinOpKind::Shl | BinOpKind::Shr)
}
pub fn is_comparison(self) -> bool {
match self {
BinOpKind::Eq
| BinOpKind::Lt
| BinOpKind::Le
| BinOpKind::Ne
| BinOpKind::Gt
| BinOpKind::Ge => true,
BinOpKind::And
| BinOpKind::Or
| BinOpKind::Add
| BinOpKind::Sub
| BinOpKind::Mul
| BinOpKind::Div
| BinOpKind::Rem
| BinOpKind::BitXor
| BinOpKind::BitAnd
| BinOpKind::BitOr
| BinOpKind::Shl
| BinOpKind::Shr => false,
}
}
/// Returns `true` if the binary operator takes its arguments by value.
pub fn is_by_value(self) -> bool {
!self.is_comparison()
}
}
impl Into<ast::BinOpKind> for BinOpKind {
fn into(self) -> ast::BinOpKind {
match self {
BinOpKind::Add => ast::BinOpKind::Add,
BinOpKind::Sub => ast::BinOpKind::Sub,
BinOpKind::Mul => ast::BinOpKind::Mul,
BinOpKind::Div => ast::BinOpKind::Div,
BinOpKind::Rem => ast::BinOpKind::Rem,
BinOpKind::And => ast::BinOpKind::And,
BinOpKind::Or => ast::BinOpKind::Or,
BinOpKind::BitXor => ast::BinOpKind::BitXor,
BinOpKind::BitAnd => ast::BinOpKind::BitAnd,
BinOpKind::BitOr => ast::BinOpKind::BitOr,
BinOpKind::Shl => ast::BinOpKind::Shl,
BinOpKind::Shr => ast::BinOpKind::Shr,
BinOpKind::Eq => ast::BinOpKind::Eq,
BinOpKind::Lt => ast::BinOpKind::Lt,
BinOpKind::Le => ast::BinOpKind::Le,
BinOpKind::Ne => ast::BinOpKind::Ne,
BinOpKind::Ge => ast::BinOpKind::Ge,
BinOpKind::Gt => ast::BinOpKind::Gt,
}
}
}
pub type BinOp = Spanned<BinOpKind>;
#[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)]
pub enum UnOp {
/// The `*` operator (dereferencing).
Deref,
/// The `!` operator (logical negation).
Not,
/// The `-` operator (negation).
Neg,
}
impl UnOp {
pub fn as_str(self) -> &'static str {
match self {
Self::Deref => "*",
Self::Not => "!",
Self::Neg => "-",
}
}
/// Returns `true` if the unary operator takes its argument by value.
pub fn is_by_value(self) -> bool {
matches!(self, Self::Neg | Self::Not)
}
}
/// A statement.
#[derive(Debug, HashStable_Generic)]
pub struct Stmt<'hir> {
pub hir_id: HirId,
pub kind: StmtKind<'hir>,
pub span: Span,
}
/// The contents of a statement.
#[derive(Debug, HashStable_Generic)]
pub enum StmtKind<'hir> {
/// A local (`let`) binding.
Local(&'hir Local<'hir>),
/// An item binding.
Item(ItemId),
/// An expression without a trailing semi-colon (must have unit type).
Expr(&'hir Expr<'hir>),
/// An expression with a trailing semi-colon (may have any type).
Semi(&'hir Expr<'hir>),
}
/// Represents a `let` statement (i.e., `let <pat>:<ty> = <init>;`).
#[derive(Debug, HashStable_Generic)]
pub struct Local<'hir> {
pub pat: &'hir Pat<'hir>,
/// Type annotation, if any (otherwise the type will be inferred).
pub ty: Option<&'hir Ty<'hir>>,
/// Initializer expression to set the value, if any.
pub init: Option<&'hir Expr<'hir>>,
/// Else block for a `let...else` binding.
pub els: Option<&'hir Block<'hir>>,
pub hir_id: HirId,
pub span: Span,
/// Can be `ForLoopDesugar` if the `let` statement is part of a `for` loop
/// desugaring. Otherwise will be `Normal`.
pub source: LocalSource,
}
/// Represents a single arm of a `match` expression, e.g.
/// `<pat> (if <guard>) => <body>`.
#[derive(Debug, HashStable_Generic)]
pub struct Arm<'hir> {
#[stable_hasher(ignore)]
pub hir_id: HirId,
pub span: Span,
/// If this pattern and the optional guard matches, then `body` is evaluated.
pub pat: &'hir Pat<'hir>,
/// Optional guard clause.
pub guard: Option<Guard<'hir>>,
/// The expression the arm evaluates to if this arm matches.
pub body: &'hir Expr<'hir>,
}
/// Represents a `let <pat>[: <ty>] = <expr>` expression (not a Local), occurring in an `if-let` or
/// `let-else`, evaluating to a boolean. Typically the pattern is refutable.
///
/// In an if-let, imagine it as `if (let <pat> = <expr>) { ... }`; in a let-else, it is part of the
/// desugaring to if-let. Only let-else supports the type annotation at present.
#[derive(Debug, HashStable_Generic)]
pub struct Let<'hir> {
pub hir_id: HirId,
pub span: Span,
pub pat: &'hir Pat<'hir>,
pub ty: Option<&'hir Ty<'hir>>,
pub init: &'hir Expr<'hir>,
}
#[derive(Debug, HashStable_Generic)]
pub enum Guard<'hir> {
If(&'hir Expr<'hir>),
IfLet(&'hir Let<'hir>),
}
impl<'hir> Guard<'hir> {
/// Returns the body of the guard
///
/// In other words, returns the e in either of the following:
///
/// - `if e`
/// - `if let x = e`
pub fn body(&self) -> &'hir Expr<'hir> {
match self {
Guard::If(e) | Guard::IfLet(Let { init: e, .. }) => e,
}
}
}
#[derive(Debug, HashStable_Generic)]
pub struct ExprField<'hir> {
#[stable_hasher(ignore)]
pub hir_id: HirId,
pub ident: Ident,
pub expr: &'hir Expr<'hir>,
pub span: Span,
pub is_shorthand: bool,
}
#[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)]
pub enum BlockCheckMode {
DefaultBlock,
UnsafeBlock(UnsafeSource),
}
#[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)]
pub enum UnsafeSource {
CompilerGenerated,
UserProvided,
}
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Hash, Debug)]
pub struct BodyId {
pub hir_id: HirId,
}
/// The body of a function, closure, or constant value. In the case of
/// a function, the body contains not only the function body itself
/// (which is an expression), but also the argument patterns, since
/// those are something that the caller doesn't really care about.
///
/// # Examples
///
/// ```
/// fn foo((x, y): (u32, u32)) -> u32 {
/// x + y
/// }
/// ```
///
/// Here, the `Body` associated with `foo()` would contain:
///
/// - an `params` array containing the `(x, y)` pattern
/// - a `value` containing the `x + y` expression (maybe wrapped in a block)
/// - `generator_kind` would be `None`
///
/// All bodies have an **owner**, which can be accessed via the HIR
/// map using `body_owner_def_id()`.
#[derive(Debug, HashStable_Generic)]
pub struct Body<'hir> {
pub params: &'hir [Param<'hir>],
pub value: &'hir Expr<'hir>,
pub generator_kind: Option<GeneratorKind>,
}
impl<'hir> Body<'hir> {
pub fn id(&self) -> BodyId {
BodyId { hir_id: self.value.hir_id }
}
pub fn generator_kind(&self) -> Option<GeneratorKind> {
self.generator_kind
}
}
/// The type of source expression that caused this generator to be created.
#[derive(Clone, PartialEq, PartialOrd, Eq, Hash, Debug, Copy)]
#[derive(HashStable_Generic, Encodable, Decodable)]
pub enum GeneratorKind {
/// An explicit `async` block or the body of an async function.
Async(AsyncGeneratorKind),
/// A generator literal created via a `yield` inside a closure.
Gen,
}
impl fmt::Display for GeneratorKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
GeneratorKind::Async(k) => fmt::Display::fmt(k, f),
GeneratorKind::Gen => f.write_str("generator"),
}
}
}
impl GeneratorKind {
pub fn descr(&self) -> &'static str {
match self {
GeneratorKind::Async(ask) => ask.descr(),
GeneratorKind::Gen => "generator",
}
}
}
/// In the case of a generator created as part of an async construct,
/// which kind of async construct caused it to be created?
///
/// This helps error messages but is also used to drive coercions in
/// type-checking (see #60424).
#[derive(Clone, PartialEq, PartialOrd, Eq, Hash, Debug, Copy)]
#[derive(HashStable_Generic, Encodable, Decodable)]
pub enum AsyncGeneratorKind {
/// An explicit `async` block written by the user.
Block,
/// An explicit `async` closure written by the user.
Closure,
/// The `async` block generated as the body of an async function.
Fn,
}
impl fmt::Display for AsyncGeneratorKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
AsyncGeneratorKind::Block => "`async` block",
AsyncGeneratorKind::Closure => "`async` closure body",
AsyncGeneratorKind::Fn => "`async fn` body",
})
}
}
impl AsyncGeneratorKind {
pub fn descr(&self) -> &'static str {
match self {
AsyncGeneratorKind::Block => "`async` block",
AsyncGeneratorKind::Closure => "`async` closure body",
AsyncGeneratorKind::Fn => "`async fn` body",
}
}
}
#[derive(Copy, Clone, Debug)]
pub enum BodyOwnerKind {
/// Functions and methods.
Fn,
/// Closures
Closure,
/// Constants and associated constants.
