7037 lines
232 KiB
Rust
7037 lines
232 KiB
Rust
import std._int;
|
|
import std._str;
|
|
import std._uint;
|
|
import std._vec;
|
|
import std._str.rustrt.sbuf;
|
|
import std._vec.rustrt.vbuf;
|
|
import std.map;
|
|
import std.map.hashmap;
|
|
import std.option;
|
|
import std.option.some;
|
|
import std.option.none;
|
|
|
|
import front.ast;
|
|
import front.creader;
|
|
import driver.session;
|
|
import middle.ty;
|
|
import back.x86;
|
|
import back.abi;
|
|
|
|
import middle.ty.pat_ty;
|
|
import middle.ty.plain_ty;
|
|
|
|
import util.common;
|
|
import util.common.istr;
|
|
import util.common.new_def_hash;
|
|
import util.common.new_str_hash;
|
|
|
|
import lib.llvm.llvm;
|
|
import lib.llvm.builder;
|
|
import lib.llvm.target_data;
|
|
import lib.llvm.type_handle;
|
|
import lib.llvm.type_names;
|
|
import lib.llvm.mk_pass_manager;
|
|
import lib.llvm.mk_target_data;
|
|
import lib.llvm.mk_type_handle;
|
|
import lib.llvm.mk_type_names;
|
|
import lib.llvm.llvm.ModuleRef;
|
|
import lib.llvm.llvm.ValueRef;
|
|
import lib.llvm.llvm.TypeRef;
|
|
import lib.llvm.llvm.TypeHandleRef;
|
|
import lib.llvm.llvm.BuilderRef;
|
|
import lib.llvm.llvm.BasicBlockRef;
|
|
|
|
import lib.llvm.False;
|
|
import lib.llvm.True;
|
|
|
|
state obj namegen(mutable int i) {
|
|
fn next(str prefix) -> str {
|
|
i += 1;
|
|
ret prefix + istr(i);
|
|
}
|
|
}
|
|
|
|
type glue_fns = rec(ValueRef activate_glue,
|
|
ValueRef yield_glue,
|
|
ValueRef exit_task_glue,
|
|
vec[ValueRef] native_glues_rust,
|
|
vec[ValueRef] native_glues_cdecl,
|
|
ValueRef no_op_type_glue,
|
|
ValueRef memcpy_glue,
|
|
ValueRef bzero_glue,
|
|
ValueRef vec_append_glue);
|
|
|
|
type tydesc_info = rec(ValueRef tydesc,
|
|
ValueRef take_glue,
|
|
ValueRef drop_glue);
|
|
|
|
/*
|
|
* A note on nomenclature of linking: "upcall", "extern" and "native".
|
|
*
|
|
* An "extern" is an LLVM symbol we wind up emitting an undefined external
|
|
* reference to. This means "we don't have the thing in this compilation unit,
|
|
* please make sure you link it in at runtime". This could be a reference to
|
|
* C code found in a C library, or rust code found in a rust crate.
|
|
*
|
|
* A "native" is a combination of an extern that references C code, plus a
|
|
* glue-code stub that "looks like" a rust function, emitted here, plus a
|
|
* generic N-ary bit of asm glue (found over in back/x86.rs) that performs a
|
|
* control transfer into C from rust. Natives may be normal C library code.
|
|
*
|
|
* An upcall is a native call generated by the compiler (not corresponding to
|
|
* any user-written call in the code) into librustrt, to perform some helper
|
|
* task such as bringing a task to life, allocating memory, etc.
|
|
*
|
|
*/
|
|
|
|
state type crate_ctxt = rec(session.session sess,
|
|
ModuleRef llmod,
|
|
target_data td,
|
|
type_names tn,
|
|
ValueRef crate_ptr,
|
|
hashmap[str, ValueRef] externs,
|
|
hashmap[str, ValueRef] intrinsics,
|
|
hashmap[ast.def_id, ValueRef] item_ids,
|
|
hashmap[ast.def_id, @ast.item] items,
|
|
hashmap[ast.def_id,
|
|
@ast.native_item] native_items,
|
|
ty.type_cache type_cache,
|
|
hashmap[ast.def_id, str] item_symbols,
|
|
// TODO: hashmap[tup(tag_id,subtys), @tag_info]
|
|
hashmap[@ty.t, uint] tag_sizes,
|
|
hashmap[ast.def_id, ValueRef] discrims,
|
|
hashmap[ast.def_id, str] discrim_symbols,
|
|
hashmap[ast.def_id, ValueRef] fn_pairs,
|
|
hashmap[ast.def_id, ValueRef] consts,
|
|
hashmap[ast.def_id,()] obj_methods,
|
|
hashmap[@ty.t, @tydesc_info] tydescs,
|
|
vec[ast.ty_param] obj_typarams,
|
|
vec[ast.obj_field] obj_fields,
|
|
@glue_fns glues,
|
|
namegen names,
|
|
vec[str] path,
|
|
std.sha1.sha1 sha);
|
|
|
|
state type fn_ctxt = rec(ValueRef llfn,
|
|
ValueRef lltaskptr,
|
|
ValueRef llenv,
|
|
ValueRef llretptr,
|
|
mutable BasicBlockRef llallocas,
|
|
mutable option.t[ValueRef] llself,
|
|
mutable option.t[ValueRef] lliterbody,
|
|
hashmap[ast.def_id, ValueRef] llargs,
|
|
hashmap[ast.def_id, ValueRef] llobjfields,
|
|
hashmap[ast.def_id, ValueRef] lllocals,
|
|
hashmap[ast.def_id, ValueRef] llupvars,
|
|
hashmap[ast.def_id, ValueRef] lltydescs,
|
|
@crate_ctxt ccx);
|
|
|
|
tag cleanup {
|
|
clean(fn(@block_ctxt cx) -> result);
|
|
}
|
|
|
|
|
|
tag block_kind {
|
|
SCOPE_BLOCK;
|
|
LOOP_SCOPE_BLOCK(option.t[@block_ctxt], @block_ctxt);
|
|
NON_SCOPE_BLOCK;
|
|
}
|
|
|
|
state type block_ctxt = rec(BasicBlockRef llbb,
|
|
builder build,
|
|
block_parent parent,
|
|
block_kind kind,
|
|
mutable vec[cleanup] cleanups,
|
|
@fn_ctxt fcx);
|
|
|
|
// FIXME: we should be able to use option.t[@block_parent] here but
|
|
// the infinite-tag check in rustboot gets upset.
|
|
|
|
tag block_parent {
|
|
parent_none;
|
|
parent_some(@block_ctxt);
|
|
}
|
|
|
|
|
|
state type result = rec(mutable @block_ctxt bcx,
|
|
mutable ValueRef val);
|
|
|
|
fn sep() -> str {
|
|
ret "_";
|
|
}
|
|
|
|
fn extend_path(@crate_ctxt cx, str name) -> @crate_ctxt {
|
|
ret @rec(path = cx.path + vec(name) with *cx);
|
|
}
|
|
|
|
fn path_name(vec[str] path) -> str {
|
|
ret _str.connect(path, sep());
|
|
}
|
|
|
|
|
|
fn mangle_name_by_type(@crate_ctxt cx, @ty.t t) -> str {
|
|
cx.sha.reset();
|
|
auto f = metadata.def_to_str;
|
|
cx.sha.input_str(metadata.ty_str(t, f));
|
|
ret sep() + "rust" + sep()
|
|
+ _str.substr(cx.sha.result_str(), 0u, 16u) + sep()
|
|
+ path_name(cx.path);
|
|
}
|
|
|
|
fn mangle_name_by_seq(@crate_ctxt cx, str flav) -> str {
|
|
ret sep() + "rust" + sep()
|
|
+ cx.names.next(flav) + sep()
|
|
+ path_name(cx.path);
|
|
}
|
|
|
|
fn res(@block_ctxt bcx, ValueRef val) -> result {
|
|
ret rec(mutable bcx = bcx,
|
|
mutable val = val);
|
|
}
|
|
|
|
fn ty_str(type_names tn, TypeRef t) -> str {
|
|
ret lib.llvm.type_to_str(tn, t);
|
|
}
|
|
|
|
fn val_ty(ValueRef v) -> TypeRef {
|
|
ret llvm.LLVMTypeOf(v);
|
|
}
|
|
|
|
fn val_str(type_names tn, ValueRef v) -> str {
|
|
ret ty_str(tn, val_ty(v));
|
|
}
|
|
|
|
|
|
// LLVM type constructors.
|
|
|
|
fn T_void() -> TypeRef {
|
|
// Note: For the time being llvm is kinda busted here, it has the notion
|
|
// of a 'void' type that can only occur as part of the signature of a
|
|
// function, but no general unit type of 0-sized value. This is, afaict,
|
|
// vestigial from its C heritage, and we'll be attempting to submit a
|
|
// patch upstream to fix it. In the mean time we only model function
|
|
// outputs (Rust functions and C functions) using T_void, and model the
|
|
// Rust general purpose nil type you can construct as 1-bit (always
|
|
// zero). This makes the result incorrect for now -- things like a tuple
|
|
// of 10 nil values will have 10-bit size -- but it doesn't seem like we
|
|
// have any other options until it's fixed upstream.
|
|
ret llvm.LLVMVoidType();
|
|
}
|
|
|
|
fn T_nil() -> TypeRef {
|
|
// NB: See above in T_void().
|
|
ret llvm.LLVMInt1Type();
|
|
}
|
|
|
|
fn T_i1() -> TypeRef {
|
|
ret llvm.LLVMInt1Type();
|
|
}
|
|
|
|
fn T_i8() -> TypeRef {
|
|
ret llvm.LLVMInt8Type();
|
|
}
|
|
|
|
fn T_i16() -> TypeRef {
|
|
ret llvm.LLVMInt16Type();
|
|
}
|
|
|
|
fn T_i32() -> TypeRef {
|
|
ret llvm.LLVMInt32Type();
|
|
}
|
|
|
|
fn T_i64() -> TypeRef {
|
|
ret llvm.LLVMInt64Type();
|
|
}
|
|
|
|
fn T_f32() -> TypeRef {
|
|
ret llvm.LLVMFloatType();
|
|
}
|
|
|
|
fn T_f64() -> TypeRef {
|
|
ret llvm.LLVMDoubleType();
|
|
}
|
|
|
|
fn T_bool() -> TypeRef {
|
|
ret T_i1();
|
|
}
|
|
|
|
fn T_int() -> TypeRef {
|
|
// FIXME: switch on target type.
|
|
ret T_i32();
|
|
}
|
|
|
|
fn T_float() -> TypeRef {
|
|
// FIXME: switch on target type.
|
|
ret T_f64();
|
|
}
|
|
|
|
fn T_char() -> TypeRef {
|
|
ret T_i32();
|
|
}
|
|
|
|
fn T_fn(vec[TypeRef] inputs, TypeRef output) -> TypeRef {
|
|
ret llvm.LLVMFunctionType(output,
|
|
_vec.buf[TypeRef](inputs),
|
|
_vec.len[TypeRef](inputs),
|
|
False);
|
|
}
|
|
|
|
fn T_fn_pair(type_names tn, TypeRef tfn) -> TypeRef {
|
|
ret T_struct(vec(T_ptr(tfn),
|
|
T_opaque_closure_ptr(tn)));
|
|
}
|
|
|
|
fn T_ptr(TypeRef t) -> TypeRef {
|
|
ret llvm.LLVMPointerType(t, 0u);
|
|
}
|
|
|
|
fn T_struct(vec[TypeRef] elts) -> TypeRef {
|
|
ret llvm.LLVMStructType(_vec.buf[TypeRef](elts),
|
|
_vec.len[TypeRef](elts),
|
|
False);
|
|
}
|
|
|
|
fn T_opaque() -> TypeRef {
|
|
ret llvm.LLVMOpaqueType();
|
|
}
|
|
|
|
fn T_task(type_names tn) -> TypeRef {
|
|
auto s = "task";
|
|
if (tn.name_has_type(s)) {
|
|
ret tn.get_type(s);
|
|
}
|
|
|
|
auto t = T_struct(vec(T_int(), // Refcount
|
|
T_int(), // Delegate pointer
|
|
T_int(), // Stack segment pointer
|
|
T_int(), // Runtime SP
|
|
T_int(), // Rust SP
|
|
T_int(), // GC chain
|
|
T_int(), // Domain pointer
|
|
T_int() // Crate cache pointer
|
|
));
|
|
tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_glue_fn(type_names tn) -> TypeRef {
|
|
auto s = "glue_fn";
|
|
if (tn.name_has_type(s)) {
|
|
ret tn.get_type(s);
|
|
}
|
|
|
|
// Bit of a kludge: pick the fn typeref out of the tydesc..
|
|
let vec[TypeRef] tydesc_elts = _vec.init_elt[TypeRef](T_nil(), 10u);
|
|
llvm.LLVMGetStructElementTypes(T_tydesc(tn),
|
|
_vec.buf[TypeRef](tydesc_elts));
|
|
auto t =
|
|
llvm.LLVMGetElementType
|
|
(tydesc_elts.(abi.tydesc_field_drop_glue_off));
|
|
tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_tydesc(type_names tn) -> TypeRef {
|
|
|
|
auto s = "tydesc";
|
|
if (tn.name_has_type(s)) {
|
|
ret tn.get_type(s);
|
|
}
|
|
|
|
auto th = mk_type_handle();
|
|
auto abs_tydesc = llvm.LLVMResolveTypeHandle(th.llth);
|
|
auto tydescpp = T_ptr(T_ptr(abs_tydesc));
|
|
auto pvoid = T_ptr(T_i8());
|
|
auto glue_fn_ty = T_ptr(T_fn(vec(T_ptr(T_nil()),
|
|
T_taskptr(tn),
|
|
T_ptr(T_nil()),
|
|
tydescpp,
|
|
pvoid), T_void()));
|
|
auto tydesc = T_struct(vec(tydescpp, // first_param
|
|
T_int(), // size
|
|
T_int(), // align
|
|
glue_fn_ty, // take_glue_off
|
|
glue_fn_ty, // drop_glue_off
|
|
glue_fn_ty, // free_glue_off
|
|
glue_fn_ty, // sever_glue_off
|
|
glue_fn_ty, // mark_glue_off
|
|
glue_fn_ty, // obj_drop_glue_off
|
|
glue_fn_ty)); // is_stateful
|
|
|
|
llvm.LLVMRefineType(abs_tydesc, tydesc);
|
|
auto t = llvm.LLVMResolveTypeHandle(th.llth);
|
|
tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_array(TypeRef t, uint n) -> TypeRef {
|
|
ret llvm.LLVMArrayType(t, n);
|
|
}
|
|
|
|
fn T_vec(TypeRef t) -> TypeRef {
|
|
ret T_struct(vec(T_int(), // Refcount
|
|
T_int(), // Alloc
|
|
T_int(), // Fill
|
|
T_array(t, 0u) // Body elements
|
|
));
|
|
}
|
|
|
|
fn T_opaque_vec_ptr() -> TypeRef {
|
|
ret T_ptr(T_vec(T_int()));
|
|
}
|
|
|
|
fn T_str() -> TypeRef {
|
|
ret T_vec(T_i8());
|
|
}
|
|
|
|
fn T_box(TypeRef t) -> TypeRef {
|
|
ret T_struct(vec(T_int(), t));
|
|
}
|
|
|
|
fn T_port(TypeRef t) -> TypeRef {
|
|
ret T_struct(vec(T_int())); // Refcount
|
|
}
|
|
|
|
fn T_chan(TypeRef t) -> TypeRef {
|
|
ret T_struct(vec(T_int())); // Refcount
|
|
}
|
|
|
|
fn T_crate(type_names tn) -> TypeRef {
|
|
auto s = "crate";
|
|
if (tn.name_has_type(s)) {
|
|
ret tn.get_type(s);
|
|
}
|
|
|
|
auto t = T_struct(vec(T_int(), // ptrdiff_t image_base_off
|
|
T_int(), // uintptr_t self_addr
|
|
T_int(), // ptrdiff_t debug_abbrev_off
|
|
T_int(), // size_t debug_abbrev_sz
|
|
T_int(), // ptrdiff_t debug_info_off
|
|
T_int(), // size_t debug_info_sz
|
|
T_int(), // size_t activate_glue_off
|
|
T_int(), // size_t yield_glue_off
|
|
T_int(), // size_t unwind_glue_off
|
|
T_int(), // size_t gc_glue_off
|
|
T_int(), // size_t main_exit_task_glue_off
|
|
T_int(), // int n_rust_syms
|
|
T_int(), // int n_c_syms
|
|
T_int(), // int n_libs
|
|
T_int() // uintptr_t abi_tag
|
|
));
|
|
tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_taskptr(type_names tn) -> TypeRef {
|
|
ret T_ptr(T_task(tn));
|
|
}
|
|
|
|
// This type must never be used directly; it must always be cast away.
|
|
fn T_typaram(type_names tn) -> TypeRef {
|
|
auto s = "typaram";
|
|
if (tn.name_has_type(s)) {
|
|
ret tn.get_type(s);
|
|
}
|
|
|
|
auto t = T_i8();
|
|
tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_typaram_ptr(type_names tn) -> TypeRef {
|
|
ret T_ptr(T_typaram(tn));
|
|
}
|
|
|
|
fn T_closure_ptr(type_names tn,
|
|
TypeRef lltarget_ty,
|
|
TypeRef llbindings_ty,
|
|
uint n_ty_params) -> TypeRef {
|
|
|
|
// NB: keep this in sync with code in trans_bind; we're making
|
|
// an LLVM typeref structure that has the same "shape" as the ty.t
|
|
// it constructs.
|
|
ret T_ptr(T_box(T_struct(vec(T_ptr(T_tydesc(tn)),
|
|
lltarget_ty,
|
|
llbindings_ty,
|
|
T_captured_tydescs(tn, n_ty_params))
|
|
)));
|
|
}
|
|
|
|
fn T_opaque_closure_ptr(type_names tn) -> TypeRef {
|
|
auto s = "*closure";
|
|
if (tn.name_has_type(s)) {
|
|
ret tn.get_type(s);
|
|
}
|
|
auto t = T_closure_ptr(tn, T_struct(vec(T_ptr(T_nil()),
|
|
T_ptr(T_nil()))),
|
|
T_nil(),
|
|
0u);
|
|
tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_tag(type_names tn, uint size) -> TypeRef {
|
|
auto s = "tag_" + _uint.to_str(size, 10u);
|
|
if (tn.name_has_type(s)) {
|
|
ret tn.get_type(s);
|
|
}
|
|
auto t = T_struct(vec(T_int(), T_array(T_i8(), size)));
|
|
tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_opaque_tag(type_names tn) -> TypeRef {
|
|
auto s = "tag";
|
|
if (tn.name_has_type(s)) {
|
|
ret tn.get_type(s);
|
|
}
|
|
auto t = T_struct(vec(T_int(), T_i8()));
|
|
tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_opaque_tag_ptr(type_names tn) -> TypeRef {
|
|
ret T_ptr(T_opaque_tag(tn));
|
|
}
|
|
|
|
fn T_captured_tydescs(type_names tn, uint n) -> TypeRef {
|
|
ret T_struct(_vec.init_elt[TypeRef](T_ptr(T_tydesc(tn)), n));
|
|
}
|
|
|
|
fn T_obj_ptr(type_names tn, uint n_captured_tydescs) -> TypeRef {
|
|
// This function is not publicly exposed because it returns an incomplete
|
|
// type. The dynamically-sized fields follow the captured tydescs.
|
|
fn T_obj(type_names tn, uint n_captured_tydescs) -> TypeRef {
|
|
ret T_struct(vec(T_ptr(T_tydesc(tn)),
|
|
T_captured_tydescs(tn, n_captured_tydescs)));
|
|
}
|
|
|
|
ret T_ptr(T_box(T_obj(tn, n_captured_tydescs)));
|
|
}
|
|
|
|
fn T_opaque_obj_ptr(type_names tn) -> TypeRef {
|
|
ret T_obj_ptr(tn, 0u);
|
|
}
|
|
|
|
|
|
// This function now fails if called on a type with dynamic size (as its
|
|
// return value was always meaningless in that case anyhow). Beware!
|
|
//
|
|
// TODO: Enforce via a predicate.
|
|
fn type_of(@crate_ctxt cx, @ty.t t) -> TypeRef {
|
|
if (ty.type_has_dynamic_size(t)) {
|
|
log "type_of() called on a type with dynamic size: " +
|
|
ty.ty_to_str(t);
|
|
fail;
|
|
}
|
|
|
|
ret type_of_inner(cx, t, false);
|
|
}
|
|
|
|
fn type_of_explicit_args(@crate_ctxt cx,
|
|
vec[ty.arg] inputs) -> vec[TypeRef] {
|
|
let vec[TypeRef] atys = vec();
|
|
for (ty.arg arg in inputs) {
|
|
if (ty.type_has_dynamic_size(arg.ty)) {
|
|
check (arg.mode == ast.alias);
|
|
atys += vec(T_typaram_ptr(cx.tn));
|
|
} else {
|
|
let TypeRef t;
|
|
alt (arg.mode) {
|
|
case (ast.alias) {
|
|
t = T_ptr(type_of_inner(cx, arg.ty, true));
|
|
}
|
|
case (_) {
|
|
t = type_of_inner(cx, arg.ty, false);
|
|
}
|
|
}
|
|
atys += vec(t);
|
|
}
|
|
}
|
|
ret atys;
|
|
}
|
|
|
|
// NB: must keep 4 fns in sync:
|
|
//
|
|
// - type_of_fn_full
|
|
// - create_llargs_for_fn_args.
|
|
// - new_fn_ctxt
|
|
// - trans_args
|
|
|
|
fn type_of_fn_full(@crate_ctxt cx,
|
|
ast.proto proto,
|
|
option.t[TypeRef] obj_self,
|
|
vec[ty.arg] inputs,
|
|
@ty.t output,
|
|
uint ty_param_count) -> TypeRef {
|
|
let vec[TypeRef] atys = vec();
|
|
|
|
// Arg 0: Output pointer.
