improve normalization of `Pointee::Metadata` This PR makes it so that `<Wrapper<Tail> as Pointee>::Metadata` is normalized to `<Tail as Pointee>::Metadata` if we don't know `Wrapper<Tail>: Sized`. With that, the trait solver can prove projection predicates like `<Wrapper<Tail> as Pointee>::Metadata == <Tail as Pointee>::Metadata`, which makes it possible to use the metadata APIs to cast between the tail and the wrapper: ```rust #![feature(ptr_metadata)] use std::ptr::{self, Pointee}; fn cast_same_meta<T: ?Sized, U: ?Sized>(ptr: *const T) -> *const U where T: Pointee<Metadata = <U as Pointee>::Metadata>, { let (thin, meta) = ptr.to_raw_parts(); ptr::from_raw_parts(thin, meta) } struct Wrapper<T: ?Sized>(T); fn cast_to_wrapper<T: ?Sized>(ptr: *const T) -> *const Wrapper<T> { cast_same_meta(ptr) } ``` Previously, this failed to compile: ``` error[E0271]: type mismatch resolving `<Wrapper<T> as Pointee>::Metadata == <T as Pointee>::Metadata` --> src/lib.rs:16:5 | 15 | fn cast_to_wrapper<T: ?Sized>(ptr: *const T) -> *const Wrapper<T> { | - found this type parameter 16 | cast_same_meta(ptr) | ^^^^^^^^^^^^^^ expected `Wrapper<T>`, found type parameter `T` | = note: expected associated type `<Wrapper<T> as Pointee>::Metadata` found associated type `<T as Pointee>::Metadata` = note: an associated type was expected, but a different one was found ``` (Yes, you can already do this with `as` casts. But using functions is so much ✨ *safer* ✨, because you can't change the metadata on accident.) --- This PR essentially changes the built-in impls of `Pointee` from this: ```rust // before impl Pointee for u8 { type Metadata = (); } impl Pointee for [u8] { type Metadata = usize; } // ... impl Pointee for Wrapper<u8> { type Metadata = (); } impl Pointee for Wrapper<[u8]> { type Metadata = usize; } // ... // This impl is only selected if `T` is a type parameter or unnormalizable projection or opaque type. fallback impl<T: ?Sized> Pointee for Wrapper<T> where Wrapper<T>: Sized { type Metadata = (); } // This impl is only selected if `T` is a type parameter or unnormalizable projection or opaque type. fallback impl<T /*: Sized */> Pointee for T { type Metadata = (); } ``` to this: ```rust // after impl Pointee for u8 { type Metadata = (); } impl Pointee for [u8] { type Metadata = usize; } // ... impl<T: ?Sized> Pointee for Wrapper<T> { // in the old solver this will instead project to the "deep" tail directly, // e.g. `Wrapper<Wrapper<T>>::Metadata = T::Metadata` type Metadata = <T as Pointee>::Metadata; } // ... // This impl is only selected if `T` is a type parameter or unnormalizable projection or opaque type. fallback impl<T /*: Sized */> Pointee for T { type Metadata = (); } ```
The Rust Programming Language
This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.
Note: this README is for users rather than contributors. If you wish to contribute to the compiler, you should read CONTRIBUTING.md instead.
Table of Contents
Quick Start
Read "Installation" from The Book.
Installing from Source
If you really want to install from source (though this is not recommended), see INSTALL.md.
Getting Help
See https://www.rust-lang.org/community for a list of chat platforms and forums.
Contributing
See CONTRIBUTING.md.
License
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.
Trademark
The Rust Foundation owns and protects the Rust and Cargo trademarks and logos (the "Rust Trademarks").
If you want to use these names or brands, please read the media guide.
Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.