Const,
/// Initializer of a `static` item.
Static(Mutability),
}
impl BodyOwnerKind {
pub fn is_fn_or_closure(self) -> bool {
match self {
BodyOwnerKind::Fn | BodyOwnerKind::Closure => true,
BodyOwnerKind::Const | BodyOwnerKind::Static(_) => false,
}
}
}
/// The kind of an item that requires const-checking.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ConstContext {
/// A `const fn`.
ConstFn,
/// A `static` or `static mut`.
Static(Mutability),
/// A `const`, associated `const`, or other const context.
///
/// Other contexts include:
/// - Array length expressions
/// - Enum discriminants
/// - Const generics
///
/// For the most part, other contexts are treated just like a regular `const`, so they are
/// lumped into the same category.
Const,
}
impl ConstContext {
/// A description of this const context that can appear between backticks in an error message.
///
/// E.g. `const` or `static mut`.
pub fn keyword_name(self) -> &'static str {
match self {
Self::Const => "const",
Self::Static(Mutability::Not) => "static",
Self::Static(Mutability::Mut) => "static mut",
Self::ConstFn => "const fn",
}
}
}
/// A colloquial, trivially pluralizable description of this const context for use in error
/// messages.
impl fmt::Display for ConstContext {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Self::Const => write!(f, "constant"),
Self::Static(_) => write!(f, "static"),
Self::ConstFn => write!(f, "constant function"),
}
}
}
// NOTE: `IntoDiagnosticArg` impl for `ConstContext` lives in `rustc_errors`
// due to a cyclical dependency between hir that crate.
/// A literal.
pub type Lit = Spanned<LitKind>;
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Debug, HashStable_Generic)]
pub enum ArrayLen {
Infer(HirId, Span),
Body(AnonConst),
}
impl ArrayLen {
pub fn hir_id(&self) -> HirId {
match self {
&ArrayLen::Infer(hir_id, _) | &ArrayLen::Body(AnonConst { hir_id, body: _ }) => hir_id,
}
}
}
/// A constant (expression) that's not an item or associated item,
/// but needs its own `DefId` for type-checking, const-eval, etc.
/// These are usually found nested inside types (e.g., array lengths)
/// or expressions (e.g., repeat counts), and also used to define
/// explicit discriminant values for enum variants.
///
/// You can check if this anon const is a default in a const param
/// `const N: usize = { ... }` with `tcx.hir().opt_const_param_default_param_hir_id(..)`
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Debug, HashStable_Generic)]
pub struct AnonConst {
pub hir_id: HirId,
pub body: BodyId,
}
/// An expression.
#[derive(Debug, HashStable_Generic)]
pub struct Expr<'hir> {
pub hir_id: HirId,
pub kind: ExprKind<'hir>,
pub span: Span,
}
impl Expr<'_> {
pub fn precedence(&self) -> ExprPrecedence {
match self.kind {
ExprKind::Box(_) => ExprPrecedence::Box,
ExprKind::ConstBlock(_) => ExprPrecedence::ConstBlock,
ExprKind::Array(_) => ExprPrecedence::Array,
ExprKind::Call(..) => ExprPrecedence::Call,
ExprKind::MethodCall(..) => ExprPrecedence::MethodCall,
ExprKind::Tup(_) => ExprPrecedence::Tup,
ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node.into()),
ExprKind::Unary(..) => ExprPrecedence::Unary,
ExprKind::Lit(_) => ExprPrecedence::Lit,
ExprKind::Type(..) | ExprKind::Cast(..) => ExprPrecedence::Cast,
ExprKind::DropTemps(ref expr, ..) => expr.precedence(),
ExprKind::If(..) => ExprPrecedence::If,
ExprKind::Let(..) => ExprPrecedence::Let,
ExprKind::Loop(..) => ExprPrecedence::Loop,
ExprKind::Match(..) => ExprPrecedence::Match,
ExprKind::Closure { .. } => ExprPrecedence::Closure,
ExprKind::Block(..) => ExprPrecedence::Block,
ExprKind::Assign(..) => ExprPrecedence::Assign,
ExprKind::AssignOp(..) => ExprPrecedence::AssignOp,
ExprKind::Field(..) => ExprPrecedence::Field,
ExprKind::Index(..) => ExprPrecedence::Index,
ExprKind::Path(..) => ExprPrecedence::Path,
ExprKind::AddrOf(..) => ExprPrecedence::AddrOf,
ExprKind::Break(..) => ExprPrecedence::Break,
ExprKind::Continue(..) => ExprPrecedence::Continue,
ExprKind::Ret(..) => ExprPrecedence::Ret,
ExprKind::InlineAsm(..) => ExprPrecedence::InlineAsm,
ExprKind::Struct(..) => ExprPrecedence::Struct,
ExprKind::Repeat(..) => ExprPrecedence::Repeat,
ExprKind::Yield(..) => ExprPrecedence::Yield,
ExprKind::Err => ExprPrecedence::Err,
}
}
// Whether this looks like a place expr, without checking for deref
// adjustments.
// This will return `true` in some potentially surprising cases such as
// `CONSTANT.field`.
pub fn is_syntactic_place_expr(&self) -> bool {
self.is_place_expr(|_| true)
}
/// Whether this is a place expression.
///
/// `allow_projections_from` should return `true` if indexing a field or index expression based
/// on the given expression should be considered a place expression.
pub fn is_place_expr(&self, mut allow_projections_from: impl FnMut(&Self) -> bool) -> bool {
match self.kind {
ExprKind::Path(QPath::Resolved(_, ref path)) => {
matches!(path.res, Res::Local(..) | Res::Def(DefKind::Static(_), _) | Res::Err)
}
// Type ascription inherits its place expression kind from its
// operand. See:
// https://github.com/rust-lang/rfcs/blob/master/text/0803-type-ascription.md#type-ascription-and-temporaries
ExprKind::Type(ref e, _) => e.is_place_expr(allow_projections_from),
ExprKind::Unary(UnOp::Deref, _) => true,
ExprKind::Field(ref base, _) | ExprKind::Index(ref base, _) => {
allow_projections_from(base) || base.is_place_expr(allow_projections_from)
}
// Lang item paths cannot currently be local variables or statics.
ExprKind::Path(QPath::LangItem(..)) => false,
// Partially qualified paths in expressions can only legally
// refer to associated items which are always rvalues.
ExprKind::Path(QPath::TypeRelative(..))
| ExprKind::Call(..)
| ExprKind::MethodCall(..)
| ExprKind::Struct(..)
| ExprKind::Tup(..)
| ExprKind::If(..)
| ExprKind::Match(..)
| ExprKind::Closure { .. }
| ExprKind::Block(..)
| ExprKind::Repeat(..)
| ExprKind::Array(..)
| ExprKind::Break(..)
| ExprKind::Continue(..)
| ExprKind::Ret(..)
| ExprKind::Let(..)
| ExprKind::Loop(..)
| ExprKind::Assign(..)
| ExprKind::InlineAsm(..)
| ExprKind::AssignOp(..)
| ExprKind::Lit(_)
| ExprKind::ConstBlock(..)
| ExprKind::Unary(..)
| ExprKind::Box(..)
| ExprKind::AddrOf(..)
| ExprKind::Binary(..)
| ExprKind::Yield(..)
| ExprKind::Cast(..)
| ExprKind::DropTemps(..)
| ExprKind::Err => false,
}
}
/// If `Self.kind` is `ExprKind::DropTemps(expr)`, drill down until we get a non-`DropTemps`
/// `Expr`. This is used in suggestions to ignore this `ExprKind` as it is semantically
/// silent, only signaling the ownership system. By doing this, suggestions that check the
/// `ExprKind` of any given `Expr` for presentation don't have to care about `DropTemps`
/// beyond remembering to call this function before doing analysis on it.
pub fn peel_drop_temps(&self) -> &Self {
let mut expr = self;
while let ExprKind::DropTemps(inner) = &expr.kind {
expr = inner;
}
expr
}
pub fn peel_blocks(&self) -> &Self {
let mut expr = self;
while let ExprKind::Block(Block { expr: Some(inner), .. }, _) = &expr.kind {
expr = inner;
}
expr
}
pub fn can_have_side_effects(&self) -> bool {
match self.peel_drop_temps().kind {
ExprKind::Path(_) | ExprKind::Lit(_) => false,
ExprKind::Type(base, _)
| ExprKind::Unary(_, base)
| ExprKind::Field(base, _)
| ExprKind::Index(base, _)
| ExprKind::AddrOf(.., base)
| ExprKind::Cast(base, _) => {
// This isn't exactly true for `Index` and all `Unary`, but we are using this
// method exclusively for diagnostics and there's a *cultural* pressure against
// them being used only for its side-effects.
base.can_have_side_effects()
}
ExprKind::Struct(_, fields, init) => fields
.iter()
.map(|field| field.expr)
.chain(init.into_iter())
.all(|e| e.can_have_side_effects()),
ExprKind::Array(args)
| ExprKind::Tup(args)
| ExprKind::Call(
Expr {
kind:
ExprKind::Path(QPath::Resolved(
None,
Path { res: Res::Def(DefKind::Ctor(_, CtorKind::Fn), _), .. },
)),
..