|
|
if (ty.type_has_dynamic_size(output)) {
|
|
atys += vec(T_typaram_ptr(cx.tn));
|
|
} else {
|
|
atys += vec(T_ptr(type_of_inner(cx, output, false)));
|
|
}
|
|
|
|
// Arg 1: Task pointer.
|
|
atys += vec(T_taskptr(cx.tn));
|
|
|
|
// Arg 2: Env (closure-bindings / self-obj)
|
|
alt (obj_self) {
|
|
case (some[TypeRef](?t)) {
|
|
check (t as int != 0);
|
|
atys += vec(t);
|
|
}
|
|
case (_) {
|
|
atys += vec(T_opaque_closure_ptr(cx.tn));
|
|
}
|
|
}
|
|
|
|
// Args >3: ty params, if not acquired via capture...
|
|
if (obj_self == none[TypeRef]) {
|
|
auto i = 0u;
|
|
while (i < ty_param_count) {
|
|
atys += vec(T_ptr(T_tydesc(cx.tn)));
|
|
i += 1u;
|
|
}
|
|
}
|
|
|
|
if (proto == ast.proto_iter) {
|
|
// If it's an iter, the 'output' type of the iter is actually the
|
|
// *input* type of the function we're given as our iter-block
|
|
// argument.
|
|
atys +=
|
|
vec(T_fn_pair(cx.tn,
|
|
type_of_fn_full(cx, ast.proto_fn, none[TypeRef],
|
|
vec(rec(mode=ast.val, ty=output)),
|
|
plain_ty(ty.ty_nil), 0u)));
|
|
}
|
|
|
|
// ... then explicit args.
|
|
atys += type_of_explicit_args(cx, inputs);
|
|
|
|
ret T_fn(atys, llvm.LLVMVoidType());
|
|
}
|
|
|
|
fn type_of_fn(@crate_ctxt cx,
|
|
ast.proto proto,
|
|
vec[ty.arg] inputs,
|
|
@ty.t output,
|
|
uint ty_param_count) -> TypeRef {
|
|
ret type_of_fn_full(cx, proto, none[TypeRef], inputs, output,
|
|
ty_param_count);
|
|
}
|
|
|
|
fn type_of_native_fn(@crate_ctxt cx, ast.native_abi abi,
|
|
vec[ty.arg] inputs,
|
|
@ty.t output,
|
|
uint ty_param_count) -> TypeRef {
|
|
let vec[TypeRef] atys = vec();
|
|
if (abi == ast.native_abi_rust) {
|
|
atys += vec(T_taskptr(cx.tn));
|
|
auto t = ty.ty_native_fn(abi, inputs, output);
|
|
auto i = 0u;
|
|
while (i < ty_param_count) {
|
|
atys += vec(T_ptr(T_tydesc(cx.tn)));
|
|
i += 1u;
|
|
}
|
|
}
|
|
atys += type_of_explicit_args(cx, inputs);
|
|
ret T_fn(atys, type_of_inner(cx, output, false));
|
|
}
|
|
|
|
fn type_of_inner(@crate_ctxt cx, @ty.t t, bool boxed) -> TypeRef {
|
|
let TypeRef llty = 0 as TypeRef;
|
|
|
|
alt (t.struct) {
|
|
case (ty.ty_native) { llty = T_ptr(T_i8()); }
|
|
case (ty.ty_nil) { llty = T_nil(); }
|
|
case (ty.ty_bool) { llty = T_bool(); }
|
|
case (ty.ty_int) { llty = T_int(); }
|
|
case (ty.ty_float) { llty = T_float(); }
|
|
case (ty.ty_uint) { llty = T_int(); }
|
|
case (ty.ty_machine(?tm)) {
|
|
alt (tm) {
|
|
case (common.ty_i8) { llty = T_i8(); }
|
|
case (common.ty_u8) { llty = T_i8(); }
|
|
case (common.ty_i16) { llty = T_i16(); }
|
|
case (common.ty_u16) { llty = T_i16(); }
|
|
case (common.ty_i32) { llty = T_i32(); }
|
|
case (common.ty_u32) { llty = T_i32(); }
|
|
case (common.ty_i64) { llty = T_i64(); }
|
|
case (common.ty_u64) { llty = T_i64(); }
|
|
case (common.ty_f32) { llty = T_f32(); }
|
|
case (common.ty_f64) { llty = T_f64(); }
|
|
}
|
|
}
|
|
case (ty.ty_char) { llty = T_char(); }
|
|
case (ty.ty_str) { llty = T_ptr(T_str()); }
|
|
case (ty.ty_tag(_, _)) {
|
|
if (boxed) {
|
|
llty = T_opaque_tag(cx.tn);
|
|
} else {
|
|
auto size = static_size_of_tag(cx, t);
|
|
llty = T_tag(cx.tn, size);
|
|
}
|
|
}
|
|
case (ty.ty_box(?mt)) {
|
|
llty = T_ptr(T_box(type_of_inner(cx, mt.ty, true)));
|
|
}
|
|
case (ty.ty_vec(?mt)) {
|
|
llty = T_ptr(T_vec(type_of_inner(cx, mt.ty, true)));
|
|
}
|
|
case (ty.ty_port(?t)) {
|
|
llty = T_ptr(T_port(type_of_inner(cx, t, true)));
|
|
}
|
|
case (ty.ty_chan(?t)) {
|
|
llty = T_ptr(T_chan(type_of_inner(cx, t, true)));
|
|
}
|
|
case (ty.ty_tup(?elts)) {
|
|
let vec[TypeRef] tys = vec();
|
|
for (ty.mt elt in elts) {
|
|
tys += vec(type_of_inner(cx, elt.ty, boxed));
|
|
}
|
|
llty = T_struct(tys);
|
|
}
|
|
case (ty.ty_rec(?fields)) {
|
|
let vec[TypeRef] tys = vec();
|
|
for (ty.field f in fields) {
|
|
tys += vec(type_of_inner(cx, f.mt.ty, boxed));
|
|
}
|
|
llty = T_struct(tys);
|
|
}
|
|
case (ty.ty_fn(?proto, ?args, ?out)) {
|
|
llty = T_fn_pair(cx.tn, type_of_fn(cx, proto, args, out, 0u));
|
|
}
|
|
case (ty.ty_native_fn(?abi, ?args, ?out)) {
|
|
auto nft = type_of_native_fn(cx, abi, args, out, 0u);
|
|
llty = T_fn_pair(cx.tn, nft);
|
|
}
|
|
case (ty.ty_obj(?meths)) {
|
|
auto th = mk_type_handle();
|
|
auto self_ty = llvm.LLVMResolveTypeHandle(th.llth);
|
|
|
|
let vec[TypeRef] mtys = vec();
|
|
for (ty.method m in meths) {
|
|
let TypeRef mty =
|
|
type_of_fn_full(cx, m.proto,
|
|
some[TypeRef](self_ty),
|
|
m.inputs, m.output, 0u);
|
|
mtys += vec(T_ptr(mty));
|
|
}
|
|
let TypeRef vtbl = T_struct(mtys);
|
|
let TypeRef pair = T_struct(vec(T_ptr(vtbl),
|
|
T_opaque_obj_ptr(cx.tn)));
|
|
|
|
auto abs_pair = llvm.LLVMResolveTypeHandle(th.llth);
|
|
llvm.LLVMRefineType(abs_pair, pair);
|
|
abs_pair = llvm.LLVMResolveTypeHandle(th.llth);
|
|
llty = abs_pair;
|
|
}
|
|
case (ty.ty_var(_)) {
|
|
log "ty_var in trans.type_of";
|
|
fail;
|
|
}
|
|
case (ty.ty_param(_)) {
|
|
llty = T_i8();
|
|
}
|
|
case (ty.ty_type) { llty = T_ptr(T_tydesc(cx.tn)); }
|
|
}
|
|
|
|
check (llty as int != 0);
|
|
llvm.LLVMAddTypeName(cx.llmod, _str.buf(ty.ty_to_str(t)), llty);
|
|
ret llty;
|
|
}
|
|
|
|
fn type_of_arg(@crate_ctxt cx, &ty.arg arg) -> TypeRef {
|
|
alt (arg.ty.struct) {
|
|
case (ty.ty_param(_)) {
|
|
if (arg.mode == ast.alias) {
|
|
ret T_typaram_ptr(cx.tn);
|
|
}
|
|
}
|
|
case (_) {
|
|
// fall through
|
|
}
|
|
}
|
|
|
|
auto typ;
|
|
if (arg.mode == ast.alias) {
|
|
typ = T_ptr(type_of_inner(cx, arg.ty, true));
|
|
} else {
|
|
typ = type_of_inner(cx, arg.ty, false);
|
|
}
|
|
ret typ;
|
|
}
|
|
|
|
fn type_of_ty_params_opt_and_ty(@crate_ctxt ccx, ty.ty_params_opt_and_ty tpt)
|
|
-> TypeRef {
|
|
alt (tpt._1.struct) {
|
|
case (ty.ty_fn(?proto, ?inputs, ?output)) {
|
|
auto ty_params = option.get[vec[ast.def_id]](tpt._0);
|
|
auto ty_param_count = _vec.len[ast.def_id](ty_params);
|
|
auto llfnty = type_of_fn(ccx, proto, inputs, output,
|
|
ty_param_count);
|
|
ret T_fn_pair(ccx.tn, llfnty);
|
|
}
|
|
case (_) {
|
|
// fall through
|
|
}
|
|
}
|
|
ret type_of(ccx, tpt._1);
|
|
}
|
|
|
|
|
|
// Name sanitation. LLVM will happily accept identifiers with weird names, but
|
|
// gas doesn't!
|
|
|
|
fn sanitize(str s) -> str {
|
|
auto result = "";
|
|
for (u8 c in s) {
|
|
if (c == ('@' as u8)) {
|
|
result += "boxed_";
|
|
} else {
|
|
if (c == (',' as u8)) {
|
|
result += "_";
|
|
} else {
|
|
if (c == ('{' as u8) || c == ('(' as u8)) {
|
|
result += "_of_";
|
|
} else {
|
|
if (c != 10u8 && c != ('}' as u8) && c != (')' as u8) &&
|
|
c != (' ' as u8) && c != ('\t' as u8) &&
|
|
c != (';' as u8)) {
|
|
auto v = vec(c);
|
|
result += _str.from_bytes(v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ret result;
|
|
}
|
|
|
|
// LLVM constant constructors.
|
|
|
|
fn C_null(TypeRef t) -> ValueRef {
|
|
ret llvm.LLVMConstNull(t);
|
|
}
|
|
|
|
fn C_integral(int i, TypeRef t) -> ValueRef {
|
|
// FIXME. We can't use LLVM.ULongLong with our existing minimal native
|
|
// API, which only knows word-sized args. Lucky for us LLVM has a "take a
|
|
// string encoding" version. Hilarious. Please fix to handle:
|
|
//
|
|
// ret llvm.LLVMConstInt(T_int(), t as LLVM.ULongLong, False);
|
|
//
|
|
ret llvm.LLVMConstIntOfString(t, _str.buf(istr(i)), 10);
|
|
}
|
|
|
|
fn C_float(str s) -> ValueRef {
|
|
ret llvm.LLVMConstRealOfString(T_float(), _str.buf(s));
|
|
}
|
|
|
|
fn C_floating(str s, TypeRef t) -> ValueRef {
|
|
ret llvm.LLVMConstRealOfString(t, _str.buf(s));
|
|
}
|
|
|
|
fn C_nil() -> ValueRef {
|
|
// NB: See comment above in T_void().
|
|
ret C_integral(0, T_i1());
|
|
}
|
|
|
|
fn C_bool(bool b) -> ValueRef {
|
|
if (b) {
|
|
ret C_integral(1, T_bool());
|
|
} else {
|
|
ret C_integral(0, T_bool());
|
|
}
|
|
}
|
|
|
|
fn C_int(int i) -> ValueRef {
|
|
ret C_integral(i, T_int());
|
|
}
|
|
|
|
// This is a 'c-like' raw string, which differs from
|
|
// our boxed-and-length-annotated strings.
|
|
fn C_cstr(@crate_ctxt cx, str s) -> ValueRef {
|
|
auto sc = llvm.LLVMConstString(_str.buf(s), _str.byte_len(s), False);
|
|
auto g = llvm.LLVMAddGlobal(cx.llmod, val_ty(sc),
|
|
_str.buf(cx.names.next("str")));
|
|
llvm.LLVMSetInitializer(g, sc);
|
|
llvm.LLVMSetGlobalConstant(g, True);
|
|
llvm.LLVMSetLinkage(g, lib.llvm.LLVMInternalLinkage
|
|
as llvm.Linkage);
|
|
ret g;
|
|
}
|
|
|
|
// A rust boxed-and-length-annotated string.
|
|
fn C_str(@crate_ctxt cx, str s) -> ValueRef {
|
|
auto len = _str.byte_len(s);
|
|
auto box = C_struct(vec(C_int(abi.const_refcount as int),
|
|
C_int(len + 1u as int), // 'alloc'
|
|
C_int(len + 1u as int), // 'fill'
|
|
llvm.LLVMConstString(_str.buf(s),
|
|
len, False)));
|
|
auto g = llvm.LLVMAddGlobal(cx.llmod, val_ty(box),
|
|
_str.buf(cx.names.next("str")));
|
|
llvm.LLVMSetInitializer(g, box);
|
|
llvm.LLVMSetGlobalConstant(g, True);
|
|
llvm.LLVMSetLinkage(g, lib.llvm.LLVMInternalLinkage
|
|
as llvm.Linkage);
|
|
ret llvm.LLVMConstPointerCast(g, T_ptr(T_str()));
|
|
}
|
|
|
|
fn C_zero_byte_arr(uint size) -> ValueRef {
|
|
auto i = 0u;
|
|
let vec[ValueRef] elts = vec();
|
|
while (i < size) {
|
|
elts += vec(C_integral(0, T_i8()));
|
|
i += 1u;
|
|
}
|
|
ret llvm.LLVMConstArray(T_i8(), _vec.buf[ValueRef](elts),
|
|
_vec.len[ValueRef](elts));
|
|
}
|
|
|
|
fn C_struct(vec[ValueRef] elts) -> ValueRef {
|
|
ret llvm.LLVMConstStruct(_vec.buf[ValueRef](elts),
|
|
_vec.len[ValueRef](elts),
|
|
False);
|
|
}
|
|
|
|
fn decl_fn(ModuleRef llmod, str name, uint cc, TypeRef llty) -> ValueRef {
|
|
let ValueRef llfn =
|
|
llvm.LLVMAddFunction(llmod, _str.buf(name), llty);
|
|
llvm.LLVMSetFunctionCallConv(llfn, cc);
|
|
ret llfn;
|
|
}
|
|
|
|
fn decl_cdecl_fn(ModuleRef llmod, str name, TypeRef llty) -> ValueRef {
|
|
ret decl_fn(llmod, name, lib.llvm.LLVMCCallConv, llty);
|
|
}
|
|
|
|
fn decl_fastcall_fn(ModuleRef llmod, str name, TypeRef llty) -> ValueRef {
|
|
ret decl_fn(llmod, name, lib.llvm.LLVMFastCallConv, llty);
|
|
}
|
|
|
|
fn decl_internal_fastcall_fn(ModuleRef llmod,
|
|
str name, TypeRef llty) -> ValueRef {
|
|
auto llfn = decl_fn(llmod, name, lib.llvm.LLVMFastCallConv, llty);
|
|
llvm.LLVMSetLinkage(llfn, lib.llvm.LLVMInternalLinkage as llvm.Linkage);
|
|
ret llfn;
|
|
}
|
|
|
|
fn decl_glue(ModuleRef llmod, type_names tn, str s) -> ValueRef {
|
|
ret decl_cdecl_fn(llmod, s, T_fn(vec(T_taskptr(tn)), T_void()));
|
|
}
|
|
|
|
fn decl_native_glue(ModuleRef llmod, type_names tn,
|
|
bool pass_task, uint _n) -> ValueRef {
|
|
// It doesn't actually matter what type we come up with here, at the
|
|
// moment, as we cast the native function pointers to int before passing
|
|
// them to the indirect native-invocation glue. But eventually we'd like
|
|
// to call them directly, once we have a calling convention worked out.
|
|
let int n = _n as int;
|
|
let str s = abi.native_glue_name(n, pass_task);
|
|
let vec[TypeRef] args = vec(T_int()); // callee
|
|
if (!pass_task) {
|
|
args += vec(T_int()); // taskptr, will not be passed
|
|
}
|
|
args += _vec.init_elt[TypeRef](T_int(), n as uint);
|
|
|
|
ret decl_fastcall_fn(llmod, s, T_fn(args, T_int()));
|
|
}
|
|
|
|
fn get_extern_fn(&hashmap[str, ValueRef] externs,
|
|
ModuleRef llmod, str name,
|
|
uint cc, TypeRef ty) -> ValueRef {
|
|
if (externs.contains_key(name)) {
|
|
ret externs.get(name);
|
|
}
|
|
auto f = decl_fn(llmod, name, cc, ty);
|
|
externs.insert(name, f);
|
|
ret f;
|
|
}
|
|
|
|
fn get_extern_const(&hashmap[str, ValueRef] externs,
|
|
ModuleRef llmod, str name, TypeRef ty) -> ValueRef {
|
|
if (externs.contains_key(name)) {
|
|
ret externs.get(name);
|
|
}
|
|
auto c = llvm.LLVMAddGlobal(llmod, ty, _str.buf(name));
|
|
externs.insert(name, c);
|
|
ret c;
|
|
}
|
|
|
|
fn get_simple_extern_fn(&hashmap[str, ValueRef] externs,
|
|
ModuleRef llmod, str name, int n_args) -> ValueRef {
|
|
auto inputs = _vec.init_elt[TypeRef](T_int(), n_args as uint);
|
|
auto output = T_int();
|
|
auto t = T_fn(inputs, output);
|
|
ret get_extern_fn(externs, llmod, name, lib.llvm.LLVMCCallConv, t);
|
|
}
|
|
|
|
fn trans_upcall(@block_ctxt cx, str name, vec[ValueRef] args) -> result {
|
|
auto cxx = cx.fcx.ccx;
|
|
auto lltaskptr = cx.build.PtrToInt(cx.fcx.lltaskptr, T_int());
|
|
auto args2 = vec(lltaskptr) + args;
|
|
auto t = trans_native_call(cx.build, cxx.glues, lltaskptr,
|
|
cxx.externs, cxx.tn, cxx.llmod, name,
|
|
true, args2);
|
|
ret res(cx, t);
|
|
}
|
|
|
|
fn trans_native_call(builder b, @glue_fns glues, ValueRef lltaskptr,
|
|
&hashmap[str, ValueRef] externs,
|
|
type_names tn, ModuleRef llmod, str name,
|
|
bool pass_task, vec[ValueRef] args) -> ValueRef {
|
|
let int n = (_vec.len[ValueRef](args) as int);
|
|
let ValueRef llnative = get_simple_extern_fn(externs, llmod, name, n);
|
|
llnative = llvm.LLVMConstPointerCast(llnative, T_int());
|
|
|
|
let ValueRef llglue;
|
|
if (pass_task) {
|
|
llglue = glues.native_glues_rust.(n);
|
|
} else {
|
|
llglue = glues.native_glues_cdecl.(n);
|
|
}
|
|
let vec[ValueRef] call_args = vec(llnative);
|
|
|
|
if (!pass_task) {
|
|
call_args += vec(lltaskptr);
|
|
}
|
|
|
|
for (ValueRef a in args) {
|
|
call_args += vec(b.ZExtOrBitCast(a, T_int()));
|
|
}
|
|
|
|
ret b.FastCall(llglue, call_args);
|
|
}
|
|
|
|
fn trans_non_gc_free(@block_ctxt cx, ValueRef v) -> result {
|
|
ret trans_upcall(cx, "upcall_free", vec(vp2i(cx, v),
|
|
C_int(0)));
|
|
}
|
|
|
|
fn find_scope_cx(@block_ctxt cx) -> @block_ctxt {
|
|
if (cx.kind != NON_SCOPE_BLOCK) {
|
|
ret cx;
|
|
}
|
|
alt (cx.parent) {
|
|
case (parent_some(?b)) {
|
|
be find_scope_cx(b);
|
|
}
|
|
case (parent_none) {
|
|
fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn find_outer_scope_cx(@block_ctxt cx) -> @block_ctxt {
|
|
auto scope_cx = find_scope_cx(cx);
|
|
alt (cx.parent) {
|
|
case (parent_some(?b)) {
|
|
be find_scope_cx(b);
|
|
}
|
|
case (parent_none) {
|
|
fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn umax(@block_ctxt cx, ValueRef a, ValueRef b) -> ValueRef {
|
|
auto cond = cx.build.ICmp(lib.llvm.LLVMIntULT, a, b);
|
|
ret cx.build.Select(cond, b, a);
|
|
}
|
|
|
|
fn umin(@block_ctxt cx, ValueRef a, ValueRef b) -> ValueRef {
|
|
auto cond = cx.build.ICmp(lib.llvm.LLVMIntULT, a, b);
|
|
ret cx.build.Select(cond, a, b);
|
|
}
|
|
|
|
fn align_to(@block_ctxt cx, ValueRef off, ValueRef align) -> ValueRef {
|
|
auto mask = cx.build.Sub(align, C_int(1));
|
|
auto bumped = cx.build.Add(off, mask);
|
|
ret cx.build.And(bumped, cx.build.Not(mask));
|
|
}
|
|
|
|
// Returns the real size of the given type for the current target.