},
args,
) => args.iter().all(|arg| arg.can_have_side_effects()),
ExprKind::If(..)
| ExprKind::Match(..)
| ExprKind::MethodCall(..)
| ExprKind::Call(..)
| ExprKind::Closure { .. }
| ExprKind::Block(..)
| ExprKind::Repeat(..)
| ExprKind::Break(..)
| ExprKind::Continue(..)
| ExprKind::Ret(..)
| ExprKind::Let(..)
| ExprKind::Loop(..)
| ExprKind::Assign(..)
| ExprKind::InlineAsm(..)
| ExprKind::AssignOp(..)
| ExprKind::ConstBlock(..)
| ExprKind::Box(..)
| ExprKind::Binary(..)
| ExprKind::Yield(..)
| ExprKind::DropTemps(..)
| ExprKind::Err => true,
}
}
// To a first-order approximation, is this a pattern
pub fn is_approximately_pattern(&self) -> bool {
match &self.kind {
ExprKind::Box(_)
| ExprKind::Array(_)
| ExprKind::Call(..)
| ExprKind::Tup(_)
| ExprKind::Lit(_)
| ExprKind::Path(_)
| ExprKind::Struct(..) => true,
_ => false,
}
}
pub fn method_ident(&self) -> Option<Ident> {
match self.kind {
ExprKind::MethodCall(receiver_method, ..) => Some(receiver_method.ident),
ExprKind::Unary(_, expr) | ExprKind::AddrOf(.., expr) => expr.method_ident(),
_ => None,
}
}
}
/// Checks if the specified expression is a built-in range literal.
/// (See: `LoweringContext::lower_expr()`).
pub fn is_range_literal(expr: &Expr<'_>) -> bool {
match expr.kind {
// All built-in range literals but `..=` and `..` desugar to `Struct`s.
ExprKind::Struct(ref qpath, _, _) => matches!(
**qpath,
QPath::LangItem(
LangItem::Range
| LangItem::RangeTo
| LangItem::RangeFrom
| LangItem::RangeFull
| LangItem::RangeToInclusive,
..
)
),
// `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
ExprKind::Call(ref func, _) => {
matches!(func.kind, ExprKind::Path(QPath::LangItem(LangItem::RangeInclusiveNew, ..)))
}
_ => false,
}
}
#[derive(Debug, HashStable_Generic)]
pub enum ExprKind<'hir> {
/// A `box x` expression.
Box(&'hir Expr<'hir>),
/// Allow anonymous constants from an inline `const` block
ConstBlock(AnonConst),
/// An array (e.g., `[a, b, c, d]`).
Array(&'hir [Expr<'hir>]),
/// A function call.
///
/// The first field resolves to the function itself (usually an `ExprKind::Path`),
/// and the second field is the list of arguments.
/// This also represents calling the constructor of
/// tuple-like ADTs such as tuple structs and enum variants.
Call(&'hir Expr<'hir>, &'hir [Expr<'hir>]),
/// A method call (e.g., `x.foo::<'static, Bar, Baz>(a, b, c, d)`).
///
/// The `PathSegment` represents the method name and its generic arguments
/// (within the angle brackets).
/// The `&Expr` is the expression that evaluates
/// to the object on which the method is being called on (the receiver),
/// and the `&[Expr]` is the rest of the arguments.
/// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
/// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, x, [a, b, c, d], span)`.
/// The final `Span` represents the span of the function and arguments
/// (e.g. `foo::<Bar, Baz>(a, b, c, d)` in `x.foo::<Bar, Baz>(a, b, c, d)`
///
/// To resolve the called method to a `DefId`, call [`type_dependent_def_id`] with
/// the `hir_id` of the `MethodCall` node itself.
///
/// [`type_dependent_def_id`]: ../../rustc_middle/ty/struct.TypeckResults.html#method.type_dependent_def_id
MethodCall(&'hir PathSegment<'hir>, &'hir Expr<'hir>, &'hir [Expr<'hir>], Span),
/// A tuple (e.g., `(a, b, c, d)`).
Tup(&'hir [Expr<'hir>]),
/// A binary operation (e.g., `a + b`, `a * b`).
Binary(BinOp, &'hir Expr<'hir>, &'hir Expr<'hir>),
/// A unary operation (e.g., `!x`, `*x`).
Unary(UnOp, &'hir Expr<'hir>),
/// A literal (e.g., `1`, `"foo"`).
Lit(Lit),
/// A cast (e.g., `foo as f64`).
Cast(&'hir Expr<'hir>, &'hir Ty<'hir>),
/// A type reference (e.g., `Foo`).
Type(&'hir Expr<'hir>, &'hir Ty<'hir>),
/// Wraps the expression in a terminating scope.
/// This makes it semantically equivalent to `{ let _t = expr; _t }`.
///
/// This construct only exists to tweak the drop order in HIR lowering.
/// An example of that is the desugaring of `for` loops.
DropTemps(&'hir Expr<'hir>),
/// A `let $pat = $expr` expression.
///
/// These are not `Local` and only occur as expressions.
/// The `let Some(x) = foo()` in `if let Some(x) = foo()` is an example of `Let(..)`.
Let(&'hir Let<'hir>),
/// An `if` block, with an optional else block.
///
/// I.e., `if <expr> { <expr> } else { <expr> }`.
If(&'hir Expr<'hir>, &'hir Expr<'hir>, Option<&'hir Expr<'hir>>),
/// A conditionless loop (can be exited with `break`, `continue`, or `return`).
///
/// I.e., `'label: loop { <block> }`.
///
/// The `Span` is the loop header (`for x in y`/`while let pat = expr`).
Loop(&'hir Block<'hir>, Option<Label>, LoopSource, Span),
/// A `match` block, with a source that indicates whether or not it is
/// the result of a desugaring, and if so, which kind.
Match(&'hir Expr<'hir>, &'hir [Arm<'hir>], MatchSource),
/// A closure (e.g., `move |a, b, c| {a + b + c}`).
///
/// The `Span` is the argument block `|...|`.
///
/// This may also be a generator literal or an `async block` as indicated by the
/// `Option<Movability>`.
Closure(&'hir Closure<'hir>),
/// A block (e.g., `'label: { ... }`).
Block(&'hir Block<'hir>, Option<Label>),
/// An assignment (e.g., `a = foo()`).
Assign(&'hir Expr<'hir>, &'hir Expr<'hir>, Span),
/// An assignment with an operator.
///
/// E.g., `a += 1`.
AssignOp(BinOp, &'hir Expr<'hir>, &'hir Expr<'hir>),
/// Access of a named (e.g., `obj.foo`) or unnamed (e.g., `obj.0`) struct or tuple field.
Field(&'hir Expr<'hir>, Ident),
/// An indexing operation (`foo[2]`).
Index(&'hir Expr<'hir>, &'hir Expr<'hir>),
/// Path to a definition, possibly containing lifetime or type parameters.
Path(QPath<'hir>),
/// A referencing operation (i.e., `&a` or `&mut a`).
AddrOf(BorrowKind, Mutability, &'hir Expr<'hir>),
/// A `break`, with an optional label to break.
Break(Destination, Option<&'hir Expr<'hir>>),
/// A `continue`, with an optional label.
Continue(Destination),
/// A `return`, with an optional value to be returned.
Ret(Option<&'hir Expr<'hir>>),
/// Inline assembly (from `asm!`), with its outputs and inputs.
InlineAsm(&'hir InlineAsm<'hir>),
/// A struct or struct-like variant literal expression.
///
/// E.g., `Foo {x: 1, y: 2}`, or `Foo {x: 1, .. base}`,
/// where `base` is the `Option<Expr>`.
Struct(&'hir QPath<'hir>, &'hir [ExprField<'hir>], Option<&'hir Expr<'hir>>),
/// An array literal constructed from one repeated element.
///
/// E.g., `[1; 5]`. The first expression is the element
/// to be repeated; the second is the number of times to repeat it.
Repeat(&'hir Expr<'hir>, ArrayLen),
/// A suspension point for generators (i.e., `yield <expr>`).
Yield(&'hir Expr<'hir>, YieldSource),
/// A placeholder for an expression that wasn't syntactically well formed in some way.
Err,
}
/// Represents an optionally `Self`-qualified value/type path or associated extension.
///
/// To resolve the path to a `DefId`, call [`qpath_res`].
///
/// [`qpath_res`]: ../../rustc_middle/ty/struct.TypeckResults.html#method.qpath_res
#[derive(Debug, HashStable_Generic)]
pub enum QPath<'hir> {
/// Path to a definition, optionally "fully-qualified" with a `Self`
/// type, if the path points to an associated item in a trait.
///
/// E.g., an unqualified path like `Clone::clone` has `None` for `Self`,
/// while `<Vec<T> as Clone>::clone` has `Some(Vec<T>)` for `Self`,
/// even though they both have the same two-segment `Clone::clone` `Path`.
Resolved(Option<&'hir Ty<'hir>>, &'hir Path<'hir>),
/// Type-related paths (e.g., `<T>::default` or `<T>::Output`).
/// Will be resolved by type-checking to an associated item.
///
/// UFCS source paths can desugar into this, with `Vec::new` turning into
/// `<Vec>::new`, and `T::X::Y::method` into `<<<T>::X>::Y>::method`,
/// the `X` and `Y` nodes each being a `TyKind::Path(QPath::TypeRelative(..))`.
TypeRelative(&'hir Ty<'hir>, &'hir PathSegment<'hir>),
/// Reference to a `#[lang = "foo"]` item. `HirId` of the inner expr.
LangItem(LangItem, Span, Option<HirId>),
}
impl<'hir> QPath<'hir> {
/// Returns the span of this `QPath`.
pub fn span(&self) -> Span {
match *self {
QPath::Resolved(_, path) => path.span,
QPath::TypeRelative(qself, ps) => qself.span.to(ps.ident.span),
QPath::LangItem(_, span, _) => span,
}
}
/// Returns the span of the qself of this `QPath`. For example, `()` in
/// `<() as Trait>::method`.
pub fn qself_span(&self) -> Span {
match *self {
QPath::Resolved(_, path) => path.span,
QPath::TypeRelative(qself, _) => qself.span,
QPath::LangItem(_, span, _) => span,
}
}
/// Returns the span of the last segment of this `QPath`. For example, `method` in
/// `<() as Trait>::method`.
pub fn last_segment_span(&self) -> Span {
match *self {
QPath::Resolved(_, path) => path.segments.last().unwrap().ident.span,
QPath::TypeRelative(_, segment) => segment.ident.span,
QPath::LangItem(_, span, _) => span,
}
}
}
/// Hints at the original code for a let statement.
#[derive(Copy, Clone, Encodable, Debug, HashStable_Generic)]
pub enum LocalSource {
/// A `match _ { .. }`.
Normal,
/// When lowering async functions, we create locals within the `async move` so that
/// all parameters are dropped after the future is polled.
///
/// ```ignore (pseudo-Rust)
/// async fn foo(<pattern> @ x: Type) {
/// async move {
/// let <pattern> = x;
/// }
/// }
/// ```
AsyncFn,
/// A desugared `<expr>.await`.
AwaitDesugar,
/// A desugared `expr = expr`, where the LHS is a tuple, struct or array.
/// The span is that of the `=` sign.
AssignDesugar(Span),
}
/// Hints at the original code for a `match _ { .. }`.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Hash, Debug)]
#[derive(HashStable_Generic)]
pub enum MatchSource {
/// A `match _ { .. }`.
Normal,
/// A desugared `for _ in _ { .. }` loop.
ForLoopDesugar,
/// A desugared `?` operator.
TryDesugar,
/// A desugared `<expr>.await`.
AwaitDesugar,
}
impl MatchSource {
#[inline]
pub const fn name(self) -> &'static str {
use MatchSource::*;
match self {
Normal => "match",
ForLoopDesugar => "for",
TryDesugar => "?",
AwaitDesugar => ".await",
}
}
}
/// The loop type that yielded an `ExprKind::Loop`.
#[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)]
pub enum LoopSource {
/// A `loop { .. }` loop.
Loop,
/// A `while _ { .. }` loop.
While,
/// A `for _ in _ { .. }` loop.
ForLoop,
}
impl LoopSource {
pub fn name(self) -> &'static str {
match self {
LoopSource::Loop => "loop",
LoopSource::While => "while",
LoopSource::ForLoop => "for",
}
}
}
#[derive(Copy, Clone, Encodable, Debug, HashStable_Generic)]
pub enum LoopIdError {
OutsideLoopScope,
UnlabeledCfInWhileCondition,
UnresolvedLabel,
}
impl fmt::Display for LoopIdError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
LoopIdError::OutsideLoopScope => "not inside loop scope",
LoopIdError::UnlabeledCfInWhileCondition => {
"unlabeled control flow (break or continue) in while condition"
}
LoopIdError::UnresolvedLabel => "label not found",
})
}
}
#[derive(Copy, Clone, Encodable, Debug, HashStable_Generic)]
pub struct Destination {
// This is `Some(_)` iff there is an explicit user-specified `label
pub label: Option<Label>,
// These errors are caught and then reported during the diagnostics pass in
// librustc_passes/loops.rs
pub target_id: Result<HirId, LoopIdError>,
}
/// The yield kind that caused an `ExprKind::Yield`.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Encodable, Decodable, HashStable_Generic)]
pub enum YieldSource {
/// An `<expr>.await`.
Await { expr: Option<HirId> },
/// A plain `yield`.
Yield,
}
impl YieldSource {
pub fn is_await(&self) -> bool {
matches!(self, YieldSource::Await { .. })
}
}
impl fmt::Display for YieldSource {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
YieldSource::Await { .. } => "`await`",
YieldSource::Yield => "`yield`",
})
}
}
impl From<GeneratorKind> for YieldSource {
fn from(kind: GeneratorKind) -> Self {
match kind {
// Guess based on the kind of the current generator.
GeneratorKind::Gen => Self::Yield,
GeneratorKind::Async(_) => Self::Await { expr: None },
}
}
}
// N.B., if you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[derive(Debug, HashStable_Generic)]
pub struct MutTy<'hir> {
pub ty: &'hir Ty<'hir>,
pub mutbl: Mutability,
}
/// Represents a function's signature in a trait declaration,
/// trait implementation, or a free function.
#[derive(Debug, HashStable_Generic)]
pub struct FnSig<'hir> {
pub header: FnHeader,
pub decl: &'hir FnDecl<'hir>,
pub span: Span,
}
// The bodies for items are stored "out of line", in a separate
// hashmap in the `Crate`. Here we just record the hir-id of the item
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct TraitItemId {
pub def_id: LocalDefId,
}
impl TraitItemId {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
HirId::make_owner(self.def_id)
}
}
/// Represents an item declaration within a trait declaration,
/// possibly including a default implementation. A trait item is
/// either required (meaning it doesn't have an implementation, just a
/// signature) or provided (meaning it has a default implementation).
#[derive(Debug, HashStable_Generic)]
pub struct TraitItem<'hir> {
pub ident: Ident,
pub def_id: LocalDefId,
pub generics: &'hir Generics<'hir>,
pub kind: TraitItemKind<'hir>,
pub span: Span,
pub defaultness: Defaultness,
}
impl TraitItem<'_> {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
HirId::make_owner(self.def_id)
}
pub fn trait_item_id(&self) -> TraitItemId {
TraitItemId { def_id: self.def_id }
}
}
/// Represents a trait method's body (or just argument names).
#[derive(Encodable, Debug, HashStable_Generic)]
pub enum TraitFn<'hir> {
/// No default body in the trait, just a signature.
Required(&'hir [Ident]),
/// Both signature and body are provided in the trait.
Provided(BodyId),
}
/// Represents a trait method or associated constant or type
#[derive(Debug, HashStable_Generic)]
pub enum TraitItemKind<'hir> {
/// An associated constant with an optional value (otherwise `impl`s must contain a value).
Const(&'hir Ty<'hir>, Option<BodyId>),
/// An associated function with an optional body.
Fn(FnSig<'hir>, TraitFn<'hir>),
/// An associated type with (possibly empty) bounds and optional concrete
/// type.
Type(GenericBounds<'hir>, Option<&'hir Ty<'hir>>),
}
// The bodies for items are stored "out of line", in a separate
// hashmap in the `Crate`. Here we just record the hir-id of the item
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct ImplItemId {
pub def_id: LocalDefId,
}
impl ImplItemId {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
HirId::make_owner(self.def_id)
}
}
/// Represents anything within an `impl` block.
#[derive(Debug, HashStable_Generic)]
pub struct ImplItem<'hir> {
pub ident: Ident,
pub def_id: LocalDefId,
pub generics: &'hir Generics<'hir>,
pub kind: ImplItemKind<'hir>,
pub defaultness: Defaultness,
pub span: Span,
pub vis_span: Span,
}
impl ImplItem<'_> {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
HirId::make_owner(self.def_id)
}
pub fn impl_item_id(&self) -> ImplItemId {
ImplItemId { def_id: self.def_id }
}
}
/// Represents various kinds of content within an `impl`.
#[derive(Debug, HashStable_Generic)]
pub enum ImplItemKind<'hir> {
/// An associated constant of the given type, set to the constant result
/// of the expression.
Const(&'hir Ty<'hir>, BodyId),
/// An associated function implementation with the given signature and body.
Fn(FnSig<'hir>, BodyId),
/// An associated type.
TyAlias(&'hir Ty<'hir>),
}
// The name of the associated type for `Fn` return types.
pub const FN_OUTPUT_NAME: Symbol = sym::Output;
/// Bind a type to an associated type (i.e., `A = Foo`).
///
/// Bindings like `A: Debug` are represented as a special type `A =
/// $::Debug` that is understood by the astconv code.
///
/// FIXME(alexreg): why have a separate type for the binding case,
/// wouldn't it be better to make the `ty` field an enum like the
/// following?
///
/// ```ignore (pseudo-rust)
/// enum TypeBindingKind {
/// Equals(...),
/// Binding(...),
/// }
/// ```
#[derive(Debug, HashStable_Generic)]
pub struct TypeBinding<'hir> {
pub hir_id: HirId,
pub ident: Ident,
pub gen_args: &'hir GenericArgs<'hir>,
pub kind: TypeBindingKind<'hir>,
pub span: Span,
}
#[derive(Debug, HashStable_Generic)]
pub enum Term<'hir> {
Ty(&'hir Ty<'hir>),
Const(AnonConst),
}
impl<'hir> From<&'hir Ty<'hir>> for Term<'hir> {
fn from(ty: &'hir Ty<'hir>) -> Self {
Term::Ty(ty)
}
}
impl<'hir> From<AnonConst> for Term<'hir> {
fn from(c: AnonConst) -> Self {
Term::Const(c)
}
}
// Represents the two kinds of type bindings.
#[derive(Debug, HashStable_Generic)]
pub enum TypeBindingKind<'hir> {
/// E.g., `Foo<Bar: Send>`.