|
|
fn llsize_of_real(@crate_ctxt cx, TypeRef t) -> uint {
|
|
ret llvm.LLVMStoreSizeOfType(cx.td.lltd, t);
|
|
}
|
|
|
|
fn llsize_of(TypeRef t) -> ValueRef {
|
|
ret llvm.LLVMConstIntCast(lib.llvm.llvm.LLVMSizeOf(t), T_int(), False);
|
|
}
|
|
|
|
fn llalign_of(TypeRef t) -> ValueRef {
|
|
ret llvm.LLVMConstIntCast(lib.llvm.llvm.LLVMAlignOf(t), T_int(), False);
|
|
}
|
|
|
|
fn size_of(@block_ctxt cx, @ty.t t) -> result {
|
|
if (!ty.type_has_dynamic_size(t)) {
|
|
ret res(cx, llsize_of(type_of(cx.fcx.ccx, t)));
|
|
}
|
|
ret dynamic_size_of(cx, t);
|
|
}
|
|
|
|
fn align_of(@block_ctxt cx, @ty.t t) -> result {
|
|
if (!ty.type_has_dynamic_size(t)) {
|
|
ret res(cx, llalign_of(type_of(cx.fcx.ccx, t)));
|
|
}
|
|
ret dynamic_align_of(cx, t);
|
|
}
|
|
|
|
fn alloca(@block_ctxt cx, TypeRef t) -> ValueRef {
|
|
ret new_builder(cx.fcx.llallocas).Alloca(t);
|
|
}
|
|
|
|
fn array_alloca(@block_ctxt cx, TypeRef t, ValueRef n) -> ValueRef {
|
|
ret new_builder(cx.fcx.llallocas).ArrayAlloca(t, n);
|
|
}
|
|
|
|
|
|
// Computes the size of the data part of a non-dynamically-sized tag.
|
|
fn static_size_of_tag(@crate_ctxt cx, @ty.t t) -> uint {
|
|
if (ty.type_has_dynamic_size(t)) {
|
|
log "dynamically sized type passed to static_size_of_tag()";
|
|
fail;
|
|
}
|
|
|
|
if (cx.tag_sizes.contains_key(t)) {
|
|
ret cx.tag_sizes.get(t);
|
|
}
|
|
|
|
auto tid;
|
|
let vec[@ty.t] subtys;
|
|
alt (t.struct) {
|
|
case (ty.ty_tag(?tid_, ?subtys_)) {
|
|
tid = tid_;
|
|
subtys = subtys_;
|
|
}
|
|
case (_) {
|
|
log "non-tag passed to static_size_of_tag()";
|
|
fail;
|
|
}
|
|
}
|
|
|
|
// Pull the type parameters out of the corresponding tag item.
|
|
let vec[ast.def_id] ty_params = tag_ty_params(cx, tid);
|
|
|
|
// Compute max(variant sizes).
|
|
auto max_size = 0u;
|
|
auto variants = tag_variants(cx, tid);
|
|
for (variant_info variant in variants) {
|
|
auto tup_ty = ty.plain_tup_ty(variant.args);
|
|
|
|
// Perform any type parameter substitutions.
|
|
tup_ty = ty.substitute_ty_params(ty_params, subtys, tup_ty);
|
|
|
|
// Here we possibly do a recursive call.
|
|
auto this_size = llsize_of_real(cx, type_of(cx, tup_ty));
|
|
|
|
if (max_size < this_size) {
|
|
max_size = this_size;
|
|
}
|
|
}
|
|
|
|
cx.tag_sizes.insert(t, max_size);
|
|
ret max_size;
|
|
}
|
|
|
|
fn dynamic_size_of(@block_ctxt cx, @ty.t t) -> result {
|
|
fn align_elements(@block_ctxt cx, vec[@ty.t] elts) -> result {
|
|
//
|
|
// C padding rules:
|
|
//
|
|
//
|
|
// - Pad after each element so that next element is aligned.
|
|
// - Pad after final structure member so that whole structure
|
|
// is aligned to max alignment of interior.
|
|
//
|
|
auto off = C_int(0);
|
|
auto max_align = C_int(1);
|
|
auto bcx = cx;
|
|
for (@ty.t e in elts) {
|
|
auto elt_align = align_of(bcx, e);
|
|
bcx = elt_align.bcx;
|
|
auto elt_size = size_of(bcx, e);
|
|
bcx = elt_size.bcx;
|
|
auto aligned_off = align_to(bcx, off, elt_align.val);
|
|
off = cx.build.Add(aligned_off, elt_size.val);
|
|
max_align = umax(bcx, max_align, elt_align.val);
|
|
}
|
|
off = align_to(bcx, off, max_align);
|
|
ret res(bcx, off);
|
|
}
|
|
|
|
alt (t.struct) {
|
|
case (ty.ty_param(?p)) {
|
|
auto szptr = field_of_tydesc(cx, t, abi.tydesc_field_size);
|
|
ret res(szptr.bcx, szptr.bcx.build.Load(szptr.val));
|
|
}
|
|
case (ty.ty_tup(?elts)) {
|
|
let vec[@ty.t] tys = vec();
|
|
for (ty.mt mt in elts) {
|
|
tys += vec(mt.ty);
|
|
}
|
|
ret align_elements(cx, tys);
|
|
}
|
|
case (ty.ty_rec(?flds)) {
|
|
let vec[@ty.t] tys = vec();
|
|
for (ty.field f in flds) {
|
|
tys += vec(f.mt.ty);
|
|
}
|
|
ret align_elements(cx, tys);
|
|
}
|
|
case (ty.ty_tag(?tid, ?tps)) {
|
|
auto bcx = cx;
|
|
|
|
// Compute max(variant sizes).
|
|
let ValueRef max_size = alloca(bcx, T_int());
|
|
bcx.build.Store(C_int(0), max_size);
|
|
|
|
auto ty_params = tag_ty_params(bcx.fcx.ccx, tid);
|
|
auto variants = tag_variants(bcx.fcx.ccx, tid);
|
|
for (variant_info variant in variants) {
|
|
// Perform type substitution on the raw argument types.
|
|
let vec[@ty.t] raw_tys = variant.args;
|
|
let vec[@ty.t] tys = vec();
|
|
for (@ty.t raw_ty in raw_tys) {
|
|
auto t = ty.substitute_ty_params(ty_params, tps, raw_ty);
|
|
tys += vec(t);
|
|
}
|
|
|
|
auto rslt = align_elements(bcx, tys);
|
|
bcx = rslt.bcx;
|
|
|
|
auto this_size = rslt.val;
|
|
auto old_max_size = bcx.build.Load(max_size);
|
|
bcx.build.Store(umax(bcx, this_size, old_max_size), max_size);
|
|
}
|
|
|
|
auto max_size_val = bcx.build.Load(max_size);
|
|
auto total_size = bcx.build.Add(max_size_val, llsize_of(T_int()));
|
|
ret res(bcx, total_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn dynamic_align_of(@block_ctxt cx, @ty.t t) -> result {
|
|
alt (t.struct) {
|
|
case (ty.ty_param(?p)) {
|
|
auto aptr = field_of_tydesc(cx, t, abi.tydesc_field_align);
|
|
ret res(aptr.bcx, aptr.bcx.build.Load(aptr.val));
|
|
}
|
|
case (ty.ty_tup(?elts)) {
|
|
auto a = C_int(1);
|
|
auto bcx = cx;
|
|
for (ty.mt e in elts) {
|
|
auto align = align_of(bcx, e.ty);
|
|
bcx = align.bcx;
|
|
a = umax(bcx, a, align.val);
|
|
}
|
|
ret res(bcx, a);
|
|
}
|
|
case (ty.ty_rec(?flds)) {
|
|
auto a = C_int(1);
|
|
auto bcx = cx;
|
|
for (ty.field f in flds) {
|
|
auto align = align_of(bcx, f.mt.ty);
|
|
bcx = align.bcx;
|
|
a = umax(bcx, a, align.val);
|
|
}
|
|
ret res(bcx, a);
|
|
}
|
|
case (ty.ty_tag(_, _)) {
|
|
ret res(cx, C_int(1)); // FIXME: stub
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replacement for the LLVM 'GEP' instruction when field-indexing into a
|
|
// tuple-like structure (tup, rec) with a static index. This one is driven off
|
|
// ty.struct and knows what to do when it runs into a ty_param stuck in the
|
|
// middle of the thing it's GEP'ing into. Much like size_of and align_of,
|
|
// above.
|
|
|
|
fn GEP_tup_like(@block_ctxt cx, @ty.t t,
|
|
ValueRef base, vec[int] ixs) -> result {
|
|
|
|
check (ty.type_is_tup_like(t));
|
|
|
|
// It might be a static-known type. Handle this.
|
|
|
|
if (! ty.type_has_dynamic_size(t)) {
|
|
let vec[ValueRef] v = vec();
|
|
for (int i in ixs) {
|
|
v += vec(C_int(i));
|
|
}
|
|
ret res(cx, cx.build.GEP(base, v));
|
|
}
|
|
|
|
// It is a dynamic-containing type that, if we convert directly to an LLVM
|
|
// TypeRef, will be all wrong; there's no proper LLVM type to represent
|
|
// it, and the lowering function will stick in i8* values for each
|
|
// ty_param, which is not right; the ty_params are all of some dynamic
|
|
// size.
|
|
//
|
|
// What we must do instead is sadder. We must look through the indices
|
|
// manually and split the input type into a prefix and a target. We then
|
|
// measure the prefix size, bump the input pointer by that amount, and
|
|
// cast to a pointer-to-target type.
|
|
|
|
|
|
// Given a type, an index vector and an element number N in that vector,
|
|
// calculate index X and the type that results by taking the first X-1
|
|
// elements of the type and splitting the Xth off. Return the prefix as
|
|
// well as the innermost Xth type.
|
|
|
|
fn split_type(@ty.t t, vec[int] ixs, uint n)
|
|
-> rec(vec[@ty.t] prefix, @ty.t target) {
|
|
|
|
let uint len = _vec.len[int](ixs);
|
|
|
|
// We don't support 0-index or 1-index GEPs. The former is nonsense
|
|
// and the latter would only be meaningful if we supported non-0
|
|
// values for the 0th index (we don't).
|
|
|
|
check (len > 1u);
|
|
|
|
if (n == 0u) {
|
|
// Since we're starting from a value that's a pointer to a
|
|
// *single* structure, the first index (in GEP-ese) should just be
|
|
// 0, to yield the pointee.
|
|
check (ixs.(n) == 0);
|
|
ret split_type(t, ixs, n+1u);
|
|
}
|
|
|
|
check (n < len);
|
|
|
|
let int ix = ixs.(n);
|
|
let vec[@ty.t] prefix = vec();
|
|
let int i = 0;
|
|
while (i < ix) {
|
|
_vec.push[@ty.t](prefix, ty.get_element_type(t, i as uint));
|
|
i += 1 ;
|
|
}
|
|
|
|
auto selected = ty.get_element_type(t, i as uint);
|
|
|
|
if (n == len-1u) {
|
|
// We are at the innermost index.
|
|
ret rec(prefix=prefix, target=selected);
|
|
|
|
} else {
|
|
// Not the innermost index; call self recursively to dig deeper.
|
|
// Once we get an inner result, append it current prefix and
|
|
// return to caller.
|
|
auto inner = split_type(selected, ixs, n+1u);
|
|
prefix += inner.prefix;
|
|
ret rec(prefix=prefix with inner);
|
|
}
|
|
}
|
|
|
|
// We make a fake prefix tuple-type here; luckily for measuring sizes
|
|
// the tuple parens are associative so it doesn't matter that we've
|
|
// flattened the incoming structure.
|
|
|
|
auto s = split_type(t, ixs, 0u);
|
|
auto prefix_ty = ty.plain_tup_ty(s.prefix);
|
|
auto bcx = cx;
|
|
auto sz = size_of(bcx, prefix_ty);
|
|
bcx = sz.bcx;
|
|
auto raw = bcx.build.PointerCast(base, T_ptr(T_i8()));
|
|
auto bumped = bcx.build.GEP(raw, vec(sz.val));
|
|
|
|
if (ty.type_has_dynamic_size(s.target)) {
|
|
ret res(bcx, bumped);
|
|
}
|
|
|
|
auto typ = T_ptr(type_of(bcx.fcx.ccx, s.target));
|
|
ret res(bcx, bcx.build.PointerCast(bumped, typ));
|
|
}
|
|
|
|
// Replacement for the LLVM 'GEP' instruction when field indexing into a tag.
|
|
// This function uses GEP_tup_like() above and automatically performs casts as
|
|
// appropriate. @llblobptr is the data part of a tag value; its actual type is
|
|
// meaningless, as it will be cast away.
|
|
fn GEP_tag(@block_ctxt cx,
|
|
ValueRef llblobptr,
|
|
&ast.def_id tag_id,
|
|
&ast.def_id variant_id,
|
|
vec[@ty.t] ty_substs,
|
|
int ix)
|
|
-> result {
|
|
auto ty_params = tag_ty_params(cx.fcx.ccx, tag_id);
|
|
auto variant = tag_variant_with_id(cx.fcx.ccx, tag_id, variant_id);
|
|
|
|
// Synthesize a tuple type so that GEP_tup_like() can work its magic.
|
|
// Separately, store the type of the element we're interested in.
|
|
auto arg_tys = variant.args;
|
|
auto elem_ty = ty.plain_ty(ty.ty_nil); // typestate infelicity
|
|
auto i = 0;
|
|
let vec[@ty.t] true_arg_tys = vec();
|
|
for (@ty.t aty in arg_tys) {
|
|
auto arg_ty = ty.substitute_ty_params(ty_params, ty_substs, aty);
|
|
true_arg_tys += vec(arg_ty);
|
|
if (i == ix) {
|
|
elem_ty = arg_ty;
|
|
}
|
|
|
|
i += 1;
|
|
}
|
|
|
|
auto tup_ty = ty.plain_tup_ty(true_arg_tys);
|
|
|
|
// Cast the blob pointer to the appropriate type, if we need to (i.e. if
|
|
// the blob pointer isn't dynamically sized).
|
|
let ValueRef llunionptr;
|
|
if (!ty.type_has_dynamic_size(tup_ty)) {
|
|
auto llty = type_of(cx.fcx.ccx, tup_ty);
|
|
llunionptr = cx.build.TruncOrBitCast(llblobptr, T_ptr(llty));
|
|
} else {
|
|
llunionptr = llblobptr;
|
|
}
|
|
|
|
// Do the GEP_tup_like().
|
|
auto rslt = GEP_tup_like(cx, tup_ty, llunionptr, vec(0, ix));
|
|
|
|
// Cast the result to the appropriate type, if necessary.
|
|
auto val;
|
|
if (!ty.type_has_dynamic_size(elem_ty)) {
|
|
auto llelemty = type_of(rslt.bcx.fcx.ccx, elem_ty);
|
|
val = rslt.bcx.build.PointerCast(rslt.val, T_ptr(llelemty));
|
|
} else {
|
|
val = rslt.val;
|
|
}
|
|
|
|
ret res(rslt.bcx, val);
|
|
}
|
|
|
|
|
|
fn trans_raw_malloc(@block_ctxt cx, TypeRef llptr_ty, ValueRef llsize)
|
|
-> result {
|
|
// FIXME: need a table to collect tydesc globals.
|
|
auto tydesc = C_int(0);
|
|
auto rslt = trans_upcall(cx, "upcall_malloc", vec(llsize, tydesc));
|
|
rslt = res(rslt.bcx, vi2p(cx, rslt.val, llptr_ty));
|
|
ret rslt;
|
|
}
|
|
|
|
fn trans_malloc_boxed(@block_ctxt cx, @ty.t t) -> result {
|
|
// Synthesize a fake box type structurally so we have something
|
|
// to measure the size of.
|
|
auto boxed_body = ty.plain_tup_ty(vec(plain_ty(ty.ty_int), t));
|
|
auto box_ptr = ty.plain_box_ty(t);
|
|
auto sz = size_of(cx, boxed_body);
|
|
auto llty = type_of(cx.fcx.ccx, box_ptr);
|
|
ret trans_raw_malloc(sz.bcx, llty, sz.val);
|
|
}
|
|
|
|
|
|
// Type descriptor and type glue stuff
|
|
|
|
// Given a type and a field index into its corresponding type descriptor,
|
|
// returns an LLVM ValueRef of that field from the tydesc, generating the
|
|
// tydesc if necessary.
|
|
fn field_of_tydesc(@block_ctxt cx, @ty.t t, int field) -> result {
|
|
auto tydesc = get_tydesc(cx, t);
|
|
ret res(tydesc.bcx,
|
|
tydesc.bcx.build.GEP(tydesc.val, vec(C_int(0), C_int(field))));
|
|
}
|
|
|
|
// Given a type containing ty params, build a vector containing a ValueRef for
|
|
// each of the ty params it uses (from the current frame), as well as a vec
|
|
// containing a def_id for each such param. This is used solely for
|
|
// constructing derived tydescs.
|
|
fn linearize_ty_params(@block_ctxt cx, @ty.t t)
|
|
-> tup(vec[ast.def_id], vec[ValueRef]) {
|
|
let vec[ValueRef] param_vals = vec();
|
|
let vec[ast.def_id] param_defs = vec();
|
|
type rr = rec(@block_ctxt cx,
|
|
mutable vec[ValueRef] vals,
|
|
mutable vec[ast.def_id] defs);
|
|
|
|
state obj folder(@rr r) {
|
|
fn fold_simple_ty(@ty.t t) -> @ty.t {
|
|
alt(t.struct) {
|
|
case (ty.ty_param(?pid)) {
|
|
let bool seen = false;
|
|
for (ast.def_id d in r.defs) {
|
|
if (d == pid) {
|
|
seen = true;
|
|
}
|
|
}
|
|
if (!seen) {
|
|
r.vals += vec(r.cx.fcx.lltydescs.get(pid));
|
|
r.defs += vec(pid);
|
|
}
|
|
}
|
|
case (_) { }
|
|
}
|
|
ret t;
|
|
}
|
|
}
|
|
|
|
|
|
auto x = @rec(cx = cx,
|
|
mutable vals = param_vals,
|
|
mutable defs = param_defs);
|
|
|
|
ty.fold_ty(folder(x), t);
|
|
|
|
ret tup(x.defs, x.vals);
|
|
}
|
|
|
|
fn get_tydesc(&@block_ctxt cx, @ty.t t) -> result {
|
|
// Is the supplied type a type param? If so, return the passed-in tydesc.
|
|
alt (ty.type_param(t)) {
|
|
case (some[ast.def_id](?id)) {
|
|
check (cx.fcx.lltydescs.contains_key(id));
|
|
ret res(cx, cx.fcx.lltydescs.get(id));
|
|
}
|
|
case (none[ast.def_id]) { /* fall through */ }
|
|
}
|
|
|
|
// Does it contain a type param? If so, generate a derived tydesc.
|
|
let uint n_params = ty.count_ty_params(t);
|
|
|
|
if (ty.count_ty_params(t) > 0u) {
|
|
auto tys = linearize_ty_params(cx, t);
|
|
|
|
check (n_params == _vec.len[ast.def_id](tys._0));
|
|
check (n_params == _vec.len[ValueRef](tys._1));
|
|
|
|
if (!cx.fcx.ccx.tydescs.contains_key(t)) {
|
|
declare_tydesc(cx.fcx.ccx, t);
|
|
define_tydesc(cx.fcx.ccx, t, tys._0);
|
|
}
|
|
|
|
auto root = cx.fcx.ccx.tydescs.get(t).tydesc;
|
|
|
|
auto tydescs = alloca(cx, T_array(T_ptr(T_tydesc(cx.fcx.ccx.tn)),
|
|
1u /* for root*/ + n_params));
|
|
|
|
auto i = 0;
|
|
auto tdp = cx.build.GEP(tydescs, vec(C_int(0), C_int(i)));
|
|
cx.build.Store(root, tdp);
|
|
i += 1;
|
|
for (ValueRef td in tys._1) {
|
|
auto tdp = cx.build.GEP(tydescs, vec(C_int(0), C_int(i)));
|
|
cx.build.Store(td, tdp);
|
|
i += 1;
|
|
}
|
|
|
|
auto bcx = cx;
|
|
auto sz = size_of(bcx, t);
|
|
bcx = sz.bcx;
|
|
auto align = align_of(bcx, t);
|
|
bcx = align.bcx;
|
|
|
|
auto v = trans_upcall(bcx, "upcall_get_type_desc",
|
|
vec(p2i(bcx.fcx.ccx.crate_ptr),
|
|
sz.val,
|
|
align.val,
|
|
C_int((1u + n_params) as int),
|
|
vp2i(bcx, tydescs)));
|
|
|
|
ret res(v.bcx, vi2p(v.bcx, v.val,
|
|
T_ptr(T_tydesc(cx.fcx.ccx.tn))));
|
|
}
|
|
|
|
// Otherwise, generate a tydesc if necessary, and return it.
|
|
if (!cx.fcx.ccx.tydescs.contains_key(t)) {
|
|
let vec[ast.def_id] defs = vec();
|
|
declare_tydesc(cx.fcx.ccx, t);
|
|
define_tydesc(cx.fcx.ccx, t, defs);
|
|
}
|
|
ret res(cx, cx.fcx.ccx.tydescs.get(t).tydesc);
|
|
}
|
|
|
|
// Generates the declaration for (but doesn't fill in) a type descriptor. This
|
|
// needs to be separate from make_tydesc() below, because sometimes type glue
|
|
// functions needs to refer to their own type descriptors.
|
|
fn declare_tydesc(@crate_ctxt cx, @ty.t t) {
|
|
auto take_glue = declare_generic_glue(cx, t, "take");
|
|
auto drop_glue = declare_generic_glue(cx, t, "drop");
|
|
|
|
auto llsize;
|
|
auto llalign;
|
|
if (!ty.type_has_dynamic_size(t)) {
|
|
auto llty = type_of(cx, t);
|
|
llsize = llsize_of(llty);
|
|
llalign = llalign_of(llty);
|
|
} else {
|
|
// These will be overwritten as the derived tydesc is generated, so
|
|
// we create placeholder values.