Constraint { bounds: &'hir [GenericBound<'hir>] },
/// E.g., `Foo<Bar = ()>`, `Foo<Bar = ()>`
Equality { term: Term<'hir> },
}
impl TypeBinding<'_> {
pub fn ty(&self) -> &Ty<'_> {
match self.kind {
TypeBindingKind::Equality { term: Term::Ty(ref ty) } => ty,
_ => panic!("expected equality type binding for parenthesized generic args"),
}
}
pub fn opt_const(&self) -> Option<&'_ AnonConst> {
match self.kind {
TypeBindingKind::Equality { term: Term::Const(ref c) } => Some(c),
_ => None,
}
}
}
#[derive(Debug, HashStable_Generic)]
pub struct Ty<'hir> {
pub hir_id: HirId,
pub kind: TyKind<'hir>,
pub span: Span,
}
impl<'hir> Ty<'hir> {
/// Returns `true` if `param_def_id` matches the `bounded_ty` of this predicate.
pub fn as_generic_param(&self) -> Option<(DefId, Ident)> {
let TyKind::Path(QPath::Resolved(None, path)) = self.kind else {
return None;
};
let [segment] = &path.segments else {
return None;
};
match path.res {
Res::Def(DefKind::TyParam, def_id)
| Res::SelfTy { trait_: Some(def_id), alias_to: None } => Some((def_id, segment.ident)),
_ => None,
}
}
pub fn peel_refs(&self) -> &Self {
let mut final_ty = self;
while let TyKind::Rptr(_, MutTy { ty, .. }) = &final_ty.kind {
final_ty = &ty;
}
final_ty
}
}
/// Not represented directly in the AST; referred to by name through a `ty_path`.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Hash, Debug)]
#[derive(HashStable_Generic)]
pub enum PrimTy {
Int(IntTy),
Uint(UintTy),
Float(FloatTy),
Str,
Bool,
Char,
}
impl PrimTy {
/// All of the primitive types
pub const ALL: [Self; 17] = [
// any changes here should also be reflected in `PrimTy::from_name`
Self::Int(IntTy::I8),
Self::Int(IntTy::I16),
Self::Int(IntTy::I32),
Self::Int(IntTy::I64),
Self::Int(IntTy::I128),
Self::Int(IntTy::Isize),
Self::Uint(UintTy::U8),
Self::Uint(UintTy::U16),
Self::Uint(UintTy::U32),
Self::Uint(UintTy::U64),
Self::Uint(UintTy::U128),
Self::Uint(UintTy::Usize),
Self::Float(FloatTy::F32),
Self::Float(FloatTy::F64),
Self::Bool,
Self::Char,
Self::Str,
];
/// Like [`PrimTy::name`], but returns a &str instead of a symbol.
///
/// Used by clippy.
pub fn name_str(self) -> &'static str {
match self {
PrimTy::Int(i) => i.name_str(),
PrimTy::Uint(u) => u.name_str(),
PrimTy::Float(f) => f.name_str(),
PrimTy::Str => "str",
PrimTy::Bool => "bool",
PrimTy::Char => "char",
}
}
pub fn name(self) -> Symbol {
match self {
PrimTy::Int(i) => i.name(),
PrimTy::Uint(u) => u.name(),
PrimTy::Float(f) => f.name(),
PrimTy::Str => sym::str,
PrimTy::Bool => sym::bool,
PrimTy::Char => sym::char,
}
}
/// Returns the matching `PrimTy` for a `Symbol` such as "str" or "i32".
/// Returns `None` if no matching type is found.
pub fn from_name(name: Symbol) -> Option<Self> {
let ty = match name {
// any changes here should also be reflected in `PrimTy::ALL`
sym::i8 => Self::Int(IntTy::I8),
sym::i16 => Self::Int(IntTy::I16),
sym::i32 => Self::Int(IntTy::I32),
sym::i64 => Self::Int(IntTy::I64),
sym::i128 => Self::Int(IntTy::I128),
sym::isize => Self::Int(IntTy::Isize),
sym::u8 => Self::Uint(UintTy::U8),
sym::u16 => Self::Uint(UintTy::U16),
sym::u32 => Self::Uint(UintTy::U32),
sym::u64 => Self::Uint(UintTy::U64),
sym::u128 => Self::Uint(UintTy::U128),
sym::usize => Self::Uint(UintTy::Usize),
sym::f32 => Self::Float(FloatTy::F32),
sym::f64 => Self::Float(FloatTy::F64),
sym::bool => Self::Bool,
sym::char => Self::Char,
sym::str => Self::Str,
_ => return None,
};
Some(ty)
}
}
#[derive(Debug, HashStable_Generic)]
pub struct BareFnTy<'hir> {
pub unsafety: Unsafety,
pub abi: Abi,
pub generic_params: &'hir [GenericParam<'hir>],
pub decl: &'hir FnDecl<'hir>,
pub param_names: &'hir [Ident],
}
#[derive(Debug, HashStable_Generic)]
pub struct OpaqueTy<'hir> {
pub generics: &'hir Generics<'hir>,
pub bounds: GenericBounds<'hir>,
pub origin: OpaqueTyOrigin,
pub in_trait: bool,
}
/// From whence the opaque type came.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum OpaqueTyOrigin {
/// `-> impl Trait`
FnReturn(LocalDefId),
/// `async fn`
AsyncFn(LocalDefId),
/// type aliases: `type Foo = impl Trait;`
TyAlias,
}
/// The various kinds of types recognized by the compiler.
#[derive(Debug, HashStable_Generic)]
pub enum TyKind<'hir> {
/// A variable length slice (i.e., `[T]`).
Slice(&'hir Ty<'hir>),
/// A fixed length array (i.e., `[T; n]`).
Array(&'hir Ty<'hir>, ArrayLen),
/// A raw pointer (i.e., `*const T` or `*mut T`).
Ptr(MutTy<'hir>),
/// A reference (i.e., `&'a T` or `&'a mut T`).
Rptr(&'hir Lifetime, MutTy<'hir>),
/// A bare function (e.g., `fn(usize) -> bool`).
BareFn(&'hir BareFnTy<'hir>),
/// The never type (`!`).
Never,
/// A tuple (`(A, B, C, D, ...)`).
Tup(&'hir [Ty<'hir>]),
/// A path to a type definition (`module::module::...::Type`), or an
/// associated type (e.g., `<Vec<T> as Trait>::Type` or `<T>::Target`).
///
/// Type parameters may be stored in each `PathSegment`.
Path(QPath<'hir>),
/// An opaque type definition itself. This is only used for `impl Trait`.
///
/// The generic argument list contains the lifetimes (and in the future
/// possibly parameters) that are actually bound on the `impl Trait`.
///
/// The last parameter specifies whether this opaque appears in a trait definition.
OpaqueDef(ItemId, &'hir [GenericArg<'hir>], bool),
/// A trait object type `Bound1 + Bound2 + Bound3`
/// where `Bound` is a trait or a lifetime.
TraitObject(&'hir [PolyTraitRef<'hir>], &'hir Lifetime, TraitObjectSyntax),
/// Unused for now.
Typeof(AnonConst),
/// `TyKind::Infer` means the type should be inferred instead of it having been
/// specified. This can appear anywhere in a type.
Infer,
/// Placeholder for a type that has failed to be defined.
Err,
}
#[derive(Debug, HashStable_Generic)]
pub enum InlineAsmOperand<'hir> {
In {
reg: InlineAsmRegOrRegClass,
expr: &'hir Expr<'hir>,
},
Out {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: Option<&'hir Expr<'hir>>,
},
InOut {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: &'hir Expr<'hir>,
},
SplitInOut {
reg: InlineAsmRegOrRegClass,
late: bool,
in_expr: &'hir Expr<'hir>,
out_expr: Option<&'hir Expr<'hir>>,
},
Const {
anon_const: AnonConst,
},
SymFn {
anon_const: AnonConst,
},
SymStatic {
path: QPath<'hir>,
def_id: DefId,
},
}
impl<'hir> InlineAsmOperand<'hir> {
pub fn reg(&self) -> Option<InlineAsmRegOrRegClass> {
match *self {
Self::In { reg, .. }
| Self::Out { reg, .. }
| Self::InOut { reg, .. }
| Self::SplitInOut { reg, .. } => Some(reg),
Self::Const { .. } | Self::SymFn { .. } | Self::SymStatic { .. } => None,
}
}
pub fn is_clobber(&self) -> bool {
matches!(
self,
InlineAsmOperand::Out { reg: InlineAsmRegOrRegClass::Reg(_), late: _, expr: None }
)
}
}
#[derive(Debug, HashStable_Generic)]
pub struct InlineAsm<'hir> {
pub template: &'hir [InlineAsmTemplatePiece],
pub template_strs: &'hir [(Symbol, Option<Symbol>, Span)],
pub operands: &'hir [(InlineAsmOperand<'hir>, Span)],
pub options: InlineAsmOptions,
pub line_spans: &'hir [Span],
}
/// Represents a parameter in a function header.
#[derive(Debug, HashStable_Generic)]
pub struct Param<'hir> {
pub hir_id: HirId,
pub pat: &'hir Pat<'hir>,
pub ty_span: Span,
pub span: Span,
}
/// Represents the header (not the body) of a function declaration.
#[derive(Debug, HashStable_Generic)]
pub struct FnDecl<'hir> {
/// The types of the function's parameters.
///
/// Additional argument data is stored in the function's [body](Body::params).
pub inputs: &'hir [Ty<'hir>],
pub output: FnRetTy<'hir>,
pub c_variadic: bool,
/// Does the function have an implicit self?
pub implicit_self: ImplicitSelfKind,
}
/// Represents what type of implicit self a function has, if any.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum ImplicitSelfKind {
/// Represents a `fn x(self);`.
Imm,
/// Represents a `fn x(mut self);`.
Mut,
/// Represents a `fn x(&self);`.
ImmRef,
/// Represents a `fn x(&mut self);`.
MutRef,
/// Represents when a function does not have a self argument or
/// when a function has a `self: X` argument.
None,
}
impl ImplicitSelfKind {
/// Does this represent an implicit self?
pub fn has_implicit_self(&self) -> bool {
!matches!(*self, ImplicitSelfKind::None)
}
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Encodable, Decodable, Debug)]
#[derive(HashStable_Generic)]
pub enum IsAsync {
Async,
NotAsync,
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, Encodable, Decodable, HashStable_Generic)]
pub enum Defaultness {
Default { has_value: bool },
Final,
}
impl Defaultness {
pub fn has_value(&self) -> bool {
match *self {
Defaultness::Default { has_value } => has_value,
Defaultness::Final => true,
}
}
pub fn is_final(&self) -> bool {
*self == Defaultness::Final
}
pub fn is_default(&self) -> bool {
matches!(*self, Defaultness::Default { .. })
}
}
#[derive(Debug, HashStable_Generic)]
pub enum FnRetTy<'hir> {
/// Return type is not specified.
///
/// Functions default to `()` and
/// closures default to inference. Span points to where return
/// type would be inserted.
DefaultReturn(Span),
/// Everything else.
Return(&'hir Ty<'hir>),
}
impl FnRetTy<'_> {
#[inline]
pub fn span(&self) -> Span {
match *self {
Self::DefaultReturn(span) => span,
Self::Return(ref ty) => ty.span,
}
}
}
/// Represents `for<...>` binder before a closure
#[derive(Copy, Clone, Debug, HashStable_Generic)]
pub enum ClosureBinder {
/// Binder is not specified.
Default,
/// Binder is specified.
///
/// Span points to the whole `for<...>`.
For { span: Span },
}
#[derive(Encodable, Debug, HashStable_Generic)]
pub struct Mod<'hir> {
pub spans: ModSpans,
pub item_ids: &'hir [ItemId],
}
#[derive(Copy, Clone, Debug, HashStable_Generic, Encodable)]
pub struct ModSpans {
/// A span from the first token past `{` to the last token until `}`.
/// For `mod foo;`, the inner span ranges from the first token
/// to the last token in the external file.
pub inner_span: Span,
pub inject_use_span: Span,
}
#[derive(Debug, HashStable_Generic)]
pub struct EnumDef<'hir> {
pub variants: &'hir [Variant<'hir>],
}
#[derive(Debug, HashStable_Generic)]
pub struct Variant<'hir> {
/// Name of the variant.
pub ident: Ident,
/// Id of the variant (not the constructor, see `VariantData::ctor_hir_id()`).
pub id: HirId,
/// Fields and constructor id of the variant.
pub data: VariantData<'hir>,
/// Explicit discriminant (e.g., `Foo = 1`).
pub disr_expr: Option<AnonConst>,
/// Span
pub span: Span,
}
#[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)]
pub enum UseKind {
/// One import, e.g., `use foo::bar` or `use foo::bar as baz`.
/// Also produced for each element of a list `use`, e.g.
/// `use foo::{a, b}` lowers to `use foo::a; use foo::b;`.
Single,
/// Glob import, e.g., `use foo::*`.
Glob,
/// Degenerate list import, e.g., `use foo::{a, b}` produces
/// an additional `use foo::{}` for performing checks such as
/// unstable feature gating. May be removed in the future.
ListStem,
}
/// References to traits in impls.
///
/// `resolve` maps each `TraitRef`'s `ref_id` to its defining trait; that's all
/// that the `ref_id` is for. Note that `ref_id`'s value is not the `HirId` of the
/// trait being referred to but just a unique `HirId` that serves as a key
/// within the resolution map.
#[derive(Clone, Debug, HashStable_Generic)]
pub struct TraitRef<'hir> {
pub path: &'hir Path<'hir>,
// Don't hash the `ref_id`. It is tracked via the thing it is used to access.
#[stable_hasher(ignore)]
pub hir_ref_id: HirId,
}
impl TraitRef<'_> {
/// Gets the `DefId` of the referenced trait. It _must_ actually be a trait or trait alias.
pub fn trait_def_id(&self) -> Option<DefId> {
match self.path.res {
Res::Def(DefKind::Trait | DefKind::TraitAlias, did) => Some(did),
Res::Err => None,
_ => unreachable!(),
}
}
}
#[derive(Clone, Debug, HashStable_Generic)]
pub struct PolyTraitRef<'hir> {
/// The `'a` in `for<'a> Foo<&'a T>`.
pub bound_generic_params: &'hir [GenericParam<'hir>],
/// The `Foo<&'a T>` in `for<'a> Foo<&'a T>`.
pub trait_ref: TraitRef<'hir>,
pub span: Span,
}
#[derive(Debug, HashStable_Generic)]
pub struct FieldDef<'hir> {
pub span: Span,
pub vis_span: Span,
pub ident: Ident,
pub hir_id: HirId,
pub ty: &'hir Ty<'hir>,
}
impl FieldDef<'_> {
// Still necessary in couple of places
pub fn is_positional(&self) -> bool {
let first = self.ident.as_str().as_bytes()[0];
(b'0'..=b'9').contains(&first)
}
}
/// Fields and constructor IDs of enum variants and structs.
#[derive(Debug, HashStable_Generic)]
pub enum VariantData<'hir> {
/// A struct variant.
///
/// E.g., `Bar { .. }` as in `enum Foo { Bar { .. } }`.
Struct(&'hir [FieldDef<'hir>], /* recovered */ bool),
/// A tuple variant.
///
/// E.g., `Bar(..)` as in `enum Foo { Bar(..) }`.
Tuple(&'hir [FieldDef<'hir>], HirId),
/// A unit variant.
///
/// E.g., `Bar = ..` as in `enum Foo { Bar = .. }`.
Unit(HirId),
}
impl<'hir> VariantData<'hir> {
/// Return the fields of this variant.
pub fn fields(&self) -> &'hir [FieldDef<'hir>] {
match *self {
VariantData::Struct(ref fields, ..) | VariantData::Tuple(ref fields, ..) => fields,
_ => &[],
}
}
/// Return the `HirId` of this variant's constructor, if it has one.
pub fn ctor_hir_id(&self) -> Option<HirId> {
match *self {
VariantData::Struct(_, _) => None,
VariantData::Tuple(_, hir_id) | VariantData::Unit(hir_id) => Some(hir_id),
}
}
}
// The bodies for items are stored "out of line", in a separate
// hashmap in the `Crate`. Here we just record the hir-id of the item
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, Hash, HashStable_Generic)]
pub struct ItemId {
pub def_id: LocalDefId,
}
impl ItemId {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
HirId::make_owner(self.def_id)
}
}
/// An item
///
/// The name might be a dummy name in case of anonymous items
#[derive(Debug, HashStable_Generic)]
pub struct Item<'hir> {
pub ident: Ident,
pub def_id: LocalDefId,
pub kind: ItemKind<'hir>,
pub span: Span,
pub vis_span: Span,
}
impl Item<'_> {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
HirId::make_owner(self.def_id)
}
pub fn item_id(&self) -> ItemId {
ItemId { def_id: self.def_id }
}
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum Unsafety {
Unsafe,
Normal,
}
impl Unsafety {
pub fn prefix_str(&self) -> &'static str {
match self {
Self::Unsafe => "unsafe ",
Self::Normal => "",
}
}
}
impl fmt::Display for Unsafety {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match *self {
Self::Unsafe => "unsafe",
Self::Normal => "normal",
})
}
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum Constness {
Const,
NotConst,
}
impl fmt::Display for Constness {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match *self {
Self::Const => "const",
Self::NotConst => "non-const",
})
}
}
#[derive(Copy, Clone, Encodable, Debug, HashStable_Generic)]
pub struct FnHeader {
pub unsafety: Unsafety,
pub constness: Constness,
pub asyncness: IsAsync,
pub abi: Abi,
}
impl FnHeader {
pub fn is_async(&self) -> bool {
matches!(&self.asyncness, IsAsync::Async)
}
pub fn is_const(&self) -> bool {
matches!(&self.constness, Constness::Const)
}
pub fn is_unsafe(&self) -> bool {
matches!(&self.unsafety, Unsafety::Unsafe)
}
}
#[derive(Debug, HashStable_Generic)]
pub enum ItemKind<'hir> {
/// An `extern crate` item, with optional *original* crate name if the crate was renamed.
///
/// E.g., `extern crate foo` or `extern crate foo_bar as foo`.
ExternCrate(Option<Symbol>),
/// `use foo::bar::*;` or `use foo::bar::baz as quux;`
///
/// or just
///
/// `use foo::bar::baz;` (with `as baz` implicitly on the right).
Use(&'hir Path<'hir>, UseKind),
/// A `static` item.
Static(&'hir Ty<'hir>, Mutability, BodyId),
/// A `const` item.
Const(&'hir Ty<'hir>, BodyId),
/// A function declaration.
Fn(FnSig<'hir>, &'hir Generics<'hir>, BodyId),
/// A MBE macro definition (`macro_rules!` or `macro`).
Macro(ast::MacroDef, MacroKind),
/// A module.
Mod(&'hir Mod<'hir>),
/// An external module, e.g. `extern { .. }`.