|
|
llsize = C_int(0);
|
|
llalign = C_int(0);
|
|
}
|
|
|
|
auto glue_fn_ty = T_ptr(T_glue_fn(cx.tn));
|
|
|
|
// FIXME: this adjustment has to do with the ridiculous encoding of
|
|
// glue-pointer-constants in the tydesc records: They are tydesc-relative
|
|
// displacements. This is purely for compatibility with rustboot and
|
|
// should go when it is discarded.
|
|
fn off(ValueRef tydescp,
|
|
ValueRef gluefn) -> ValueRef {
|
|
ret i2p(llvm.LLVMConstSub(p2i(gluefn), p2i(tydescp)),
|
|
val_ty(gluefn));
|
|
}
|
|
|
|
auto name = sanitize(cx.names.next("tydesc_" + ty.ty_to_str(t)));
|
|
auto gvar = llvm.LLVMAddGlobal(cx.llmod, T_tydesc(cx.tn),
|
|
_str.buf(name));
|
|
auto tydesc = C_struct(vec(C_null(T_ptr(T_ptr(T_tydesc(cx.tn)))),
|
|
llsize,
|
|
llalign,
|
|
off(gvar, take_glue), // take_glue_off
|
|
off(gvar, drop_glue), // drop_glue_off
|
|
C_null(glue_fn_ty), // free_glue_off
|
|
C_null(glue_fn_ty), // sever_glue_off
|
|
C_null(glue_fn_ty), // mark_glue_off
|
|
C_null(glue_fn_ty), // obj_drop_glue_off
|
|
C_null(glue_fn_ty))); // is_stateful
|
|
|
|
llvm.LLVMSetInitializer(gvar, tydesc);
|
|
llvm.LLVMSetGlobalConstant(gvar, True);
|
|
llvm.LLVMSetLinkage(gvar, lib.llvm.LLVMInternalLinkage
|
|
as llvm.Linkage);
|
|
|
|
auto info = rec(
|
|
tydesc=gvar,
|
|
take_glue=take_glue,
|
|
drop_glue=drop_glue
|
|
);
|
|
|
|
cx.tydescs.insert(t, @info);
|
|
}
|
|
|
|
// declare_tydesc() above must have been called first.
|
|
fn define_tydesc(@crate_ctxt cx, @ty.t t, vec[ast.def_id] typaram_defs) {
|
|
auto info = cx.tydescs.get(t);
|
|
auto gvar = info.tydesc;
|
|
|
|
auto tg = make_take_glue;
|
|
auto take_glue = make_generic_glue(cx, t, info.take_glue, tg,
|
|
typaram_defs);
|
|
auto dg = make_drop_glue;
|
|
auto drop_glue = make_generic_glue(cx, t, info.drop_glue, dg,
|
|
typaram_defs);
|
|
}
|
|
|
|
fn declare_generic_glue(@crate_ctxt cx, @ty.t t, str name) -> ValueRef {
|
|
auto llfnty = T_glue_fn(cx.tn);
|
|
|
|
auto gcx = @rec(path=vec("glue", name) with *cx);
|
|
auto fn_name = mangle_name_by_type(gcx, t);
|
|
fn_name = sanitize(fn_name);
|
|
auto llfn = decl_internal_fastcall_fn(cx.llmod, fn_name, llfnty);
|
|
ret llfn;
|
|
}
|
|
|
|
fn make_generic_glue(@crate_ctxt cx, @ty.t t, ValueRef llfn,
|
|
val_and_ty_fn helper,
|
|
vec[ast.def_id] typaram_defs) -> ValueRef {
|
|
auto fcx = new_fn_ctxt(cx, llfn);
|
|
auto bcx = new_top_block_ctxt(fcx);
|
|
auto lltop = bcx.llbb;
|
|
|
|
auto re;
|
|
if (!ty.type_is_scalar(t)) {
|
|
auto llty;
|
|
if (ty.type_has_dynamic_size(t)) {
|
|
llty = T_ptr(T_i8());
|
|
} else if (ty.type_is_structural(t)) {
|
|
llty = T_ptr(type_of(cx, t));
|
|
} else {
|
|
llty = type_of(cx, t);
|
|
}
|
|
|
|
auto lltyparams = llvm.LLVMGetParam(llfn, 3u);
|
|
auto p = 0;
|
|
for (ast.def_id d in typaram_defs) {
|
|
auto llparam = bcx.build.GEP(lltyparams, vec(C_int(p)));
|
|
llparam = bcx.build.Load(llparam);
|
|
bcx.fcx.lltydescs.insert(d, llparam);
|
|
p += 1;
|
|
}
|
|
|
|
auto llrawptr = llvm.LLVMGetParam(llfn, 4u);
|
|
auto llval = bcx.build.BitCast(llrawptr, llty);
|
|
|
|
re = helper(bcx, llval, t);
|
|
} else {
|
|
re = res(bcx, C_nil());
|
|
}
|
|
|
|
re.bcx.build.RetVoid();
|
|
|
|
// Tie up the llallocas -> lltop edge.
|
|
new_builder(fcx.llallocas).Br(lltop);
|
|
|
|
ret llfn;
|
|
}
|
|
|
|
fn make_take_glue(@block_ctxt cx, ValueRef v, @ty.t t) -> result {
|
|
if (ty.type_is_boxed(t)) {
|
|
ret incr_refcnt_of_boxed(cx, v);
|
|
|
|
} else if (ty.type_is_structural(t)) {
|
|
ret iter_structural_ty(cx, v, t,
|
|
bind take_ty(_, _, _));
|
|
}
|
|
ret res(cx, C_nil());
|
|
}
|
|
|
|
fn incr_refcnt_of_boxed(@block_ctxt cx, ValueRef box_ptr) -> result {
|
|
auto rc_ptr = cx.build.GEP(box_ptr, vec(C_int(0),
|
|
C_int(abi.box_rc_field_refcnt)));
|
|
auto rc = cx.build.Load(rc_ptr);
|
|
|
|
auto rc_adj_cx = new_sub_block_ctxt(cx, "rc++");
|
|
auto next_cx = new_sub_block_ctxt(cx, "next");
|
|
|
|
auto const_test = cx.build.ICmp(lib.llvm.LLVMIntEQ,
|
|
C_int(abi.const_refcount as int), rc);
|
|
cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb);
|
|
|
|
rc = rc_adj_cx.build.Add(rc, C_int(1));
|
|
rc_adj_cx.build.Store(rc, rc_ptr);
|
|
rc_adj_cx.build.Br(next_cx.llbb);
|
|
|
|
ret res(next_cx, C_nil());
|
|
}
|
|
|
|
fn make_drop_glue(@block_ctxt cx, ValueRef v, @ty.t t) -> result {
|
|
alt (t.struct) {
|
|
case (ty.ty_str) {
|
|
ret decr_refcnt_and_if_zero
|
|
(cx, v, bind trans_non_gc_free(_, v),
|
|
"free string",
|
|
T_int(), C_int(0));
|
|
}
|
|
|
|
case (ty.ty_vec(_)) {
|
|
fn hit_zero(@block_ctxt cx, ValueRef v,
|
|
@ty.t t) -> result {
|
|
auto res = iter_sequence(cx, v, t,
|
|
bind drop_ty(_,_,_));
|
|
// FIXME: switch gc/non-gc on layer of the type.
|
|
ret trans_non_gc_free(res.bcx, v);
|
|
}
|
|
ret decr_refcnt_and_if_zero(cx, v,
|
|
bind hit_zero(_, v, t),
|
|
"free vector",
|
|
T_int(), C_int(0));
|
|
}
|
|
|
|
case (ty.ty_box(?body_mt)) {
|
|
fn hit_zero(@block_ctxt cx, ValueRef v,
|
|
@ty.t body_ty) -> result {
|
|
auto body = cx.build.GEP(v,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_body)));
|
|
|
|
auto body_val = load_scalar_or_boxed(cx, body, body_ty);
|
|
auto res = drop_ty(cx, body_val, body_ty);
|
|
// FIXME: switch gc/non-gc on layer of the type.
|
|
ret trans_non_gc_free(res.bcx, v);
|
|
}
|
|
ret decr_refcnt_and_if_zero(cx, v,
|
|
bind hit_zero(_, v, body_mt.ty),
|
|
"free box",
|
|
T_int(), C_int(0));
|
|
}
|
|
|
|
case (ty.ty_port(_)) {
|
|
fn hit_zero(@block_ctxt cx, ValueRef v) -> result {
|
|
ret trans_upcall(cx, "upcall_del_port",
|
|
vec(vp2i(cx, v)));
|
|
}
|
|
ret decr_refcnt_and_if_zero(cx, v,
|
|
bind hit_zero(_, v),
|
|
"free port",
|
|
T_int(), C_int(0));
|
|
}
|
|
|
|
case (ty.ty_chan(_)) {
|
|
fn hit_zero(@block_ctxt cx, ValueRef v) -> result {
|
|
ret trans_upcall(cx, "upcall_del_chan",
|
|
vec(vp2i(cx, v)));
|
|
}
|
|
ret decr_refcnt_and_if_zero(cx, v,
|
|
bind hit_zero(_, v),
|
|
"free chan",
|
|
T_int(), C_int(0));
|
|
}
|
|
|
|
case (ty.ty_obj(_)) {
|
|
fn hit_zero(@block_ctxt cx, ValueRef v) -> result {
|
|
|
|
// Call through the obj's own fields-drop glue first.
|
|
auto body =
|
|
cx.build.GEP(v,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_body)));
|
|
|
|
auto tydescptr =
|
|
cx.build.GEP(body,
|
|
vec(C_int(0),
|
|
C_int(abi.obj_body_elt_tydesc)));
|
|
|
|
call_tydesc_glue_full(cx, body, cx.build.Load(tydescptr),
|
|
abi.tydesc_field_drop_glue_off);
|
|
|
|
// Then free the body.
|
|
// FIXME: switch gc/non-gc on layer of the type.
|
|
ret trans_non_gc_free(cx, v);
|
|
}
|
|
auto box_cell =
|
|
cx.build.GEP(v,
|
|
vec(C_int(0),
|
|
C_int(abi.obj_field_box)));
|
|
|
|
auto boxptr = cx.build.Load(box_cell);
|
|
|
|
ret decr_refcnt_and_if_zero(cx, boxptr,
|
|
bind hit_zero(_, boxptr),
|
|
"free obj",
|
|
T_int(), C_int(0));
|
|
}
|
|
|
|
case (ty.ty_fn(_,_,_)) {
|
|
fn hit_zero(@block_ctxt cx, ValueRef v) -> result {
|
|
|
|
// Call through the closure's own fields-drop glue first.
|
|
auto body =
|
|
cx.build.GEP(v,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_body)));
|
|
auto bindings =
|
|
cx.build.GEP(body,
|
|
vec(C_int(0),
|
|
C_int(abi.closure_elt_bindings)));
|
|
|
|
auto tydescptr =
|
|
cx.build.GEP(body,
|
|
vec(C_int(0),
|
|
C_int(abi.closure_elt_tydesc)));
|
|
|
|
call_tydesc_glue_full(cx, bindings, cx.build.Load(tydescptr),
|
|
abi.tydesc_field_drop_glue_off);
|
|
|
|
|
|
// Then free the body.
|
|
// FIXME: switch gc/non-gc on layer of the type.
|
|
ret trans_non_gc_free(cx, v);
|
|
}
|
|
auto box_cell =
|
|
cx.build.GEP(v,
|
|
vec(C_int(0),
|
|
C_int(abi.fn_field_box)));
|
|
|
|
auto boxptr = cx.build.Load(box_cell);
|
|
|
|
ret decr_refcnt_and_if_zero(cx, boxptr,
|
|
bind hit_zero(_, boxptr),
|
|
"free fn",
|
|
T_int(), C_int(0));
|
|
}
|
|
|
|
case (_) {
|
|
if (ty.type_is_structural(t)) {
|
|
ret iter_structural_ty(cx, v, t,
|
|
bind drop_ty(_, _, _));
|
|
|
|
} else if (ty.type_is_scalar(t) ||
|
|
ty.type_is_native(t) ||
|
|
ty.type_is_nil(t)) {
|
|
ret res(cx, C_nil());
|
|
}
|
|
}
|
|
}
|
|
cx.fcx.ccx.sess.bug("bad type in trans.make_drop_glue_inner: " +
|
|
ty.ty_to_str(t));
|
|
fail;
|
|
}
|
|
|
|
fn decr_refcnt_and_if_zero(@block_ctxt cx,
|
|
ValueRef box_ptr,
|
|
fn(@block_ctxt cx) -> result inner,
|
|
str inner_name,
|
|
TypeRef t_else, ValueRef v_else) -> result {
|
|
|
|
auto load_rc_cx = new_sub_block_ctxt(cx, "load rc");
|
|
auto rc_adj_cx = new_sub_block_ctxt(cx, "rc--");
|
|
auto inner_cx = new_sub_block_ctxt(cx, inner_name);
|
|
auto next_cx = new_sub_block_ctxt(cx, "next");
|
|
|
|
auto null_test = cx.build.IsNull(box_ptr);
|
|
cx.build.CondBr(null_test, next_cx.llbb, load_rc_cx.llbb);
|
|
|
|
|
|
auto rc_ptr = load_rc_cx.build.GEP(box_ptr,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_refcnt)));
|
|
|
|
auto rc = load_rc_cx.build.Load(rc_ptr);
|
|
auto const_test =
|
|
load_rc_cx.build.ICmp(lib.llvm.LLVMIntEQ,
|
|
C_int(abi.const_refcount as int), rc);
|
|
load_rc_cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb);
|
|
|
|
rc = rc_adj_cx.build.Sub(rc, C_int(1));
|
|
rc_adj_cx.build.Store(rc, rc_ptr);
|
|
auto zero_test = rc_adj_cx.build.ICmp(lib.llvm.LLVMIntEQ, C_int(0), rc);
|
|
rc_adj_cx.build.CondBr(zero_test, inner_cx.llbb, next_cx.llbb);
|
|
|
|
auto inner_res = inner(inner_cx);
|
|
inner_res.bcx.build.Br(next_cx.llbb);
|
|
|
|
auto phi = next_cx.build.Phi(t_else,
|
|
vec(v_else, v_else, v_else, inner_res.val),
|
|
vec(cx.llbb,
|
|
load_rc_cx.llbb,
|
|
rc_adj_cx.llbb,
|
|
inner_res.bcx.llbb));
|
|
|
|
ret res(next_cx, phi);
|
|
}
|
|
|
|
// Tag information
|
|
|
|
// Returns the type parameters of a tag.
|
|
fn tag_ty_params(@crate_ctxt cx, ast.def_id id) -> vec[ast.def_id] {
|
|
ret ty.lookup_generic_item_type(cx.sess, cx.type_cache, id)._0;
|
|
}
|
|
|
|
type variant_info = rec(vec[@ty.t] args, @ty.t ctor_ty, ast.def_id id);
|
|
|
|
// Returns information about the variants in a tag.
|
|
fn tag_variants(@crate_ctxt cx, ast.def_id id) -> vec[variant_info] {
|
|
if (cx.sess.get_targ_crate_num() != id._0) {
|
|
ret creader.get_tag_variants(cx.sess, id);
|
|
}
|
|
|
|
check (cx.items.contains_key(id));
|
|
alt (cx.items.get(id).node) {
|
|
case (ast.item_tag(_, ?variants, _, _, _)) {
|
|
let vec[variant_info] result = vec();
|
|
for (ast.variant variant in variants) {
|
|
auto ctor_ty = node_ann_type(cx, variant.node.ann);
|
|
let vec[@ty.t] arg_tys = vec();
|
|
if (_vec.len[ast.variant_arg](variant.node.args) > 0u) {
|
|
for (ty.arg a in ty.ty_fn_args(ctor_ty)) {
|
|
arg_tys += vec(a.ty);
|
|
}
|
|
}
|
|
auto did = variant.node.id;
|
|
result += vec(rec(args=arg_tys, ctor_ty=ctor_ty, id=did));
|
|
}
|
|
ret result;
|
|
}
|
|
}
|
|
fail; // not reached
|
|
}
|
|
|
|
// Returns information about the tag variant with the given ID.
|
|
fn tag_variant_with_id(@crate_ctxt cx,
|
|
&ast.def_id tag_id,
|
|
&ast.def_id variant_id) -> variant_info {
|
|
auto variants = tag_variants(cx, tag_id);
|
|
|
|
auto i = 0u;
|
|
while (i < _vec.len[variant_info](variants)) {
|
|
auto variant = variants.(i);
|
|
if (common.def_eq(variant.id, variant_id)) {
|
|
ret variant;
|
|
}
|
|
i += 1u;
|
|
}
|
|
|
|
log "tag_variant_with_id(): no variant exists with that ID";
|
|
fail;
|
|
}
|
|
|
|
// Returns a new plain tag type of the given ID with no type parameters. Don't
|
|
// use this function in new code; it's a hack to keep things working for now.
|
|
fn mk_plain_tag(ast.def_id tid) -> @ty.t {
|
|
let vec[@ty.t] tps = vec();
|
|
ret ty.plain_ty(ty.ty_tag(tid, tps));
|
|
}
|
|
|
|
|
|
type val_pair_fn = fn(@block_ctxt cx, ValueRef dst, ValueRef src) -> result;
|
|
|
|
type val_and_ty_fn = fn(@block_ctxt cx, ValueRef v, @ty.t t) -> result;
|
|
|
|
type val_pair_and_ty_fn =
|
|
fn(@block_ctxt cx, ValueRef av, ValueRef bv, @ty.t t) -> result;
|
|
|
|
// Iterates through the elements of a structural type.
|
|
fn iter_structural_ty(@block_ctxt cx,
|
|
ValueRef v,
|
|
@ty.t t,
|
|
val_and_ty_fn f)
|
|
-> result {
|
|
fn adaptor_fn(val_and_ty_fn f,
|
|
@block_ctxt cx,
|
|
ValueRef av,
|
|
ValueRef bv,
|
|
@ty.t t) -> result {
|
|
ret f(cx, av, t);
|
|
}
|
|
be iter_structural_ty_full(cx, v, v, t,
|
|
bind adaptor_fn(f, _, _, _, _));
|
|
}
|
|
|
|
|
|
fn iter_structural_ty_full(@block_ctxt cx,
|
|
ValueRef av,
|
|
ValueRef bv,
|
|
@ty.t t,
|
|
val_pair_and_ty_fn f)
|
|
-> result {
|
|
let result r = res(cx, C_nil());
|
|
|
|
fn iter_boxpp(@block_ctxt cx,
|
|
ValueRef box_a_cell,
|
|
ValueRef box_b_cell,
|
|
val_pair_and_ty_fn f) -> result {
|
|
auto box_a_ptr = cx.build.Load(box_a_cell);
|
|
auto box_b_ptr = cx.build.Load(box_b_cell);
|
|
auto tnil = plain_ty(ty.ty_nil);
|
|
auto tbox = ty.plain_box_ty(tnil);
|
|
|
|
auto inner_cx = new_sub_block_ctxt(cx, "iter box");
|
|
auto next_cx = new_sub_block_ctxt(cx, "next");
|
|
auto null_test = cx.build.IsNull(box_a_ptr);
|
|
cx.build.CondBr(null_test, next_cx.llbb, inner_cx.llbb);
|
|
|
|
auto r = f(inner_cx, box_a_ptr, box_b_ptr, tbox);
|
|
r.bcx.build.Br(next_cx.llbb);
|
|
ret res(next_cx, r.val);
|
|
}
|
|
|
|
alt (t.struct) {
|
|
case (ty.ty_tup(?args)) {
|
|
let int i = 0;
|
|
for (ty.mt arg in args) {
|
|
r = GEP_tup_like(r.bcx, t, av, vec(0, i));
|
|
auto elt_a = r.val;
|
|
r = GEP_tup_like(r.bcx, t, bv, vec(0, i));
|
|
auto elt_b = r.val;
|
|
r = f(r.bcx,
|
|
load_scalar_or_boxed(r.bcx, elt_a, arg.ty),
|
|
load_scalar_or_boxed(r.bcx, elt_b, arg.ty),
|
|
arg.ty);
|
|
i += 1;
|
|
}
|
|
}
|
|
case (ty.ty_rec(?fields)) {
|
|
let int i = 0;
|
|
for (ty.field fld in fields) {
|
|
r = GEP_tup_like(r.bcx, t, av, vec(0, i));
|
|
auto llfld_a = r.val;
|
|
r = GEP_tup_like(r.bcx, t, bv, vec(0, i));
|
|
auto llfld_b = r.val;
|
|
r = f(r.bcx,
|
|
load_scalar_or_boxed(r.bcx, llfld_a, fld.mt.ty),
|
|
load_scalar_or_boxed(r.bcx, llfld_b, fld.mt.ty),
|
|
fld.mt.ty);
|
|
i += 1;
|
|
}
|
|
}
|
|
case (ty.ty_tag(?tid, ?tps)) {
|
|
auto variants = tag_variants(cx.fcx.ccx, tid);
|
|
auto n_variants = _vec.len[variant_info](variants);
|
|
|
|
// Cast the tags to types we can GEP into.
|
|
auto lltagty = T_opaque_tag_ptr(cx.fcx.ccx.tn);
|
|
auto av_tag = cx.build.PointerCast(av, lltagty);
|
|
auto bv_tag = cx.build.PointerCast(bv, lltagty);
|
|
|
|
auto lldiscrim_a_ptr = cx.build.GEP(av_tag,
|
|
vec(C_int(0), C_int(0)));
|
|
auto llunion_a_ptr = cx.build.GEP(av_tag,
|
|
vec(C_int(0), C_int(1)));
|
|
auto lldiscrim_a = cx.build.Load(lldiscrim_a_ptr);
|
|
|
|
auto lldiscrim_b_ptr = cx.build.GEP(bv_tag,
|
|
vec(C_int(0), C_int(0)));
|
|
auto llunion_b_ptr = cx.build.GEP(bv_tag,
|
|
vec(C_int(0), C_int(1)));
|
|
auto lldiscrim_b = cx.build.Load(lldiscrim_b_ptr);
|
|
|
|
// NB: we must hit the discriminant first so that structural
|
|
// comparison know not to proceed when the discriminants differ.
|
|
auto bcx = cx;
|
|
bcx = f(bcx, lldiscrim_a, lldiscrim_b,
|
|
plain_ty(ty.ty_int)).bcx;
|
|
|
|
auto unr_cx = new_sub_block_ctxt(bcx, "tag-iter-unr");
|
|
unr_cx.build.Unreachable();
|
|
|
|
auto llswitch = bcx.build.Switch(lldiscrim_a, unr_cx.llbb,
|
|
n_variants);
|
|
|
|
auto next_cx = new_sub_block_ctxt(bcx, "tag-iter-next");
|
|
|
|
auto ty_params = tag_ty_params(bcx.fcx.ccx, tid);
|
|
|
|
auto i = 0u;
|
|
for (variant_info variant in variants) {
|
|
auto variant_cx = new_sub_block_ctxt(bcx,
|
|
"tag-iter-variant-" +
|
|
_uint.to_str(i, 10u));
|
|
llvm.LLVMAddCase(llswitch, C_int(i as int), variant_cx.llbb);
|
|
|
|
if (_vec.len[@ty.t](variant.args) > 0u) {
|
|
// N-ary variant.
|
|
auto fn_ty = variant.ctor_ty;
|
|
alt (fn_ty.struct) {
|
|
case (ty.ty_fn(_, ?args, _)) {
|
|
auto j = 0;
|
|
for (ty.arg a in args) {
|
|
auto v = vec(C_int(0), C_int(j as int));
|
|
|
|
auto rslt = GEP_tag(variant_cx, llunion_a_ptr,
|
|
tid, variant.id, tps, j);
|
|
auto llfldp_a = rslt.val;
|
|
variant_cx = rslt.bcx;
|
|
|
|
rslt = GEP_tag(variant_cx, llunion_b_ptr, tid,
|
|
variant.id, tps, j);
|
|
auto llfldp_b = rslt.val;
|
|
variant_cx = rslt.bcx;
|
|
|
|
auto ty_subst = ty.substitute_ty_params(
|
|
ty_params, tps, a.ty);
|
|
|
|
auto llfld_a =
|
|
load_scalar_or_boxed(variant_cx,
|
|
llfldp_a,
|
|
ty_subst);
|
|
|
|
auto llfld_b =
|
|
load_scalar_or_boxed(variant_cx,
|
|
llfldp_b,
|
|
ty_subst);
|
|
|
|
auto res = f(variant_cx,
|
|
llfld_a, llfld_b, ty_subst);
|
|
variant_cx = res.bcx;
|
|
j += 1;
|
|
}
|
|
}
|
|
case (_) { fail; }
|
|
}
|
|
|
|
variant_cx.build.Br(next_cx.llbb);
|
|
} else {
|
|
// Nullary variant; nothing to do.
|
|
variant_cx.build.Br(next_cx.llbb);
|
|
}
|
|
|
|
i += 1u;
|
|
}
|
|
|
|
ret res(next_cx, C_nil());
|
|
}
|
|
case (ty.ty_fn(_,_,_)) {
|
|
auto box_cell_a =
|
|
cx.build.GEP(av,
|
|
vec(C_int(0),
|
|
C_int(abi.fn_field_box)));
|
|
auto box_cell_b =
|
|
cx.build.GEP(bv,
|
|
vec(C_int(0),
|
|
C_int(abi.fn_field_box)));
|
|
ret iter_boxpp(cx, box_cell_a, box_cell_b, f);
|
|
}
|
|
case (ty.ty_obj(_)) {
|
|
auto box_cell_a =
|
|
cx.build.GEP(av,
|
|
vec(C_int(0),
|
|
C_int(abi.obj_field_box)));
|
|
auto box_cell_b =
|
|
cx.build.GEP(bv,
|
|
vec(C_int(0),
|
|
C_int(abi.obj_field_box)));
|
|
ret iter_boxpp(cx, box_cell_a, box_cell_b, f);
|
|
}
|
|
case (_) {
|
|
cx.fcx.ccx.sess.unimpl("type in iter_structural_ty_full");
|
|
}
|
|
}
|
|
ret r;
|
|
}
|
|
|
|
// Iterates through a pointer range, until the src* hits the src_lim*.
|
|
fn iter_sequence_raw(@block_ctxt cx,
|
|
ValueRef dst, // elt*
|
|
ValueRef src, // elt*
|
|
ValueRef src_lim, // elt*
|
|
ValueRef elt_sz,
|
|
val_pair_fn f) -> result {
|
|
|
|
auto bcx = cx;
|
|
|
|
let ValueRef dst_int = vp2i(bcx, dst);
|
|
let ValueRef src_int = vp2i(bcx, src);
|
|
let ValueRef src_lim_int = vp2i(bcx, src_lim);
|
|
|
|
auto cond_cx = new_scope_block_ctxt(cx, "sequence-iter cond");
|
|
auto body_cx = new_scope_block_ctxt(cx, "sequence-iter body");
|
|
auto next_cx = new_sub_block_ctxt(cx, "next");
|
|
|
|
bcx.build.Br(cond_cx.llbb);
|
|
|
|
let ValueRef dst_curr = cond_cx.build.Phi(T_int(),
|
|
vec(dst_int), vec(bcx.llbb));
|
|
let ValueRef src_curr = cond_cx.build.Phi(T_int(),
|
|
vec(src_int), vec(bcx.llbb));
|
|
|
|
auto end_test = cond_cx.build.ICmp(lib.llvm.LLVMIntULT,
|
|
src_curr, src_lim_int);
|
|
|
|
cond_cx.build.CondBr(end_test, body_cx.llbb, next_cx.llbb);
|
|
|
|
auto dst_curr_ptr = vi2p(body_cx, dst_curr, T_ptr(T_i8()));
|
|
auto src_curr_ptr = vi2p(body_cx, src_curr, T_ptr(T_i8()));
|
|
|
|
auto body_res = f(body_cx, dst_curr_ptr, src_curr_ptr);
|
|
body_cx = body_res.bcx;
|
|
|
|
auto dst_next = body_cx.build.Add(dst_curr, elt_sz);
|
|
auto src_next = body_cx.build.Add(src_curr, elt_sz);
|
|
body_cx.build.Br(cond_cx.llbb);
|
|
|
|
cond_cx.build.AddIncomingToPhi(dst_curr, vec(dst_next),
|
|
vec(body_cx.llbb));
|
|
cond_cx.build.AddIncomingToPhi(src_curr, vec(src_next),
|
|
vec(body_cx.llbb));
|
|
|
|
ret res(next_cx, C_nil());
|
|
}
|
|
|
|
|
|
fn iter_sequence_inner(@block_ctxt cx,
|
|
ValueRef src, // elt*
|
|
ValueRef src_lim, // elt*
|
|
@ty.t elt_ty,
|
|
val_and_ty_fn f) -> result {
|
|
fn adaptor_fn(val_and_ty_fn f,
|
|
@ty.t elt_ty,
|
|
@block_ctxt cx,
|
|
ValueRef dst,
|
|
ValueRef src) -> result {
|
|
auto llptrty;
|
|
if (!ty.type_has_dynamic_size(elt_ty)) {
|
|
auto llty = type_of(cx.fcx.ccx, elt_ty);
|
|
llptrty = T_ptr(llty);
|
|
} else {
|
|
llptrty = T_ptr(T_ptr(T_i8()));
|
|
}
|
|
|
|
auto p = cx.build.PointerCast(src, llptrty);
|
|
ret f(cx, load_scalar_or_boxed(cx, p, elt_ty), elt_ty);
|
|
}
|
|
|
|
auto elt_sz = size_of(cx, elt_ty);
|
|
be iter_sequence_raw(elt_sz.bcx, src, src, src_lim, elt_sz.val,
|
|
bind adaptor_fn(f, elt_ty, _, _, _));
|
|
}
|
|
|
|
|
|
// Iterates through the elements of a vec or str.
|
|
fn iter_sequence(@block_ctxt cx,
|
|
ValueRef v,
|
|
@ty.t t,
|
|
val_and_ty_fn f) -> result {
|
|
|
|
fn iter_sequence_body(@block_ctxt cx,
|
|
ValueRef v,
|
|
@ty.t elt_ty,
|
|
val_and_ty_fn f,
|
|
bool trailing_null) -> result {
|
|
|
|
auto p0 = cx.build.GEP(v, vec(C_int(0),
|
|
C_int(abi.vec_elt_data)));
|
|
auto lenptr = cx.build.GEP(v, vec(C_int(0),
|
|
C_int(abi.vec_elt_fill)));
|
|
|
|
auto llunit_ty;
|
|
if (ty.type_has_dynamic_size(elt_ty)) {
|
|
llunit_ty = T_i8();
|
|
} else {
|
|
llunit_ty = type_of(cx.fcx.ccx, elt_ty);
|
|
}
|
|
|
|
auto bcx = cx;
|
|
|
|
auto len = bcx.build.Load(lenptr);
|
|
if (trailing_null) {
|
|
auto unit_sz = size_of(bcx, elt_ty);
|
|
bcx = unit_sz.bcx;
|
|
len = bcx.build.Sub(len, unit_sz.val);
|
|
}
|
|
|
|
auto p1 = vi2p(bcx, bcx.build.Add(vp2i(bcx, p0), len),
|
|
T_ptr(llunit_ty));
|
|
|
|
ret iter_sequence_inner(cx, p0, p1, elt_ty, f);
|
|
}
|
|
|
|
alt (t.struct) {
|
|
case (ty.ty_vec(?elt)) {
|
|
ret iter_sequence_body(cx, v, elt.ty, f, false);
|
|
}
|
|
case (ty.ty_str) {
|
|
auto et = plain_ty(ty.ty_machine(common.ty_u8));
|
|
ret iter_sequence_body(cx, v, et, f, true);
|
|
}
|
|
case (_) { fail; }
|
|
}
|
|
cx.fcx.ccx.sess.bug("bad type in trans.iter_sequence");
|
|
fail;
|
|
}
|
|
|
|
fn call_tydesc_glue_full(@block_ctxt cx, ValueRef v,
|
|
ValueRef tydesc, int field) {
|
|
auto llrawptr = cx.build.BitCast(v, T_ptr(T_i8()));
|
|
auto lltydescs = cx.build.GEP(tydesc,
|
|
vec(C_int(0),
|
|
C_int(abi.tydesc_field_first_param)));
|
|
lltydescs = cx.build.Load(lltydescs);
|
|
auto llfnptr = cx.build.GEP(tydesc, vec(C_int(0), C_int(field)));
|
|
auto llfn = cx.build.Load(llfnptr);
|
|
|
|
// FIXME: this adjustment has to do with the ridiculous encoding of
|
|
// glue-pointer-constants in the tydesc records: They are tydesc-relative
|
|
// displacements. This is purely for compatibility with rustboot and
|
|
// should go when it is discarded.
|
|
llfn = vi2p(cx, cx.build.Add(vp2i(cx, llfn),
|
|
vp2i(cx, tydesc)),
|
|
val_ty(llfn));
|
|
|
|
cx.build.FastCall(llfn, vec(C_null(T_ptr(T_nil())),
|
|
cx.fcx.lltaskptr,
|
|
C_null(T_ptr(T_nil())),
|
|
lltydescs,
|
|
llrawptr));
|
|
}
|
|
|
|
fn call_tydesc_glue(@block_ctxt cx, ValueRef v, @ty.t t, int field) {
|
|
auto td = get_tydesc(cx, t);
|
|
call_tydesc_glue_full(td.bcx, v, td.val, field);
|
|
}
|
|
|
|
fn take_ty(@block_ctxt cx,
|
|
ValueRef v,
|
|
@ty.t t) -> result {
|
|
if (!ty.type_is_scalar(t)) {
|
|
call_tydesc_glue(cx, v, t, abi.tydesc_field_take_glue_off);
|
|
}
|
|
ret res(cx, C_nil());
|
|
}
|
|
|
|
fn drop_slot(@block_ctxt cx,
|
|
ValueRef slot,
|
|
@ty.t t) -> result {
|
|
auto llptr = load_scalar_or_boxed(cx, slot, t);
|
|
auto re = drop_ty(cx, llptr, t);
|
|
|
|
auto llty = val_ty(slot);
|
|
auto llelemty = lib.llvm.llvm.LLVMGetElementType(llty);
|
|
re.bcx.build.Store(C_null(llelemty), slot);
|
|
ret re;
|
|
}
|
|
|
|
fn drop_ty(@block_ctxt cx,
|
|
ValueRef v,
|
|
@ty.t t) -> result {
|
|
|
|
if (!ty.type_is_scalar(t)) {
|
|
call_tydesc_glue(cx, v, t, abi.tydesc_field_drop_glue_off);
|
|
}
|
|
ret res(cx, C_nil());
|
|
}
|
|
|
|
fn call_memcpy(@block_ctxt cx,
|
|
ValueRef dst,
|
|
ValueRef src,
|
|
ValueRef n_bytes) -> result {
|
|
auto src_ptr = cx.build.PointerCast(src, T_ptr(T_i8()));
|
|
auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8()));
|
|
auto size = cx.build.IntCast(n_bytes, T_int());
|
|
ret res(cx, cx.build.FastCall(cx.fcx.ccx.glues.memcpy_glue,
|
|
vec(dst_ptr, src_ptr, size)));
|
|
}
|
|
|
|
fn call_bzero(@block_ctxt cx,
|
|
ValueRef dst,
|
|
ValueRef n_bytes) -> result {
|
|
auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8()));
|
|
auto size = cx.build.IntCast(n_bytes, T_int());
|
|
ret res(cx, cx.build.FastCall(cx.fcx.ccx.glues.bzero_glue,
|
|
vec(dst_ptr, size)));
|
|
}
|
|
|
|
fn memcpy_ty(@block_ctxt cx,
|
|
ValueRef dst,
|
|
ValueRef src,
|
|
@ty.t t) -> result {
|
|
if (ty.type_has_dynamic_size(t)) {
|
|
auto llszptr = field_of_tydesc(cx, t, abi.tydesc_field_size);
|
|
auto llsz = llszptr.bcx.build.Load(llszptr.val);
|
|
ret call_memcpy(llszptr.bcx, dst, src, llsz);
|
|
|
|
} else {
|
|
ret res(cx, cx.build.Store(cx.build.Load(src), dst));
|
|
}
|
|
}
|
|
|
|
tag copy_action {
|
|
INIT;
|
|
DROP_EXISTING;
|
|
}
|
|
|
|
fn copy_ty(@block_ctxt cx,
|
|
copy_action action,
|
|
ValueRef dst,
|
|
ValueRef src,
|
|
@ty.t t) -> result {
|
|
if (ty.type_is_scalar(t) || ty.type_is_native(t)) {
|
|
ret res(cx, cx.build.Store(src, dst));
|
|
|
|
} else if (ty.type_is_nil(t)) {
|
|
ret res(cx, C_nil());
|
|
|
|
} else if (ty.type_is_boxed(t)) {
|
|
auto r = take_ty(cx, src, t);
|
|
if (action == DROP_EXISTING) {
|
|
r = drop_ty(r.bcx, r.bcx.build.Load(dst), t);
|
|
}
|
|
ret res(r.bcx, r.bcx.build.Store(src, dst));
|
|
|
|
} else if (ty.type_is_structural(t) ||
|
|
ty.type_has_dynamic_size(t)) {
|
|
auto r = take_ty(cx, src, t);
|
|
if (action == DROP_EXISTING) {
|
|
r = drop_ty(r.bcx, dst, t);
|
|
}
|
|
ret memcpy_ty(r.bcx, dst, src, t);
|
|
}
|
|
|
|
cx.fcx.ccx.sess.bug("unexpected type in trans.copy_ty: " +
|
|
ty.ty_to_str(t));
|
|
fail;
|
|
}
|
|
|
|
fn trans_lit(@crate_ctxt cx, &ast.lit lit, &ast.ann ann) -> ValueRef {
|
|
alt (lit.node) {
|
|
case (ast.lit_int(?i)) {
|
|
ret C_int(i);
|
|
}
|
|
case (ast.lit_uint(?u)) {
|
|
ret C_int(u as int);
|
|
}
|
|
case (ast.lit_mach_int(?tm, ?i)) {
|
|
// FIXME: the entire handling of mach types falls apart
|
|
// if target int width is larger than host, at the moment;
|
|
// re-do the mach-int types using 'big' when that works.
|
|
auto t = T_int();
|
|
alt (tm) {
|
|
case (common.ty_u8) { t = T_i8(); }
|
|
case (common.ty_u16) { t = T_i16(); }
|
|
case (common.ty_u32) { t = T_i32(); }
|
|
case (common.ty_u64) { t = T_i64(); }
|
|
|
|
case (common.ty_i8) { t = T_i8(); }
|
|
case (common.ty_i16) { t = T_i16(); }
|
|
case (common.ty_i32) { t = T_i32(); }
|
|
case (common.ty_i64) { t = T_i64(); }
|
|
}
|
|
ret C_integral(i, t);
|
|
}
|
|
case(ast.lit_float(?fs)) {
|
|
ret C_float(fs);
|
|
}
|
|
case(ast.lit_mach_float(?tm, ?s)) {
|
|
auto t = T_float();
|
|
alt(tm) {
|
|
case(common.ty_f32) { t = T_f32(); }
|
|
case(common.ty_f64) { t = T_f64(); }
|
|
}
|
|
ret C_floating(s, t);
|
|
}
|
|
case (ast.lit_char(?c)) {
|
|
ret C_integral(c as int, T_char());
|
|
}
|
|
case (ast.lit_bool(?b)) {
|
|
ret C_bool(b);
|
|
}
|
|
case (ast.lit_nil) {
|
|
ret C_nil();
|
|
}
|
|
case (ast.lit_str(?s)) {
|
|
ret C_str(cx, s);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn target_type(@crate_ctxt cx, @ty.t t) -> @ty.t {
|
|
alt (t.struct) {
|
|
case (ty.ty_int) {
|
|
auto tm = ty.ty_machine(cx.sess.get_targ_cfg().int_type);
|
|
ret @rec(struct=tm with *t);
|
|
}
|
|
case (ty.ty_uint) {
|
|
auto tm = ty.ty_machine(cx.sess.get_targ_cfg().uint_type);
|
|
ret @rec(struct=tm with *t);
|
|
}
|
|
case (_) { /* fall through */ }
|
|
}
|
|
ret t;
|
|
}
|
|
|
|
fn node_ann_type(@crate_ctxt cx, &ast.ann a) -> @ty.t {
|
|
alt (a) {
|
|
case (ast.ann_none) {
|
|
cx.sess.bug("missing type annotation");
|
|
}
|
|
case (ast.ann_type(?t, _, _)) {
|
|
ret target_type(cx, t);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn node_ann_ty_params(&ast.ann a) -> vec[@ty.t] {
|
|
alt (a) {
|
|
case (ast.ann_none) {
|
|
log "missing type annotation";
|
|
fail;
|
|
}
|
|
case (ast.ann_type(_, ?tps_opt, _)) {
|
|
alt (tps_opt) {
|
|
case (none[vec[@ty.t]]) {
|
|
log "type annotation has no ty params";
|
|
fail;
|
|
}
|
|
case (some[vec[@ty.t]](?tps)) { ret tps; }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn node_type(@crate_ctxt cx, &ast.ann a) -> TypeRef {
|
|
ret type_of(cx, node_ann_type(cx, a));
|
|
}
|
|
|
|
fn trans_unary(@block_ctxt cx, ast.unop op,
|
|
@ast.expr e, &ast.ann a) -> result {
|
|
|
|
auto sub = trans_expr(cx, e);
|
|
auto e_ty = ty.expr_ty(e);
|
|
|
|
alt (op) {
|
|
case (ast.bitnot) {
|
|
sub = autoderef(sub.bcx, sub.val, ty.expr_ty(e));
|
|
ret res(sub.bcx, sub.bcx.build.Not(sub.val));
|
|
}
|
|
case (ast.not) {
|
|
sub = autoderef(sub.bcx, sub.val, ty.expr_ty(e));
|
|
ret res(sub.bcx, sub.bcx.build.Not(sub.val));
|
|
}
|
|
case (ast.neg) {
|
|
sub = autoderef(sub.bcx, sub.val, ty.expr_ty(e));
|
|
if(e_ty.struct == ty.ty_float) {
|
|
ret res(sub.bcx, sub.bcx.build.FNeg(sub.val));
|
|
}
|
|
else {
|
|
ret res(sub.bcx, sub.bcx.build.Neg(sub.val));
|
|
}
|
|
}
|
|
case (ast.box) {
|
|
auto e_ty = ty.expr_ty(e);
|
|
auto e_val = sub.val;
|
|
auto box_ty = node_ann_type(sub.bcx.fcx.ccx, a);
|
|
sub = trans_malloc_boxed(sub.bcx, e_ty);
|
|
find_scope_cx(cx).cleanups +=
|
|
vec(clean(bind drop_ty(_, sub.val, box_ty)));
|
|
|
|
auto box = sub.val;
|
|
auto rc = sub.bcx.build.GEP(box,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_refcnt)));
|
|
auto body = sub.bcx.build.GEP(box,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_body)));
|
|
sub.bcx.build.Store(C_int(1), rc);
|
|
|
|
// Cast the body type to the type of the value. This is needed to
|
|
// make tags work, since tags have a different LLVM type depending
|
|
// on whether they're boxed or not.