ForeignMod { abi: Abi, items: &'hir [ForeignItemRef] },
/// Module-level inline assembly (from `global_asm!`).
GlobalAsm(&'hir InlineAsm<'hir>),
/// A type alias, e.g., `type Foo = Bar<u8>`.
TyAlias(&'hir Ty<'hir>, &'hir Generics<'hir>),
/// An opaque `impl Trait` type alias, e.g., `type Foo = impl Bar;`.
OpaqueTy(OpaqueTy<'hir>),
/// An enum definition, e.g., `enum Foo<A, B> {C<A>, D<B>}`.
Enum(EnumDef<'hir>, &'hir Generics<'hir>),
/// A struct definition, e.g., `struct Foo<A> {x: A}`.
Struct(VariantData<'hir>, &'hir Generics<'hir>),
/// A union definition, e.g., `union Foo<A, B> {x: A, y: B}`.
Union(VariantData<'hir>, &'hir Generics<'hir>),
/// A trait definition.
Trait(IsAuto, Unsafety, &'hir Generics<'hir>, GenericBounds<'hir>, &'hir [TraitItemRef]),
/// A trait alias.
TraitAlias(&'hir Generics<'hir>, GenericBounds<'hir>),
/// An implementation, e.g., `impl<A> Trait for Foo { .. }`.
Impl(&'hir Impl<'hir>),
}
#[derive(Debug, HashStable_Generic)]
pub struct Impl<'hir> {
pub unsafety: Unsafety,
pub polarity: ImplPolarity,
pub defaultness: Defaultness,
// We do not put a `Span` in `Defaultness` because it breaks foreign crate metadata
// decoding as `Span`s cannot be decoded when a `Session` is not available.
pub defaultness_span: Option<Span>,
pub constness: Constness,
pub generics: &'hir Generics<'hir>,
/// The trait being implemented, if any.
pub of_trait: Option<TraitRef<'hir>>,
pub self_ty: &'hir Ty<'hir>,
pub items: &'hir [ImplItemRef],
}
impl ItemKind<'_> {
pub fn generics(&self) -> Option<&Generics<'_>> {
Some(match *self {
ItemKind::Fn(_, ref generics, _)
| ItemKind::TyAlias(_, ref generics)
| ItemKind::OpaqueTy(OpaqueTy { ref generics, .. })
| ItemKind::Enum(_, ref generics)
| ItemKind::Struct(_, ref generics)
| ItemKind::Union(_, ref generics)
| ItemKind::Trait(_, _, ref generics, _, _)
| ItemKind::TraitAlias(ref generics, _)
| ItemKind::Impl(Impl { ref generics, .. }) => generics,
_ => return None,
})
}
pub fn descr(&self) -> &'static str {
match self {
ItemKind::ExternCrate(..) => "extern crate",
ItemKind::Use(..) => "`use` import",
ItemKind::Static(..) => "static item",
ItemKind::Const(..) => "constant item",
ItemKind::Fn(..) => "function",
ItemKind::Macro(..) => "macro",
ItemKind::Mod(..) => "module",
ItemKind::ForeignMod { .. } => "extern block",
ItemKind::GlobalAsm(..) => "global asm item",
ItemKind::TyAlias(..) => "type alias",
ItemKind::OpaqueTy(..) => "opaque type",
ItemKind::Enum(..) => "enum",
ItemKind::Struct(..) => "struct",
ItemKind::Union(..) => "union",
ItemKind::Trait(..) => "trait",
ItemKind::TraitAlias(..) => "trait alias",
ItemKind::Impl(..) => "implementation",
}
}
}
/// A reference from an trait to one of its associated items. This
/// contains the item's id, naturally, but also the item's name and
/// some other high-level details (like whether it is an associated
/// type or method, and whether it is public). This allows other
/// passes to find the impl they want without loading the ID (which
/// means fewer edges in the incremental compilation graph).
#[derive(Encodable, Debug, HashStable_Generic)]
pub struct TraitItemRef {
pub id: TraitItemId,
pub ident: Ident,
pub kind: AssocItemKind,
pub span: Span,
}
/// A reference from an impl to one of its associated items. This
/// contains the item's ID, naturally, but also the item's name and
/// some other high-level details (like whether it is an associated
/// type or method, and whether it is public). This allows other
/// passes to find the impl they want without loading the ID (which
/// means fewer edges in the incremental compilation graph).
#[derive(Debug, HashStable_Generic)]
pub struct ImplItemRef {
pub id: ImplItemId,
pub ident: Ident,
pub kind: AssocItemKind,
pub span: Span,
/// When we are in a trait impl, link to the trait-item's id.
pub trait_item_def_id: Option<DefId>,
}
#[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)]
pub enum AssocItemKind {
Const,
Fn { has_self: bool },
Type,
}
// The bodies for items are stored "out of line", in a separate
// hashmap in the `Crate`. Here we just record the hir-id of the item
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct ForeignItemId {
pub def_id: LocalDefId,
}
impl ForeignItemId {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
HirId::make_owner(self.def_id)
}
}
/// A reference from a foreign block to one of its items. This
/// contains the item's ID, naturally, but also the item's name and
/// some other high-level details (like whether it is an associated
/// type or method, and whether it is public). This allows other
/// passes to find the impl they want without loading the ID (which
/// means fewer edges in the incremental compilation graph).
#[derive(Debug, HashStable_Generic)]
pub struct ForeignItemRef {
pub id: ForeignItemId,
pub ident: Ident,
pub span: Span,
}
#[derive(Debug, HashStable_Generic)]
pub struct ForeignItem<'hir> {
pub ident: Ident,
pub kind: ForeignItemKind<'hir>,
pub def_id: LocalDefId,
pub span: Span,
pub vis_span: Span,
}
impl ForeignItem<'_> {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
HirId::make_owner(self.def_id)
}
pub fn foreign_item_id(&self) -> ForeignItemId {
ForeignItemId { def_id: self.def_id }
}
}
/// An item within an `extern` block.
#[derive(Debug, HashStable_Generic)]
pub enum ForeignItemKind<'hir> {
/// A foreign function.
Fn(&'hir FnDecl<'hir>, &'hir [Ident], &'hir Generics<'hir>),
/// A foreign static item (`static ext: u8`).
Static(&'hir Ty<'hir>, Mutability),
/// A foreign type.
Type,
}
/// A variable captured by a closure.
#[derive(Debug, Copy, Clone, Encodable, HashStable_Generic)]
pub struct Upvar {
// First span where it is accessed (there can be multiple).
pub span: Span,
}
// The TraitCandidate's import_ids is empty if the trait is defined in the same module, and
// has length > 0 if the trait is found through an chain of imports, starting with the
// import/use statement in the scope where the trait is used.
#[derive(Encodable, Decodable, Clone, Debug, HashStable_Generic)]
pub struct TraitCandidate {
pub def_id: DefId,
pub import_ids: SmallVec<[LocalDefId; 1]>,
}
#[derive(Copy, Clone, Debug, HashStable_Generic)]
pub enum OwnerNode<'hir> {
Item(&'hir Item<'hir>),
ForeignItem(&'hir ForeignItem<'hir>),
TraitItem(&'hir TraitItem<'hir>),
ImplItem(&'hir ImplItem<'hir>),
Crate(&'hir Mod<'hir>),
}
impl<'hir> OwnerNode<'hir> {
pub fn ident(&self) -> Option<Ident> {
match self {
OwnerNode::Item(Item { ident, .. })
| OwnerNode::ForeignItem(ForeignItem { ident, .. })
| OwnerNode::ImplItem(ImplItem { ident, .. })
| OwnerNode::TraitItem(TraitItem { ident, .. }) => Some(*ident),
OwnerNode::Crate(..) => None,
}
}
pub fn span(&self) -> Span {
match self {
OwnerNode::Item(Item { span, .. })
| OwnerNode::ForeignItem(ForeignItem { span, .. })
| OwnerNode::ImplItem(ImplItem { span, .. })
| OwnerNode::TraitItem(TraitItem { span, .. }) => *span,
OwnerNode::Crate(Mod { spans: ModSpans { inner_span, .. }, .. }) => *inner_span,
}
}
pub fn fn_decl(self) -> Option<&'hir FnDecl<'hir>> {
match self {
OwnerNode::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. })
| OwnerNode::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. })
| OwnerNode::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig.decl),
OwnerNode::ForeignItem(ForeignItem {
kind: ForeignItemKind::Fn(fn_decl, _, _),
..
}) => Some(fn_decl),
_ => None,
}
}
pub fn body_id(&self) -> Option<BodyId> {
match self {
OwnerNode::TraitItem(TraitItem {
kind: TraitItemKind::Fn(_, TraitFn::Provided(body_id)),
..
})
| OwnerNode::ImplItem(ImplItem { kind: ImplItemKind::Fn(_, body_id), .. })
| OwnerNode::Item(Item { kind: ItemKind::Fn(.., body_id), .. }) => Some(*body_id),
_ => None,
}
}
pub fn generics(self) -> Option<&'hir Generics<'hir>> {
Node::generics(self.into())
}
pub fn def_id(self) -> LocalDefId {
match self {
OwnerNode::Item(Item { def_id, .. })
| OwnerNode::TraitItem(TraitItem { def_id, .. })
| OwnerNode::ImplItem(ImplItem { def_id, .. })
| OwnerNode::ForeignItem(ForeignItem { def_id, .. }) => *def_id,
OwnerNode::Crate(..) => crate::CRATE_HIR_ID.owner,
}
}
pub fn expect_item(self) -> &'hir Item<'hir> {
match self {
OwnerNode::Item(n) => n,
_ => panic!(),
}
}
pub fn expect_foreign_item(self) -> &'hir ForeignItem<'hir> {
match self {
OwnerNode::ForeignItem(n) => n,
_ => panic!(),
}
}
pub fn expect_impl_item(self) -> &'hir ImplItem<'hir> {
match self {
OwnerNode::ImplItem(n) => n,
_ => panic!(),
}
}
pub fn expect_trait_item(self) -> &'hir TraitItem<'hir> {
match self {
OwnerNode::TraitItem(n) => n,
_ => panic!(),
}
}
}
impl<'hir> Into<OwnerNode<'hir>> for &'hir Item<'hir> {
fn into(self) -> OwnerNode<'hir> {
OwnerNode::Item(self)
}
}
impl<'hir> Into<OwnerNode<'hir>> for &'hir ForeignItem<'hir> {
fn into(self) -> OwnerNode<'hir> {
OwnerNode::ForeignItem(self)
}
}
impl<'hir> Into<OwnerNode<'hir>> for &'hir ImplItem<'hir> {
fn into(self) -> OwnerNode<'hir> {
OwnerNode::ImplItem(self)
}
}
impl<'hir> Into<OwnerNode<'hir>> for &'hir TraitItem<'hir> {
fn into(self) -> OwnerNode<'hir> {
OwnerNode::TraitItem(self)
}
}
impl<'hir> Into<Node<'hir>> for OwnerNode<'hir> {
fn into(self) -> Node<'hir> {
match self {
OwnerNode::Item(n) => Node::Item(n),
OwnerNode::ForeignItem(n) => Node::ForeignItem(n),
OwnerNode::ImplItem(n) => Node::ImplItem(n),
OwnerNode::TraitItem(n) => Node::TraitItem(n),
OwnerNode::Crate(n) => Node::Crate(n),
}
}
}
#[derive(Copy, Clone, Debug, HashStable_Generic)]
pub enum Node<'hir> {
Param(&'hir Param<'hir>),
Item(&'hir Item<'hir>),
ForeignItem(&'hir ForeignItem<'hir>),
TraitItem(&'hir TraitItem<'hir>),
ImplItem(&'hir ImplItem<'hir>),
Variant(&'hir Variant<'hir>),
Field(&'hir FieldDef<'hir>),
AnonConst(&'hir AnonConst),
Expr(&'hir Expr<'hir>),
ExprField(&'hir ExprField<'hir>),
Stmt(&'hir Stmt<'hir>),
PathSegment(&'hir PathSegment<'hir>),
Ty(&'hir Ty<'hir>),
TypeBinding(&'hir TypeBinding<'hir>),
TraitRef(&'hir TraitRef<'hir>),
Pat(&'hir Pat<'hir>),
PatField(&'hir PatField<'hir>),
Arm(&'hir Arm<'hir>),
Block(&'hir Block<'hir>),
Local(&'hir Local<'hir>),
/// `Ctor` refers to the constructor of an enum variant or struct. Only tuple or unit variants
/// with synthesized constructors.
Ctor(&'hir VariantData<'hir>),
Lifetime(&'hir Lifetime),
GenericParam(&'hir GenericParam<'hir>),
Crate(&'hir Mod<'hir>),
Infer(&'hir InferArg),
}
impl<'hir> Node<'hir> {
/// Get the identifier of this `Node`, if applicable.
///
/// # Edge cases
///
/// Calling `.ident()` on a [`Node::Ctor`] will return `None`
/// because `Ctor`s do not have identifiers themselves.
/// Instead, call `.ident()` on the parent struct/variant, like so:
///
/// ```ignore (illustrative)
/// ctor
/// .ctor_hir_id()
/// .and_then(|ctor_id| tcx.hir().find(tcx.hir().get_parent_node(ctor_id)))
/// .and_then(|parent| parent.ident())
/// ```
pub fn ident(&self) -> Option<Ident> {
match self {
Node::TraitItem(TraitItem { ident, .. })
| Node::ImplItem(ImplItem { ident, .. })
| Node::ForeignItem(ForeignItem { ident, .. })
| Node::Field(FieldDef { ident, .. })
| Node::Variant(Variant { ident, .. })
| Node::Item(Item { ident, .. })
| Node::PathSegment(PathSegment { ident, .. }) => Some(*ident),
Node::Lifetime(lt) => Some(lt.name.ident()),
Node::GenericParam(p) => Some(p.name.ident()),
Node::TypeBinding(b) => Some(b.ident),
Node::Param(..)
| Node::AnonConst(..)
| Node::Expr(..)
| Node::Stmt(..)
| Node::Block(..)
| Node::Ctor(..)
| Node::Pat(..)
| Node::PatField(..)
| Node::ExprField(..)
| Node::Arm(..)
| Node::Local(..)
| Node::Crate(..)
| Node::Ty(..)
| Node::TraitRef(..)
| Node::Infer(..) => None,
}
}
pub fn fn_decl(self) -> Option<&'hir FnDecl<'hir>> {
match self {
Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. })
| Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. })
| Node::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig.decl),
Node::Expr(Expr { kind: ExprKind::Closure(Closure { fn_decl, .. }), .. })
| Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => {
Some(fn_decl)
}
_ => None,
}
}
pub fn fn_sig(self) -> Option<&'hir FnSig<'hir>> {
match self {
Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. })
| Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. })
| Node::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig),
_ => None,
}
}
pub fn body_id(&self) -> Option<BodyId> {
match self {
Node::TraitItem(TraitItem {
kind: TraitItemKind::Fn(_, TraitFn::Provided(body_id)),
..
})
| Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(_, body_id), .. })
| Node::Item(Item { kind: ItemKind::Fn(.., body_id), .. }) => Some(*body_id),
_ => None,
}
}
pub fn generics(self) -> Option<&'hir Generics<'hir>> {
match self {
Node::ForeignItem(ForeignItem {
kind: ForeignItemKind::Fn(_, _, generics), ..
})
| Node::TraitItem(TraitItem { generics, .. })
| Node::ImplItem(ImplItem { generics, .. }) => Some(generics),
Node::Item(item) => item.kind.generics(),
_ => None,
}
}
pub fn as_owner(self) -> Option<OwnerNode<'hir>> {
match self {
Node::Item(i) => Some(OwnerNode::Item(i)),
Node::ForeignItem(i) => Some(OwnerNode::ForeignItem(i)),
Node::TraitItem(i) => Some(OwnerNode::TraitItem(i)),
Node::ImplItem(i) => Some(OwnerNode::ImplItem(i)),
Node::Crate(i) => Some(OwnerNode::Crate(i)),
_ => None,
}
}
pub fn fn_kind(self) -> Option<FnKind<'hir>> {
match self {
Node::Item(i) => match i.kind {
ItemKind::Fn(ref sig, ref generics, _) => {
Some(FnKind::ItemFn(i.ident, generics, sig.header))
}
_ => None,
},
Node::TraitItem(ti) => match ti.kind {
TraitItemKind::Fn(ref sig, TraitFn::Provided(_)) => {
Some(FnKind::Method(ti.ident, sig))
}
_ => None,
},
Node::ImplItem(ii) => match ii.kind {
ImplItemKind::Fn(ref sig, _) => Some(FnKind::Method(ii.ident, sig)),
_ => None,
},
Node::Expr(e) => match e.kind {
ExprKind::Closure { .. } => Some(FnKind::Closure),
_ => None,
},
_ => None,
}
}
/// Get the fields for the tuple-constructor,
/// if this node is a tuple constructor, otherwise None
pub fn tuple_fields(&self) -> Option<&'hir [FieldDef<'hir>]> {
if let Node::Ctor(&VariantData::Tuple(fields, _)) = self { Some(fields) } else { None }
}
}
// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
mod size_asserts {
use super::*;
// These are in alphabetical order, which is easy to maintain.
static_assert_size!(Block<'_>, 48);
static_assert_size!(Body<'_>, 32);
static_assert_size!(Expr<'_>, 64);
static_assert_size!(ExprKind<'_>, 48);
static_assert_size!(FnDecl<'_>, 40);
static_assert_size!(ForeignItem<'_>, 72);
static_assert_size!(ForeignItemKind<'_>, 40);
#[cfg(not(bootstrap))]
static_assert_size!(GenericArg<'_>, 24);
static_assert_size!(GenericBound<'_>, 48);
static_assert_size!(Generics<'_>, 56);
static_assert_size!(Impl<'_>, 80);
#[cfg(not(bootstrap))]
static_assert_size!(ImplItem<'_>, 80);
#[cfg(not(bootstrap))]
static_assert_size!(ImplItemKind<'_>, 32);
static_assert_size!(Item<'_>, 80);
static_assert_size!(ItemKind<'_>, 48);
static_assert_size!(Local<'_>, 64);
static_assert_size!(Param<'_>, 32);
static_assert_size!(Pat<'_>, 72);
static_assert_size!(PatKind<'_>, 48);
static_assert_size!(Path<'_>, 48);
static_assert_size!(PathSegment<'_>, 56);
static_assert_size!(QPath<'_>, 24);
static_assert_size!(Stmt<'_>, 32);
static_assert_size!(StmtKind<'_>, 16);
#[cfg(not(bootstrap))]
static_assert_size!(TraitItem<'_>, 88);
#[cfg(not(bootstrap))]
static_assert_size!(TraitItemKind<'_>, 48);
static_assert_size!(Ty<'_>, 48);
static_assert_size!(TyKind<'_>, 32);
}