|
|
if (!ty.type_has_dynamic_size(e_ty)) {
|
|
auto llety = T_ptr(type_of(sub.bcx.fcx.ccx, e_ty));
|
|
body = sub.bcx.build.PointerCast(body, llety);
|
|
}
|
|
|
|
sub = copy_ty(sub.bcx, INIT, body, e_val, e_ty);
|
|
ret res(sub.bcx, box);
|
|
}
|
|
case (ast.deref) {
|
|
auto val = sub.bcx.build.GEP(sub.val,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_body)));
|
|
auto e_ty = node_ann_type(sub.bcx.fcx.ccx, a);
|
|
if (ty.type_is_scalar(e_ty) ||
|
|
ty.type_is_nil(e_ty)) {
|
|
val = sub.bcx.build.Load(val);
|
|
}
|
|
ret res(sub.bcx, val);
|
|
}
|
|
}
|
|
fail;
|
|
}
|
|
|
|
fn trans_compare(@block_ctxt cx0, ast.binop op, @ty.t t0,
|
|
ValueRef lhs0, ValueRef rhs0) -> result {
|
|
|
|
auto cx = cx0;
|
|
|
|
auto lhs_r = autoderef(cx, lhs0, t0);
|
|
auto lhs = lhs_r.val;
|
|
cx = lhs_r.bcx;
|
|
|
|
auto rhs_r = autoderef(cx, rhs0, t0);
|
|
auto rhs = rhs_r.val;
|
|
cx = rhs_r.bcx;
|
|
|
|
auto t = autoderefed_ty(t0);
|
|
|
|
if (ty.type_is_scalar(t)) {
|
|
ret res(cx, trans_scalar_compare(cx, op, t, lhs, rhs));
|
|
|
|
} else if (ty.type_is_structural(t)
|
|
|| ty.type_is_sequence(t)) {
|
|
|
|
auto scx = new_sub_block_ctxt(cx, "structural compare start");
|
|
auto next = new_sub_block_ctxt(cx, "structural compare end");
|
|
cx.build.Br(scx.llbb);
|
|
|
|
/*
|
|
* We're doing lexicographic comparison here. We start with the
|
|
* assumption that the two input elements are equal. Depending on
|
|
* operator, this means that the result is either true or false;
|
|
* equality produces 'true' for ==, <= and >=. It produces 'false' for
|
|
* !=, < and >.
|
|
*
|
|
* We then move one element at a time through the structure checking
|
|
* for pairwise element equality. If we have equality, our assumption
|
|
* about overall sequence equality is not modified, so we have to move
|
|
* to the next element.
|
|
*
|
|
* If we do not have pairwise element equality, we have reached an
|
|
* element that 'decides' the lexicographic comparison. So we exit the
|
|
* loop with a flag that indicates the true/false sense of that
|
|
* decision, by testing the element again with the operator we're
|
|
* interested in.
|
|
*
|
|
* When we're lucky, LLVM should be able to fold some of these two
|
|
* tests together (as they're applied to the same operands and in some
|
|
* cases are sometimes redundant). But we don't bother trying to
|
|
* optimize combinations like that, at this level.
|
|
*/
|
|
|
|
auto flag = alloca(scx, T_i1());
|
|
|
|
if (ty.type_is_sequence(t)) {
|
|
|
|
// If we hit == all the way through the minimum-shared-length
|
|
// section, default to judging the relative sequence lengths.
|
|
auto len_cmp =
|
|
trans_integral_compare(scx, op, plain_ty(ty.ty_uint),
|
|
vec_fill(scx, lhs),
|
|
vec_fill(scx, rhs));
|
|
scx.build.Store(len_cmp, flag);
|
|
|
|
} else {
|
|
auto T = C_integral(1, T_i1());
|
|
auto F = C_integral(0, T_i1());
|
|
|
|
alt (op) {
|
|
// ==, <= and >= default to true if they find == all the way.
|
|
case (ast.eq) { scx.build.Store(T, flag); }
|
|
case (ast.le) { scx.build.Store(T, flag); }
|
|
case (ast.ge) { scx.build.Store(T, flag); }
|
|
case (_) {
|
|
// < > default to false if they find == all the way.
|
|
scx.build.Store(F, flag);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
fn inner(@block_ctxt last_cx,
|
|
bool load_inner,
|
|
ValueRef flag,
|
|
ast.binop op,
|
|
@block_ctxt cx,
|
|
ValueRef av0,
|
|
ValueRef bv0,
|
|
@ty.t t) -> result {
|
|
|
|
auto cnt_cx = new_sub_block_ctxt(cx, "continue comparison");
|
|
auto stop_cx = new_sub_block_ctxt(cx, "stop comparison");
|
|
|
|
auto av = av0;
|
|
auto bv = bv0;
|
|
if (load_inner) {
|
|
av = load_scalar_or_boxed(cx, av, t);
|
|
bv = load_scalar_or_boxed(cx, bv, t);
|
|
}
|
|
|
|
// First 'eq' comparison: if so, continue to next elts.
|
|
auto eq_r = trans_compare(cx, ast.eq, t, av, bv);
|
|
eq_r.bcx.build.CondBr(eq_r.val, cnt_cx.llbb, stop_cx.llbb);
|
|
|
|
// Second 'op' comparison: find out how this elt-pair decides.
|
|
auto stop_r = trans_compare(stop_cx, op, t, av, bv);
|
|
stop_r.bcx.build.Store(stop_r.val, flag);
|
|
stop_r.bcx.build.Br(last_cx.llbb);
|
|
ret res(cnt_cx, C_nil());
|
|
}
|
|
|
|
auto r;
|
|
if (ty.type_is_structural(t)) {
|
|
r = iter_structural_ty_full(scx, lhs, rhs, t,
|
|
bind inner(next, false, flag, op,
|
|
_, _, _, _));
|
|
} else {
|
|
auto lhs_p0 = vec_p0(scx, lhs);
|
|
auto rhs_p0 = vec_p0(scx, rhs);
|
|
auto min_len = umin(scx, vec_fill(scx, lhs), vec_fill(scx, rhs));
|
|
auto rhs_lim = scx.build.GEP(rhs_p0, vec(min_len));
|
|
auto elt_ty = ty.sequence_element_type(t);
|
|
auto elt_llsz_r = size_of(scx, elt_ty);
|
|
scx = elt_llsz_r.bcx;
|
|
r = iter_sequence_raw(scx, lhs, rhs, rhs_lim,
|
|
elt_llsz_r.val,
|
|
bind inner(next, true, flag, op,
|
|
_, _, _, elt_ty));
|
|
}
|
|
|
|
r.bcx.build.Br(next.llbb);
|
|
auto v = next.build.Load(flag);
|
|
ret res(next, v);
|
|
|
|
|
|
} else {
|
|
// FIXME: compare obj, fn by pointer?
|
|
cx.fcx.ccx.sess.unimpl("type in trans_compare");
|
|
ret res(cx, C_bool(false));
|
|
}
|
|
}
|
|
|
|
fn trans_scalar_compare(@block_ctxt cx, ast.binop op, @ty.t t,
|
|
ValueRef lhs, ValueRef rhs) -> ValueRef {
|
|
if (ty.type_is_fp(t)) {
|
|
ret trans_fp_compare(cx, op, t, lhs, rhs);
|
|
} else {
|
|
ret trans_integral_compare(cx, op, t, lhs, rhs);
|
|
}
|
|
}
|
|
|
|
fn trans_fp_compare(@block_ctxt cx, ast.binop op, @ty.t fptype,
|
|
ValueRef lhs, ValueRef rhs) -> ValueRef {
|
|
|
|
auto cmp = lib.llvm.LLVMIntEQ;
|
|
alt (op) {
|
|
// FIXME: possibly use the unordered-or-< predicates here,
|
|
// for now we're only going with ordered-and-< style (no NaNs).
|
|
case (ast.eq) { cmp = lib.llvm.LLVMRealOEQ; }
|
|
case (ast.ne) { cmp = lib.llvm.LLVMRealONE; }
|
|
case (ast.lt) { cmp = lib.llvm.LLVMRealOLT; }
|
|
case (ast.gt) { cmp = lib.llvm.LLVMRealOGT; }
|
|
case (ast.le) { cmp = lib.llvm.LLVMRealOLE; }
|
|
case (ast.ge) { cmp = lib.llvm.LLVMRealOGE; }
|
|
}
|
|
|
|
ret cx.build.FCmp(cmp, lhs, rhs);
|
|
}
|
|
|
|
fn trans_integral_compare(@block_ctxt cx, ast.binop op, @ty.t intype,
|
|
ValueRef lhs, ValueRef rhs) -> ValueRef {
|
|
auto cmp = lib.llvm.LLVMIntEQ;
|
|
alt (op) {
|
|
case (ast.eq) { cmp = lib.llvm.LLVMIntEQ; }
|
|
case (ast.ne) { cmp = lib.llvm.LLVMIntNE; }
|
|
|
|
case (ast.lt) {
|
|
if (ty.type_is_signed(intype)) {
|
|
cmp = lib.llvm.LLVMIntSLT;
|
|
} else {
|
|
cmp = lib.llvm.LLVMIntULT;
|
|
}
|
|
}
|
|
case (ast.le) {
|
|
if (ty.type_is_signed(intype)) {
|
|
cmp = lib.llvm.LLVMIntSLE;
|
|
} else {
|
|
cmp = lib.llvm.LLVMIntULE;
|
|
}
|
|
}
|
|
case (ast.gt) {
|
|
if (ty.type_is_signed(intype)) {
|
|
cmp = lib.llvm.LLVMIntSGT;
|
|
} else {
|
|
cmp = lib.llvm.LLVMIntUGT;
|
|
}
|
|
}
|
|
case (ast.ge) {
|
|
if (ty.type_is_signed(intype)) {
|
|
cmp = lib.llvm.LLVMIntSGE;
|
|
} else {
|
|
cmp = lib.llvm.LLVMIntUGE;
|
|
}
|
|
}
|
|
}
|
|
ret cx.build.ICmp(cmp, lhs, rhs);
|
|
}
|
|
|
|
fn trans_vec_append(@block_ctxt cx, @ty.t t,
|
|
ValueRef lhs, ValueRef rhs) -> result {
|
|
|
|
auto elt_ty = ty.sequence_element_type(t);
|
|
|
|
auto skip_null = C_bool(false);
|
|
alt (t.struct) {
|
|
case (ty.ty_str) { skip_null = C_bool(true); }
|
|
case (_) { }
|
|
}
|
|
|
|
auto bcx = cx;
|
|
|
|
auto llvec_tydesc = get_tydesc(bcx, t);
|
|
bcx = llvec_tydesc.bcx;
|
|
|
|
auto llelt_tydesc = get_tydesc(bcx, elt_ty);
|
|
bcx = llelt_tydesc.bcx;
|
|
|
|
auto dst = bcx.build.PointerCast(lhs, T_ptr(T_opaque_vec_ptr()));
|
|
auto src = bcx.build.PointerCast(rhs, T_opaque_vec_ptr());
|
|
|
|
ret res(bcx, bcx.build.FastCall(cx.fcx.ccx.glues.vec_append_glue,
|
|
vec(cx.fcx.lltaskptr,
|
|
llvec_tydesc.val,
|
|
llelt_tydesc.val,
|
|
dst, src, skip_null)));
|
|
}
|
|
|
|
fn trans_vec_add(@block_ctxt cx, @ty.t t,
|
|
ValueRef lhs, ValueRef rhs) -> result {
|
|
auto r = alloc_ty(cx, t);
|
|
auto tmp = r.val;
|
|
r = copy_ty(r.bcx, INIT, tmp, lhs, t);
|
|
auto bcx = trans_vec_append(r.bcx, t, tmp, rhs).bcx;
|
|
tmp = load_scalar_or_boxed(bcx, tmp, t);
|
|
find_scope_cx(cx).cleanups +=
|
|
vec(clean(bind drop_ty(_, tmp, t)));
|
|
ret res(bcx, tmp);
|
|
}
|
|
|
|
|
|
fn trans_eager_binop(@block_ctxt cx, ast.binop op, @ty.t intype,
|
|
ValueRef lhs, ValueRef rhs) -> result {
|
|
|
|
auto is_float = false;
|
|
alt (intype.struct) {
|
|
case (ty.ty_float) {
|
|
is_float = true;
|
|
}
|
|
case (_) {
|
|
is_float = false;
|
|
}
|
|
}
|
|
|
|
alt (op) {
|
|
case (ast.add) {
|
|
if (ty.type_is_sequence(intype)) {
|
|
ret trans_vec_add(cx, intype, lhs, rhs);
|
|
}
|
|
if (is_float) {
|
|
ret res(cx, cx.build.FAdd(lhs, rhs));
|
|
}
|
|
else {
|
|
ret res(cx, cx.build.Add(lhs, rhs));
|
|
}
|
|
}
|
|
case (ast.sub) {
|
|
if (is_float) {
|
|
ret res(cx, cx.build.FSub(lhs, rhs));
|
|
}
|
|
else {
|
|
ret res(cx, cx.build.Sub(lhs, rhs));
|
|
}
|
|
}
|
|
|
|
case (ast.mul) {
|
|
if (is_float) {
|
|
ret res(cx, cx.build.FMul(lhs, rhs));
|
|
}
|
|
else {
|
|
ret res(cx, cx.build.Mul(lhs, rhs));
|
|
}
|
|
}
|
|
|
|
case (ast.div) {
|
|
if (is_float) {
|
|
ret res(cx, cx.build.FDiv(lhs, rhs));
|
|
}
|
|
if (ty.type_is_signed(intype)) {
|
|
ret res(cx, cx.build.SDiv(lhs, rhs));
|
|
} else {
|
|
ret res(cx, cx.build.UDiv(lhs, rhs));
|
|
}
|
|
}
|
|
case (ast.rem) {
|
|
if (is_float) {
|
|
ret res(cx, cx.build.FRem(lhs, rhs));
|
|
}
|
|
if (ty.type_is_signed(intype)) {
|
|
ret res(cx, cx.build.SRem(lhs, rhs));
|
|
} else {
|
|
ret res(cx, cx.build.URem(lhs, rhs));
|
|
}
|
|
}
|
|
|
|
case (ast.bitor) { ret res(cx, cx.build.Or(lhs, rhs)); }
|
|
case (ast.bitand) { ret res(cx, cx.build.And(lhs, rhs)); }
|
|
case (ast.bitxor) { ret res(cx, cx.build.Xor(lhs, rhs)); }
|
|
case (ast.lsl) { ret res(cx, cx.build.Shl(lhs, rhs)); }
|
|
case (ast.lsr) { ret res(cx, cx.build.LShr(lhs, rhs)); }
|
|
case (ast.asr) { ret res(cx, cx.build.AShr(lhs, rhs)); }
|
|
case (_) {
|
|
ret trans_compare(cx, op, intype, lhs, rhs);
|
|
}
|
|
}
|
|
fail;
|
|
}
|
|
|
|
fn autoderef(@block_ctxt cx, ValueRef v, @ty.t t) -> result {
|
|
let ValueRef v1 = v;
|
|
let @ty.t t1 = t;
|
|
|
|
while (true) {
|
|
alt (t1.struct) {
|
|
case (ty.ty_box(?mt)) {
|
|
auto body = cx.build.GEP(v1,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_body)));
|
|
t1 = mt.ty;
|
|
v1 = load_scalar_or_boxed(cx, body, t1);
|
|
}
|
|
case (_) {
|
|
ret res(cx, v1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn autoderefed_ty(@ty.t t) -> @ty.t {
|
|
let @ty.t t1 = t;
|
|
|
|
while (true) {
|
|
alt (t1.struct) {
|
|
case (ty.ty_box(?mt)) {
|
|
t1 = mt.ty;
|
|
}
|
|
case (_) {
|
|
ret t1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_binary(@block_ctxt cx, ast.binop op,
|
|
@ast.expr a, @ast.expr b) -> result {
|
|
|
|
// First couple cases are lazy:
|
|
|
|
alt (op) {
|
|
case (ast.and) {
|
|
// Lazy-eval and
|
|
auto lhs_res = trans_expr(cx, a);
|
|
lhs_res = autoderef(lhs_res.bcx, lhs_res.val, ty.expr_ty(a));
|
|
|
|
auto rhs_cx = new_scope_block_ctxt(cx, "rhs");
|
|
auto rhs_res = trans_expr(rhs_cx, b);
|
|
rhs_res = autoderef(rhs_res.bcx, rhs_res.val, ty.expr_ty(b));
|
|
|
|
auto lhs_false_cx = new_scope_block_ctxt(cx, "lhs false");
|
|
auto lhs_false_res = res(lhs_false_cx, C_bool(false));
|
|
|
|
lhs_res.bcx.build.CondBr(lhs_res.val,
|
|
rhs_cx.llbb,
|
|
lhs_false_cx.llbb);
|
|
|
|
ret join_results(cx, T_bool(),
|
|
vec(lhs_false_res, rhs_res));
|
|
}
|
|
|
|
case (ast.or) {
|
|
// Lazy-eval or
|
|
auto lhs_res = trans_expr(cx, a);
|
|
lhs_res = autoderef(lhs_res.bcx, lhs_res.val, ty.expr_ty(a));
|
|
|
|
auto rhs_cx = new_scope_block_ctxt(cx, "rhs");
|
|
auto rhs_res = trans_expr(rhs_cx, b);
|
|
rhs_res = autoderef(rhs_res.bcx, rhs_res.val, ty.expr_ty(b));
|
|
|
|
auto lhs_true_cx = new_scope_block_ctxt(cx, "lhs true");
|
|
auto lhs_true_res = res(lhs_true_cx, C_bool(true));
|
|
|
|
lhs_res.bcx.build.CondBr(lhs_res.val,
|
|
lhs_true_cx.llbb,
|
|
rhs_cx.llbb);
|
|
|
|
ret join_results(cx, T_bool(),
|
|
vec(lhs_true_res, rhs_res));
|
|
}
|
|
|
|
case (_) {
|
|
// Remaining cases are eager:
|
|
auto lhs = trans_expr(cx, a);
|
|
auto lhty = ty.expr_ty(a);
|
|
lhs = autoderef(lhs.bcx, lhs.val, lhty);
|
|
auto rhs = trans_expr(lhs.bcx, b);
|
|
auto rhty = ty.expr_ty(b);
|
|
rhs = autoderef(rhs.bcx, rhs.val, rhty);
|
|
ret trans_eager_binop(rhs.bcx, op,
|
|
autoderefed_ty(lhty),
|
|
lhs.val, rhs.val);
|
|
}
|
|
}
|
|
fail;
|
|
}
|
|
|
|
fn join_results(@block_ctxt parent_cx,
|
|
TypeRef t,
|
|
vec[result] ins)
|
|
-> result {
|
|
|
|
let vec[result] live = vec();
|
|
let vec[ValueRef] vals = vec();
|
|
let vec[BasicBlockRef] bbs = vec();
|
|
|
|
for (result r in ins) {
|
|
if (! is_terminated(r.bcx)) {
|
|
live += vec(r);
|
|
vals += vec(r.val);
|
|
bbs += vec(r.bcx.llbb);
|
|
}
|
|
}
|
|
|
|
alt (_vec.len[result](live)) {
|
|
case (0u) {
|
|
// No incoming edges are live, so we're in dead-code-land.
|
|
// Arbitrarily pick the first dead edge, since the caller
|
|
// is just going to propagate it outward.
|
|
check (_vec.len[result](ins) >= 1u);
|
|
ret ins.(0);
|
|
}
|
|
|
|
case (_) { /* fall through */ }
|
|
}
|
|
|
|
// We have >1 incoming edges. Make a join block and br+phi them into it.
|
|
auto join_cx = new_sub_block_ctxt(parent_cx, "join");
|
|
for (result r in live) {
|
|
r.bcx.build.Br(join_cx.llbb);
|
|
}
|
|
auto phi = join_cx.build.Phi(t, vals, bbs);
|
|
ret res(join_cx, phi);
|
|
}
|
|
|
|
fn trans_if(@block_ctxt cx, @ast.expr cond,
|
|
&ast.block thn, &option.t[@ast.expr] els) -> result {
|
|
|
|
auto cond_res = trans_expr(cx, cond);
|
|
|
|
auto then_cx = new_scope_block_ctxt(cx, "then");
|
|
auto then_res = trans_block(then_cx, thn);
|
|
|
|
auto else_cx = new_scope_block_ctxt(cx, "else");
|
|
|
|
auto else_res;
|
|
auto expr_llty;
|
|
alt (els) {
|
|
case (some[@ast.expr](?elexpr)) {
|
|
alt (elexpr.node) {
|
|
case (ast.expr_if(_, _, _, _)) {
|
|
else_res = trans_expr(else_cx, elexpr);
|
|
}
|
|
case (ast.expr_block(?blk, _)) {
|
|
// Calling trans_block directly instead of trans_expr
|
|
// because trans_expr will create another scope block
|
|
// context for the block, but we've already got the
|
|
// 'else' context
|
|
else_res = trans_block(else_cx, blk);
|
|
}
|
|
}
|
|
|
|
// If we have an else expression, then the entire
|
|
// if expression can have a non-nil type.
|
|
// FIXME: This isn't quite right, particularly re: dynamic types
|
|
auto expr_ty = ty.expr_ty(elexpr);
|
|
if (ty.type_has_dynamic_size(expr_ty)) {
|
|
expr_llty = T_typaram_ptr(cx.fcx.ccx.tn);
|
|
} else {
|
|
expr_llty = type_of(else_res.bcx.fcx.ccx, expr_ty);
|
|
if (ty.type_is_structural(expr_ty)) {
|
|
expr_llty = T_ptr(expr_llty);
|
|
}
|
|
}
|
|
}
|
|
case (_) {
|
|
else_res = res(else_cx, C_nil());
|
|
expr_llty = T_nil();
|
|
}
|
|
}
|
|
|
|
cond_res.bcx.build.CondBr(cond_res.val,
|
|
then_cx.llbb,
|
|
else_cx.llbb);
|
|
|
|
ret join_results(cx, expr_llty,
|
|
vec(then_res, else_res));
|
|
}
|
|
|
|
fn trans_for(@block_ctxt cx,
|
|
@ast.decl decl,
|
|
@ast.expr seq,
|
|
&ast.block body) -> result {
|
|
fn inner(@block_ctxt cx,
|
|
@ast.local local, ValueRef curr,
|
|
@ty.t t, ast.block body,
|
|
@block_ctxt outer_next_cx) -> result {
|
|
|
|
auto next_cx = new_sub_block_ctxt(cx, "next");
|
|
auto scope_cx =
|
|
new_loop_scope_block_ctxt(cx, option.some[@block_ctxt](next_cx),
|
|
outer_next_cx, "for loop scope");
|
|
|
|
cx.build.Br(scope_cx.llbb);
|
|
auto local_res = alloc_local(scope_cx, local);
|
|
auto bcx = copy_ty(local_res.bcx, INIT, local_res.val, curr, t).bcx;
|
|
scope_cx.cleanups +=
|
|
vec(clean(bind drop_slot(_, local_res.val, t)));
|
|
bcx = trans_block(bcx, body).bcx;
|
|
bcx.build.Br(next_cx.llbb);
|
|
ret res(next_cx, C_nil());
|
|
}
|
|
|
|
|
|
let @ast.local local;
|
|
alt (decl.node) {
|
|
case (ast.decl_local(?loc)) {
|
|
local = loc;
|
|
}
|
|
}
|
|
|
|
auto next_cx = new_sub_block_ctxt(cx, "next");
|
|
auto seq_ty = ty.expr_ty(seq);
|
|
auto seq_res = trans_expr(cx, seq);
|
|
auto it = iter_sequence(seq_res.bcx, seq_res.val, seq_ty,
|
|
bind inner(_, local, _, _, body, next_cx));
|
|
it.bcx.build.Br(next_cx.llbb);
|
|
ret res(next_cx, it.val);
|
|
}
|
|
|
|
|
|
// Iterator translation
|
|
|
|
// Searches through a block for all references to locals or upvars in this
|
|
// frame and returns the list of definition IDs thus found.
|
|
fn collect_upvars(@block_ctxt cx, &ast.block bloc, &ast.def_id initial_decl)
|
|
-> vec[ast.def_id] {
|
|
type env = @rec(
|
|
mutable vec[ast.def_id] refs,
|
|
hashmap[ast.def_id,()] decls
|
|
);
|
|
|
|
fn fold_expr_path(&env e, &common.span sp, &ast.path p,
|
|
&option.t[ast.def] d, ast.ann a) -> @ast.expr {
|
|
alt (option.get[ast.def](d)) {
|
|
case (ast.def_arg(?did)) { e.refs += vec(did); }
|
|
case (ast.def_local(?did)) { e.refs += vec(did); }
|
|
case (ast.def_upvar(?did)) { e.refs += vec(did); }
|
|
case (_) { /* ignore */ }
|
|
}
|
|
|
|
ret @fold.respan[ast.expr_](sp, ast.expr_path(p, d, a));
|
|
}
|
|
|
|
fn fold_decl_local(&env e, &common.span sp, @ast.local local)
|
|
-> @ast.decl {
|
|
e.decls.insert(local.id, ());
|
|
ret @fold.respan[ast.decl_](sp, ast.decl_local(local));
|
|
}
|
|
|
|
auto fep = fold_expr_path;
|
|
auto fdl = fold_decl_local;
|
|
auto fld = @rec(
|
|
fold_expr_path=fep,
|
|
fold_decl_local=fdl
|
|
with *fold.new_identity_fold[env]()
|
|
);
|
|
|
|
let vec[ast.def_id] refs = vec();
|
|
let hashmap[ast.def_id,()] decls = new_def_hash[()]();
|
|
decls.insert(initial_decl, ());
|
|
let env e = @rec(mutable refs=refs, decls=decls);
|
|
|
|
fold.fold_block[env](e, fld, bloc);
|
|
|
|
// Calculate (refs - decls). This is the set of captured upvars.
|
|
let vec[ast.def_id] result = vec();
|
|
for (ast.def_id ref_id in e.refs) {
|
|
if (!decls.contains_key(ref_id)) {
|
|
result += vec(ref_id);
|
|
}
|
|
}
|
|
|
|
ret result;
|
|
}
|
|
|
|
fn trans_for_each(@block_ctxt cx,
|
|
@ast.decl decl,
|
|
@ast.expr seq,
|
|
&ast.block body) -> result {
|
|
|
|
/*
|
|
* The translation is a little .. complex here. Code like:
|
|
*
|
|
* let ty1 p = ...;
|
|
*
|
|
* let ty1 q = ...;
|
|
*
|
|
* foreach (ty v in foo(a,b)) { body(p,q,v) }
|
|
*
|
|
*
|
|
* Turns into a something like so (C/Rust mishmash):
|
|
*
|
|
* type env = { *ty1 p, *ty2 q, ... };
|
|
*
|
|
* let env e = { &p, &q, ... };
|
|
*
|
|
* fn foreach123_body(env* e, ty v) { body(*(e->p),*(e->q),v) }
|
|
*
|
|
* foo([foreach123_body, env*], a, b);
|
|
*
|
|
*/
|
|
|
|
// Step 1: walk body and figure out which references it makes
|
|
// escape. This could be determined upstream, and probably ought
|
|
// to be so, eventualy. For first cut, skip this. Null env.
|
|
|
|
// FIXME: possibly support alias-mode here?
|
|
auto decl_ty = plain_ty(ty.ty_nil);
|
|
auto decl_id;
|
|
alt (decl.node) {
|
|
case (ast.decl_local(?local)) {
|
|
decl_ty = node_ann_type(cx.fcx.ccx, local.ann);
|
|
decl_id = local.id;
|
|
}
|
|
}
|
|
|
|
auto upvars = collect_upvars(cx, body, decl_id);
|
|
auto upvar_count = _vec.len[ast.def_id](upvars);
|
|
|
|
auto llbindingsptr;
|
|
if (upvar_count > 0u) {
|
|
// Gather up the upvars.
|
|
let vec[ValueRef] llbindings = vec();
|
|
let vec[TypeRef] llbindingtys = vec();
|
|
for (ast.def_id did in upvars) {
|
|
auto llbinding;
|
|
alt (cx.fcx.lllocals.find(did)) {
|
|
case (none[ValueRef]) {
|
|
alt (cx.fcx.llupvars.find(did)) {
|
|
case (none[ValueRef]) {
|
|
llbinding = cx.fcx.llargs.get(did);
|
|
}
|
|
case (some[ValueRef](?llval)) { llbinding = llval; }
|
|
}
|
|
}
|
|
case (some[ValueRef](?llval)) { llbinding = llval; }
|
|
}
|
|
llbindings += vec(llbinding);
|
|
llbindingtys += vec(val_ty(llbinding));
|
|
}
|
|
|
|
// Create an array of bindings and copy in aliases to the upvars.
|
|
llbindingsptr = alloca(cx, T_struct(llbindingtys));
|
|
auto i = 0u;
|
|
while (i < upvar_count) {
|
|
auto llbindingptr = cx.build.GEP(llbindingsptr,
|
|
vec(C_int(0), C_int(i as int)));
|
|
cx.build.Store(llbindings.(i), llbindingptr);
|
|
i += 1u;
|
|
}
|
|
} else {
|
|
// Null bindings.
|
|
llbindingsptr = C_null(T_ptr(T_i8()));
|
|
}
|
|
|
|
// Create an environment and populate it with the bindings.
|
|
auto llenvptrty = T_closure_ptr(cx.fcx.ccx.tn, T_ptr(T_nil()),
|
|
val_ty(llbindingsptr), 0u);
|
|
auto llenvptr = alloca(cx, llvm.LLVMGetElementType(llenvptrty));
|
|
|
|
auto llbindingsptrptr = cx.build.GEP(llenvptr,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_body),
|
|
C_int(2)));
|
|
cx.build.Store(llbindingsptr, llbindingsptrptr);
|
|
|
|
// Step 2: Declare foreach body function.
|
|
|
|
let str s = mangle_name_by_seq(cx.fcx.ccx, "foreach");
|
|
|
|
// The 'env' arg entering the body function is a fake env member (as in
|
|
// the env-part of the normal rust calling convention) that actually
|
|
// points to a stack allocated env in this frame. We bundle that env
|
|
// pointer along with the foreach-body-fn pointer into a 'normal' fn pair
|
|
// and pass it in as a first class fn-arg to the iterator.
|
|
|
|
auto iter_body_llty = type_of_fn_full(cx.fcx.ccx, ast.proto_fn,
|
|
none[TypeRef],
|
|
vec(rec(mode=ast.val, ty=decl_ty)),
|
|
plain_ty(ty.ty_nil), 0u);
|
|
|
|
let ValueRef lliterbody = decl_internal_fastcall_fn(cx.fcx.ccx.llmod,
|
|
s, iter_body_llty);
|
|
|
|
// FIXME: handle ty params properly.
|
|
let vec[ast.ty_param] ty_params = vec();
|
|
|
|
auto fcx = new_fn_ctxt(cx.fcx.ccx, lliterbody);
|
|
auto bcx = new_top_block_ctxt(fcx);
|
|
auto lltop = bcx.llbb;
|
|
|
|
// Populate the upvars from the environment.
|
|
auto llremoteenvptr = bcx.build.PointerCast(fcx.llenv, llenvptrty);
|
|
auto llremotebindingsptrptr = bcx.build.GEP(llremoteenvptr,
|
|
vec(C_int(0), C_int(abi.box_rc_field_body), C_int(2)));
|
|
auto llremotebindingsptr = bcx.build.Load(llremotebindingsptrptr);
|
|
|
|
auto i = 0u;
|
|
while (i < upvar_count) {
|
|
auto upvar_id = upvars.(i);
|
|
auto llupvarptrptr = bcx.build.GEP(llremotebindingsptr,
|
|
vec(C_int(0), C_int(i as int)));
|
|
auto llupvarptr = bcx.build.Load(llupvarptrptr);
|
|
fcx.llupvars.insert(upvar_id, llupvarptr);
|
|
|
|
i += 1u;
|
|
}
|
|
|
|
// Treat the loop variable as an upvar as well. We copy it to an alloca
|
|
// as usual.
|
|
auto lllvar = llvm.LLVMGetParam(fcx.llfn, 3u);
|
|
auto lllvarptr = alloca(bcx, val_ty(lllvar));
|
|
bcx.build.Store(lllvar, lllvarptr);
|
|
fcx.llupvars.insert(decl_id, lllvarptr);
|
|
|
|
auto res = trans_block(bcx, body);
|
|
|
|
// Tie up the llallocas -> lltop edge.
|
|
new_builder(fcx.llallocas).Br(lltop);
|
|
|
|
res.bcx.build.RetVoid();
|
|
|
|
|
|
// Step 3: Call iter passing [lliterbody, llenv], plus other args.
|
|
|
|
alt (seq.node) {
|
|
|
|
case (ast.expr_call(?f, ?args, ?ann)) {
|
|
|
|
auto pair = alloca(cx, T_fn_pair(cx.fcx.ccx.tn,
|
|
iter_body_llty));
|
|
auto code_cell = cx.build.GEP(pair,
|
|
vec(C_int(0),
|
|
C_int(abi.fn_field_code)));
|
|
cx.build.Store(lliterbody, code_cell);
|
|
|
|
auto env_cell = cx.build.GEP(pair, vec(C_int(0),
|
|
C_int(abi.fn_field_box)));
|
|
auto llenvblobptr = cx.build.PointerCast(llenvptr,
|
|
T_opaque_closure_ptr(cx.fcx.ccx.tn));
|
|
cx.build.Store(llenvblobptr, env_cell);
|
|
|
|
// log "lliterbody: " + val_str(cx.fcx.ccx.tn, lliterbody);
|
|
ret trans_call(cx, f,
|
|
some[ValueRef](cx.build.Load(pair)),
|
|
args,
|
|
ann);
|
|
}
|
|
}
|
|
fail;
|
|
}
|
|
|
|
|
|
fn trans_while(@block_ctxt cx, @ast.expr cond,
|
|
&ast.block body) -> result {
|
|
|
|
auto cond_cx = new_scope_block_ctxt(cx, "while cond");
|
|
auto next_cx = new_sub_block_ctxt(cx, "next");
|
|
auto body_cx = new_loop_scope_block_ctxt(cx, option.none[@block_ctxt],
|
|
next_cx, "while loop body");
|
|
|
|
auto body_res = trans_block(body_cx, body);
|
|
auto cond_res = trans_expr(cond_cx, cond);
|
|
|
|
body_res.bcx.build.Br(cond_cx.llbb);
|
|
|
|
auto cond_bcx = trans_block_cleanups(cond_res.bcx, cond_cx);
|
|
cond_bcx.build.CondBr(cond_res.val, body_cx.llbb, next_cx.llbb);
|
|
|
|
cx.build.Br(cond_cx.llbb);
|
|
ret res(next_cx, C_nil());
|
|
}
|
|
|
|
fn trans_do_while(@block_ctxt cx, &ast.block body,
|
|
@ast.expr cond) -> result {
|
|
|
|
auto next_cx = new_sub_block_ctxt(cx, "next");
|
|
auto body_cx = new_loop_scope_block_ctxt(cx, option.none[@block_ctxt],
|
|
next_cx, "do-while loop body");
|
|
|
|
auto body_res = trans_block(body_cx, body);
|
|
auto cond_res = trans_expr(body_res.bcx, cond);
|
|
|
|
cond_res.bcx.build.CondBr(cond_res.val,
|
|
body_cx.llbb,
|
|
next_cx.llbb);
|
|
cx.build.Br(body_cx.llbb);
|
|
ret res(next_cx, body_res.val);
|
|
}
|
|
|
|
// Pattern matching translation
|
|
|
|
fn trans_pat_match(@block_ctxt cx, @ast.pat pat, ValueRef llval,
|
|
@block_ctxt next_cx) -> result {
|
|
alt (pat.node) {
|
|
case (ast.pat_wild(_)) { ret res(cx, llval); }
|
|
case (ast.pat_bind(_, _, _)) { ret res(cx, llval); }
|
|
|
|
case (ast.pat_lit(?lt, ?ann)) {
|
|
auto lllit = trans_lit(cx.fcx.ccx, *lt, ann);
|
|
auto lltype = ty.ann_to_type(ann);
|
|
auto lleq = trans_compare(cx, ast.eq, lltype, llval, lllit);
|
|
|
|
auto matched_cx = new_sub_block_ctxt(lleq.bcx, "matched_cx");
|
|
lleq.bcx.build.CondBr(lleq.val, matched_cx.llbb, next_cx.llbb);
|
|
ret res(matched_cx, llval);
|
|
}
|
|
|
|
case (ast.pat_tag(?id, ?subpats, ?vdef_opt, ?ann)) {
|
|
auto lltagptr = cx.build.PointerCast(llval,
|
|
T_opaque_tag_ptr(cx.fcx.ccx.tn));
|
|
|
|
auto lldiscrimptr = cx.build.GEP(lltagptr,
|
|
vec(C_int(0), C_int(0)));
|
|
auto lldiscrim = cx.build.Load(lldiscrimptr);
|
|
|
|
auto vdef = option.get[ast.variant_def](vdef_opt);
|
|
auto variant_id = vdef._1;
|
|
auto variant_tag = 0;
|
|
|
|
auto variants = tag_variants(cx.fcx.ccx, vdef._0);
|
|
auto i = 0;
|
|
for (variant_info v in variants) {
|
|
auto this_variant_id = v.id;
|
|
if (variant_id._0 == this_variant_id._0 &&
|
|
variant_id._1 == this_variant_id._1) {
|
|
variant_tag = i;
|
|
}
|
|
i += 1;
|
|
}
|
|
|
|
auto matched_cx = new_sub_block_ctxt(cx, "matched_cx");
|
|
|
|
auto lleq = cx.build.ICmp(lib.llvm.LLVMIntEQ, lldiscrim,
|
|
C_int(variant_tag));
|
|
cx.build.CondBr(lleq, matched_cx.llbb, next_cx.llbb);
|
|
|
|
auto ty_params = node_ann_ty_params(ann);
|
|
|
|
if (_vec.len[@ast.pat](subpats) > 0u) {
|
|
auto llblobptr = matched_cx.build.GEP(lltagptr,
|
|
vec(C_int(0), C_int(1)));
|
|
auto i = 0;
|
|
for (@ast.pat subpat in subpats) {
|
|
auto rslt = GEP_tag(matched_cx, llblobptr, vdef._0,
|
|
vdef._1, ty_params, i);
|
|
auto llsubvalptr = rslt.val;
|
|
matched_cx = rslt.bcx;
|
|
|
|
auto llsubval = load_scalar_or_boxed(matched_cx,
|
|
llsubvalptr,
|
|
pat_ty(subpat));
|
|
auto subpat_res = trans_pat_match(matched_cx, subpat,
|
|
llsubval, next_cx);
|
|
matched_cx = subpat_res.bcx;
|
|
}
|
|
}
|
|
|
|
ret res(matched_cx, llval);
|
|
}
|
|
}
|
|
|
|
fail;
|
|
}
|
|
|
|
fn trans_pat_binding(@block_ctxt cx, @ast.pat pat, ValueRef llval)
|
|
-> result {
|
|
alt (pat.node) {
|
|
case (ast.pat_wild(_)) { ret res(cx, llval); }
|
|
case (ast.pat_lit(_, _)) { ret res(cx, llval); }
|
|
case (ast.pat_bind(?id, ?def_id, ?ann)) {
|
|
auto ty = node_ann_type(cx.fcx.ccx, ann);
|
|
|
|
auto rslt = alloc_ty(cx, ty);
|
|
auto dst = rslt.val;
|
|
auto bcx = rslt.bcx;
|
|
|
|
llvm.LLVMSetValueName(dst, _str.buf(id));
|
|
bcx.fcx.lllocals.insert(def_id, dst);
|
|
bcx.cleanups +=
|
|
vec(clean(bind drop_slot(_, dst, ty)));
|
|
|
|
ret copy_ty(bcx, INIT, dst, llval, ty);
|
|
}
|
|
case (ast.pat_tag(_, ?subpats, ?vdef_opt, ?ann)) {
|
|
if (_vec.len[@ast.pat](subpats) == 0u) { ret res(cx, llval); }
|
|
|
|
// Get the appropriate variant for this tag.
|
|
auto vdef = option.get[ast.variant_def](vdef_opt);
|
|
|
|
auto lltagptr = cx.build.PointerCast(llval,
|
|
T_opaque_tag_ptr(cx.fcx.ccx.tn));
|
|
auto llblobptr = cx.build.GEP(lltagptr, vec(C_int(0), C_int(1)));
|
|
|
|
auto ty_param_substs = node_ann_ty_params(ann);
|
|
|
|
auto this_cx = cx;
|
|
auto i = 0;
|
|
for (@ast.pat subpat in subpats) {
|
|
auto rslt = GEP_tag(this_cx, llblobptr, vdef._0, vdef._1,
|
|
ty_param_substs, i);
|
|
this_cx = rslt.bcx;
|
|
auto llsubvalptr = rslt.val;
|
|
|
|
auto llsubval = load_scalar_or_boxed(this_cx, llsubvalptr,
|
|
pat_ty(subpat));
|
|
auto subpat_res = trans_pat_binding(this_cx, subpat,
|
|
llsubval);
|
|
this_cx = subpat_res.bcx;
|
|
i += 1;
|
|
}
|
|
|
|
ret res(this_cx, llval);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_alt(@block_ctxt cx, @ast.expr expr,
|
|
vec[ast.arm] arms, ast.ann ann) -> result {
|
|
auto expr_res = trans_expr(cx, expr);
|
|
|
|
auto this_cx = expr_res.bcx;
|
|
let vec[result] arm_results = vec();
|
|
for (ast.arm arm in arms) {
|
|
auto next_cx = new_sub_block_ctxt(expr_res.bcx, "next");
|
|
auto match_res = trans_pat_match(this_cx, arm.pat, expr_res.val,
|
|
next_cx);
|
|
|
|
auto binding_cx = new_scope_block_ctxt(match_res.bcx, "binding");
|
|
match_res.bcx.build.Br(binding_cx.llbb);
|
|
|
|
auto binding_res = trans_pat_binding(binding_cx, arm.pat,
|
|
expr_res.val);
|
|
|
|
auto block_res = trans_block(binding_res.bcx, arm.block);
|
|
arm_results += vec(block_res);
|
|
|
|
this_cx = next_cx;
|
|
}
|
|
|
|
auto default_cx = this_cx;
|
|
auto default_res = trans_fail(default_cx, expr.span,
|
|
"non-exhaustive match failure");
|
|
|
|
// FIXME: This isn't quite right, particularly re: dynamic types
|
|
auto expr_ty = ty.ann_to_type(ann);
|
|
auto expr_llty;
|
|
if (ty.type_has_dynamic_size(expr_ty)) {
|
|
expr_llty = T_typaram_ptr(cx.fcx.ccx.tn);
|
|
} else {
|
|
expr_llty = type_of(cx.fcx.ccx, expr_ty);
|
|
if (ty.type_is_structural(expr_ty)) {
|
|
expr_llty = T_ptr(expr_llty);
|
|
}
|
|
}
|
|
|
|
ret join_results(cx, expr_llty, arm_results);
|
|
}
|
|
|
|
type generic_info = rec(@ty.t item_type,
|
|
vec[ValueRef] tydescs);
|
|
|
|
type lval_result = rec(result res,
|
|
bool is_mem,
|
|
option.t[generic_info] generic,
|
|
option.t[ValueRef] llobj);
|
|
|
|
fn lval_mem(@block_ctxt cx, ValueRef val) -> lval_result {
|
|
ret rec(res=res(cx, val),
|
|
is_mem=true,
|
|
generic=none[generic_info],
|
|
llobj=none[ValueRef]);
|
|
}
|
|
|
|
fn lval_val(@block_ctxt cx, ValueRef val) -> lval_result {
|
|
ret rec(res=res(cx, val),
|
|
is_mem=false,
|
|
generic=none[generic_info],
|
|
llobj=none[ValueRef]);
|
|
}
|
|
|
|
fn trans_external_path(@block_ctxt cx, ast.def_id did,
|
|
ty.ty_params_opt_and_ty tpt) -> lval_result {
|
|
auto ccx = cx.fcx.ccx;
|
|
auto name = creader.get_symbol(ccx.sess, did);
|
|
auto v = get_extern_const(ccx.externs, ccx.llmod,
|
|
name, type_of_ty_params_opt_and_ty(ccx, tpt));
|
|
ret lval_val(cx, v);
|
|
}
|
|
|
|
fn lval_generic_fn(@block_ctxt cx,
|
|
ty.ty_params_and_ty tpt,
|
|
ast.def_id fn_id,
|
|
&ast.ann ann)
|
|
-> lval_result {
|
|
auto lv;
|
|
if (cx.fcx.ccx.sess.get_targ_crate_num() == fn_id._0) {
|
|
// Internal reference.
|
|
check (cx.fcx.ccx.fn_pairs.contains_key(fn_id));
|
|
lv = lval_val(cx, cx.fcx.ccx.fn_pairs.get(fn_id));
|
|
} else {
|
|
// External reference.
|
|
auto tpot = tup(some[vec[ast.def_id]](tpt._0), tpt._1);
|
|
lv = trans_external_path(cx, fn_id, tpot);
|
|
}
|
|
|
|
auto monoty;
|
|
auto tys;
|
|
alt (ann) {
|
|
case (ast.ann_none) {
|
|
cx.fcx.ccx.sess.bug("no type annotation for path!");
|
|
fail;
|
|
}
|
|
case (ast.ann_type(?monoty_, ?tps, _)) {
|
|
monoty = monoty_;
|
|
tys = option.get[vec[@ty.t]](tps);
|
|
}
|
|
}
|
|
|
|
if (_vec.len[@ty.t](tys) != 0u) {
|
|
auto bcx = cx;
|
|
let vec[ValueRef] tydescs = vec();
|
|
for (@ty.t t in tys) {
|
|
auto td = get_tydesc(bcx, t);
|
|
bcx = td.bcx;
|
|
_vec.push[ValueRef](tydescs, td.val);
|
|
}
|
|
auto gen = rec( item_type = tpt._1,
|
|
tydescs = tydescs );
|
|
lv = rec(res = res(bcx, lv.res.val),
|
|
generic = some[generic_info](gen)
|
|
with lv);
|
|
}
|
|
ret lv;
|
|
}
|
|
|
|
fn trans_path(@block_ctxt cx, &ast.path p, &option.t[ast.def] dopt,
|
|
&ast.ann ann) -> lval_result {
|
|
alt (dopt) {
|
|
case (some[ast.def](?def)) {
|
|
alt (def) {
|
|
case (ast.def_arg(?did)) {
|
|
alt (cx.fcx.llargs.find(did)) {
|
|
case (none[ValueRef]) {
|
|
check (cx.fcx.llupvars.contains_key(did));
|
|
ret lval_mem(cx, cx.fcx.llupvars.get(did));
|
|
}
|
|
case (some[ValueRef](?llval)) {
|
|
ret lval_mem(cx, llval);
|
|
}
|
|
}
|
|
}
|
|
case (ast.def_local(?did)) {
|
|
alt (cx.fcx.lllocals.find(did)) {
|
|
case (none[ValueRef]) {
|
|
check (cx.fcx.llupvars.contains_key(did));
|
|
ret lval_mem(cx, cx.fcx.llupvars.get(did));
|
|
}
|
|
case (some[ValueRef](?llval)) {
|
|
ret lval_mem(cx, llval);
|
|
}
|
|
}
|
|
}
|
|
case (ast.def_binding(?did)) {
|
|
check (cx.fcx.lllocals.contains_key(did));
|
|
ret lval_mem(cx, cx.fcx.lllocals.get(did));
|
|
}
|
|
case (ast.def_obj_field(?did)) {
|
|
check (cx.fcx.llobjfields.contains_key(did));
|
|
ret lval_mem(cx, cx.fcx.llobjfields.get(did));
|
|
}
|
|
case (ast.def_fn(?did)) {
|
|
auto tyt = ty.lookup_generic_item_type(cx.fcx.ccx.sess,
|
|
cx.fcx.ccx.type_cache, did);
|
|
ret lval_generic_fn(cx, tyt, did, ann);
|
|
}
|
|
case (ast.def_obj(?did)) {
|
|
auto tyt = ty.lookup_generic_item_type(cx.fcx.ccx.sess,
|
|
cx.fcx.ccx.type_cache, did);
|
|
ret lval_generic_fn(cx, tyt, did, ann);
|
|
}
|
|
case (ast.def_variant(?tid, ?vid)) {
|
|
// TODO: externals
|
|
if (cx.fcx.ccx.fn_pairs.contains_key(vid)) {
|
|
check (cx.fcx.ccx.items.contains_key(tid));
|
|
auto tag_item = cx.fcx.ccx.items.get(tid);
|
|
auto params = ty.item_ty(tag_item)._0;
|
|
auto fty = plain_ty(ty.ty_nil);
|
|
alt (tag_item.node) {
|
|
case (ast.item_tag(_, ?variants, _, _, _)) {
|
|
for (ast.variant v in variants) {
|
|
if (v.node.id == vid) {
|
|
fty = node_ann_type(cx.fcx.ccx,
|
|
v.node.ann);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ret lval_generic_fn(cx, tup(params, fty), vid, ann);
|
|
} else {
|
|
// Nullary variant.
|
|
auto tag_ty = node_ann_type(cx.fcx.ccx, ann);
|
|
auto lldiscrim_gv = cx.fcx.ccx.discrims.get(vid);
|
|
auto lldiscrim = cx.build.Load(lldiscrim_gv);
|
|
|
|
auto alloc_result = alloc_ty(cx, tag_ty);
|
|
auto lltagblob = alloc_result.val;
|
|
|
|
auto lltagty;
|
|
if (ty.type_has_dynamic_size(tag_ty)) {
|
|
lltagty = T_opaque_tag(cx.fcx.ccx.tn);
|
|
} else {
|
|
lltagty = type_of(cx.fcx.ccx, tag_ty);
|
|
}
|
|
auto lltagptr = alloc_result.bcx.build.PointerCast(
|
|
lltagblob, T_ptr(lltagty));
|
|
|
|
auto lldiscrimptr = alloc_result.bcx.build.GEP(
|
|
lltagptr, vec(C_int(0), C_int(0)));
|
|
alloc_result.bcx.build.Store(lldiscrim, lldiscrimptr);
|
|
|
|
ret lval_val(alloc_result.bcx, lltagptr);
|
|
}
|
|
}
|
|
case (ast.def_const(?did)) {
|
|
// TODO: externals
|
|
check (cx.fcx.ccx.consts.contains_key(did));
|
|
ret lval_mem(cx, cx.fcx.ccx.consts.get(did));
|
|
}
|
|
case (ast.def_native_fn(?did)) {
|
|
auto tyt = ty.lookup_generic_item_type(cx.fcx.ccx.sess,
|
|
cx.fcx.ccx.type_cache, did);
|
|
ret lval_generic_fn(cx, tyt, did, ann);
|
|
}
|
|
case (_) {
|
|
cx.fcx.ccx.sess.unimpl("def variant in trans");
|
|
}
|
|
}
|
|
}
|
|
case (none[ast.def]) {
|
|
cx.fcx.ccx.sess.err("unresolved expr_path in trans");
|
|
}
|
|
}
|
|
fail;
|
|
}
|
|
|
|
fn trans_field(@block_ctxt cx, &ast.span sp, @ast.expr base,
|
|
&ast.ident field, &ast.ann ann) -> lval_result {
|
|
auto r = trans_expr(cx, base);
|
|
auto t = ty.expr_ty(base);
|
|
r = autoderef(r.bcx, r.val, t);
|
|
t = autoderefed_ty(t);
|
|
alt (t.struct) {
|
|
case (ty.ty_tup(_)) {
|
|
let uint ix = ty.field_num(cx.fcx.ccx.sess, sp, field);
|
|
auto v = GEP_tup_like(r.bcx, t, r.val, vec(0, ix as int));
|
|
ret lval_mem(v.bcx, v.val);
|
|
}
|
|
case (ty.ty_rec(?fields)) {
|
|
let uint ix = ty.field_idx(cx.fcx.ccx.sess, sp, field, fields);
|
|
auto v = GEP_tup_like(r.bcx, t, r.val, vec(0, ix as int));
|
|
ret lval_mem(v.bcx, v.val);
|
|
}
|
|
case (ty.ty_obj(?methods)) {
|
|
let uint ix = ty.method_idx(cx.fcx.ccx.sess, sp, field, methods);
|
|
auto vtbl = r.bcx.build.GEP(r.val,
|
|
vec(C_int(0),
|
|
C_int(abi.obj_field_vtbl)));
|
|
vtbl = r.bcx.build.Load(vtbl);
|
|
auto v = r.bcx.build.GEP(vtbl, vec(C_int(0),
|
|
C_int(ix as int)));
|
|
|
|
auto lvo = lval_mem(r.bcx, v);
|
|
ret rec(llobj = some[ValueRef](r.val) with lvo);
|
|
}
|
|
case (_) { cx.fcx.ccx.sess.unimpl("field variant in trans_field"); }
|
|
}
|
|
fail;
|
|
}
|
|
|
|
fn trans_index(@block_ctxt cx, &ast.span sp, @ast.expr base,
|
|
@ast.expr idx, &ast.ann ann) -> lval_result {
|
|
|
|
auto lv = trans_expr(cx, base);
|
|
lv = autoderef(lv.bcx, lv.val, ty.expr_ty(base));
|
|
auto ix = trans_expr(lv.bcx, idx);
|
|
auto v = lv.val;
|
|
auto bcx = ix.bcx;
|
|
|
|
// Cast to an LLVM integer. Rust is less strict than LLVM in this regard.
|
|
auto ix_val;
|
|
auto ix_size = llsize_of_real(cx.fcx.ccx, val_ty(ix.val));
|
|
auto int_size = llsize_of_real(cx.fcx.ccx, T_int());
|
|
if (ix_size < int_size) {
|
|
ix_val = bcx.build.ZExt(ix.val, T_int());
|
|
} else if (ix_size > int_size) {
|
|
ix_val = bcx.build.Trunc(ix.val, T_int());
|
|
} else {
|
|
ix_val = ix.val;
|
|
}
|
|
|
|
auto unit_ty = node_ann_type(cx.fcx.ccx, ann);
|
|
auto unit_sz = size_of(bcx, unit_ty);
|
|
bcx = unit_sz.bcx;
|
|
llvm.LLVMSetValueName(unit_sz.val, _str.buf("unit_sz"));
|
|
|
|
auto scaled_ix = bcx.build.Mul(ix_val, unit_sz.val);
|
|
llvm.LLVMSetValueName(scaled_ix, _str.buf("scaled_ix"));
|
|
|
|
auto lim = bcx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_fill)));
|
|
lim = bcx.build.Load(lim);
|
|
|
|
auto bounds_check = bcx.build.ICmp(lib.llvm.LLVMIntULT,
|
|
scaled_ix, lim);
|
|
|
|
auto fail_cx = new_sub_block_ctxt(bcx, "fail");
|
|
auto next_cx = new_sub_block_ctxt(bcx, "next");
|
|
bcx.build.CondBr(bounds_check, next_cx.llbb, fail_cx.llbb);
|
|
|
|
// fail: bad bounds check.
|
|
auto fail_res = trans_fail(fail_cx, sp, "bounds check");
|
|
|
|
auto body = next_cx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_data)));
|
|
auto elt;
|
|
if (ty.type_has_dynamic_size(unit_ty)) {
|
|
body = next_cx.build.PointerCast(body, T_ptr(T_array(T_i8(), 0u)));
|
|
elt = next_cx.build.GEP(body, vec(C_int(0), scaled_ix));
|
|
} else {
|
|
elt = next_cx.build.GEP(body, vec(C_int(0), ix_val));
|
|
}
|
|
|
|
ret lval_mem(next_cx, elt);
|
|
}
|
|
|
|
// The additional bool returned indicates whether it's mem (that is
|
|
// represented as an alloca or heap, hence needs a 'load' to be used as an
|
|
// immediate).
|
|
|
|
fn trans_lval(@block_ctxt cx, @ast.expr e) -> lval_result {
|
|
alt (e.node) {
|
|
case (ast.expr_path(?p, ?dopt, ?ann)) {
|
|
ret trans_path(cx, p, dopt, ann);
|
|
}
|
|
case (ast.expr_field(?base, ?ident, ?ann)) {
|
|
ret trans_field(cx, e.span, base, ident, ann);
|
|
}
|
|
case (ast.expr_index(?base, ?idx, ?ann)) {
|
|
ret trans_index(cx, e.span, base, idx, ann);
|
|
}
|
|
case (_) { cx.fcx.ccx.sess.unimpl("expr variant in trans_lval"); }
|
|
}
|
|
fail;
|
|
}
|
|
|
|
fn trans_cast(@block_ctxt cx, @ast.expr e, &ast.ann ann) -> result {
|
|
auto e_res = trans_expr(cx, e);
|
|
auto llsrctype = val_ty(e_res.val);
|
|
auto t = node_ann_type(cx.fcx.ccx, ann);
|
|
auto lldsttype = type_of(cx.fcx.ccx, t);
|
|
if (!ty.type_is_fp(t)) {
|
|
// TODO: native-to-native casts
|
|
if (ty.type_is_native(ty.expr_ty(e))) {
|
|
e_res.val = e_res.bcx.build.PtrToInt(e_res.val, lldsttype);
|
|
} else if (ty.type_is_native(t)) {
|
|
e_res.val = e_res.bcx.build.IntToPtr(e_res.val, lldsttype);
|
|
} else if (llvm.LLVMGetIntTypeWidth(lldsttype) >
|
|
llvm.LLVMGetIntTypeWidth(llsrctype)) {
|
|
if (ty.type_is_signed(t)) {
|
|
// Widening signed cast.
|
|
e_res.val =
|
|
e_res.bcx.build.SExtOrBitCast(e_res.val,
|
|
lldsttype);
|
|
} else {
|
|
// Widening unsigned cast.
|
|
e_res.val =
|
|
e_res.bcx.build.ZExtOrBitCast(e_res.val,
|
|
lldsttype);
|
|
}
|
|
} else {
|
|
// Narrowing cast.
|
|
e_res.val =
|
|
e_res.bcx.build.TruncOrBitCast(e_res.val,
|
|
lldsttype);
|
|
}
|
|
} else {
|
|
cx.fcx.ccx.sess.unimpl("fp cast");
|
|
}
|
|
ret e_res;
|
|
}
|
|
|
|
fn trans_bind_thunk(@crate_ctxt cx,
|
|
@ty.t incoming_fty,
|
|
@ty.t outgoing_fty,
|
|
vec[option.t[@ast.expr]] args,
|
|
@ty.t closure_ty,
|
|
vec[@ty.t] bound_tys,
|
|
uint ty_param_count) -> ValueRef {
|
|
// Construct a thunk-call with signature incoming_fty, and that copies
|
|
// args forward into a call to outgoing_fty.
|
|
|
|
let str s = mangle_name_by_seq(cx, "thunk");
|
|
let TypeRef llthunk_ty = get_pair_fn_ty(type_of(cx, incoming_fty));
|
|
let ValueRef llthunk = decl_internal_fastcall_fn(cx.llmod, s, llthunk_ty);
|
|
|
|
auto fcx = new_fn_ctxt(cx, llthunk);
|
|
auto bcx = new_top_block_ctxt(fcx);
|
|
auto lltop = bcx.llbb;
|
|
|
|
auto llclosure_ptr_ty = type_of(cx, ty.plain_box_ty(closure_ty));
|
|
auto llclosure = bcx.build.PointerCast(fcx.llenv, llclosure_ptr_ty);
|
|
|
|
auto lltarget = GEP_tup_like(bcx, closure_ty, llclosure,
|
|
vec(0,
|
|
abi.box_rc_field_body,
|
|
abi.closure_elt_target));
|
|
bcx = lltarget.bcx;
|
|
auto lltargetclosure = bcx.build.GEP(lltarget.val,
|
|
vec(C_int(0),
|
|
C_int(abi.fn_field_box)));
|
|
lltargetclosure = bcx.build.Load(lltargetclosure);
|
|
|
|
auto outgoing_ret_ty = ty.ty_fn_ret(outgoing_fty);
|
|
auto outgoing_args = ty.ty_fn_args(outgoing_fty);
|
|
|
|
auto llretptr = fcx.llretptr;
|
|
if (ty.type_has_dynamic_size(outgoing_ret_ty)) {
|
|
llretptr = bcx.build.PointerCast(llretptr, T_typaram_ptr(cx.tn));
|
|
}
|
|
|
|
let vec[ValueRef] llargs = vec(llretptr,
|
|
fcx.lltaskptr,
|
|
lltargetclosure);
|
|
|
|
// Copy in the type parameters.
|
|
let uint i = 0u;
|
|
while (i < ty_param_count) {
|
|
auto lltyparam_ptr =
|
|
GEP_tup_like(bcx, closure_ty, llclosure,
|
|
vec(0,
|
|
abi.box_rc_field_body,
|
|
abi.closure_elt_ty_params,
|
|
(i as int)));
|
|
bcx = lltyparam_ptr.bcx;
|
|
llargs += vec(bcx.build.Load(lltyparam_ptr.val));
|
|
i += 1u;
|
|
}
|
|
|
|
let uint a = 3u; // retptr, task ptr, env come first
|
|
let int b = 0;
|
|
let uint outgoing_arg_index = 0u;
|
|
let vec[TypeRef] llout_arg_tys =
|
|
type_of_explicit_args(cx, outgoing_args);
|
|
|
|
for (option.t[@ast.expr] arg in args) {
|
|
|
|
auto out_arg = outgoing_args.(outgoing_arg_index);
|
|
auto llout_arg_ty = llout_arg_tys.(outgoing_arg_index);
|
|
|
|
alt (arg) {
|
|
|
|
// Arg provided at binding time; thunk copies it from closure.
|
|
case (some[@ast.expr](_)) {
|
|
auto bound_arg =
|
|
GEP_tup_like(bcx, closure_ty, llclosure,
|
|
vec(0,
|
|
abi.box_rc_field_body,
|
|
abi.closure_elt_bindings,
|
|
b));
|
|
|
|
bcx = bound_arg.bcx;
|
|
auto val = bound_arg.val;
|
|
|
|
if (out_arg.mode == ast.val) {
|
|
val = bcx.build.Load(val);
|
|
} else if (ty.count_ty_params(out_arg.ty) > 0u) {
|
|
check (out_arg.mode == ast.alias);
|
|
val = bcx.build.PointerCast(val, llout_arg_ty);
|
|
}
|
|
|
|
llargs += vec(val);
|
|
b += 1;
|
|
}
|
|
|
|
// Arg will be provided when the thunk is invoked.
|
|
case (none[@ast.expr]) {
|
|
let ValueRef passed_arg = llvm.LLVMGetParam(llthunk, a);
|
|
|
|
if (ty.count_ty_params(out_arg.ty) > 0u) {
|
|
check (out_arg.mode == ast.alias);
|
|
passed_arg = bcx.build.PointerCast(passed_arg,
|
|
llout_arg_ty);
|
|
}
|
|
|
|
llargs += vec(passed_arg);
|
|
a += 1u;
|
|
}
|
|
}
|
|
|
|
outgoing_arg_index += 1u;
|
|
}
|
|
|
|
// FIXME: turn this call + ret into a tail call.
|
|
auto lltargetfn = bcx.build.GEP(lltarget.val,
|
|
vec(C_int(0),
|
|
C_int(abi.fn_field_code)));
|
|
|
|
// Cast the outgoing function to the appropriate type (see the comments in
|
|
// trans_bind below for why this is necessary).
|
|
auto lltargetty = type_of_fn(bcx.fcx.ccx,
|
|
ty.ty_fn_proto(outgoing_fty),
|
|
outgoing_args,
|
|
outgoing_ret_ty,
|
|
ty_param_count);
|
|
lltargetfn = bcx.build.PointerCast(lltargetfn, T_ptr(T_ptr(lltargetty)));
|
|
|
|
lltargetfn = bcx.build.Load(lltargetfn);
|
|
|
|
auto r = bcx.build.FastCall(lltargetfn, llargs);
|
|
bcx.build.RetVoid();
|
|
|
|
// Tie up the llallocas -> lltop edge.
|
|
new_builder(fcx.llallocas).Br(lltop);
|
|
|
|
ret llthunk;
|
|
}
|
|
|
|
fn trans_bind(@block_ctxt cx, @ast.expr f,
|
|
vec[option.t[@ast.expr]] args,
|
|
&ast.ann ann) -> result {
|
|
auto f_res = trans_lval(cx, f);
|
|
if (f_res.is_mem) {
|
|
cx.fcx.ccx.sess.unimpl("re-binding existing function");
|
|
} else {
|
|
let vec[@ast.expr] bound = vec();
|
|
|
|
for (option.t[@ast.expr] argopt in args) {
|
|
alt (argopt) {
|
|
case (none[@ast.expr]) {
|
|
}
|
|
case (some[@ast.expr](?e)) {
|
|
_vec.push[@ast.expr](bound, e);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Figure out which tydescs we need to pass, if any.
|
|
let @ty.t outgoing_fty;
|
|
let vec[ValueRef] lltydescs;
|
|
alt (f_res.generic) {
|
|
case (none[generic_info]) {
|
|
outgoing_fty = ty.expr_ty(f);
|
|
lltydescs = vec();
|
|
}
|
|
case (some[generic_info](?ginfo)) {
|
|
outgoing_fty = ginfo.item_type;
|
|
lltydescs = ginfo.tydescs;
|
|
}
|
|
}
|
|
auto ty_param_count = _vec.len[ValueRef](lltydescs);
|
|
|
|
if (_vec.len[@ast.expr](bound) == 0u && ty_param_count == 0u) {
|
|
// Trivial 'binding': just return the static pair-ptr.
|
|
ret f_res.res;
|
|
} else {
|
|
auto bcx = f_res.res.bcx;
|
|
auto pair_t = node_type(cx.fcx.ccx, ann);
|
|
auto pair_v = alloca(bcx, pair_t);
|
|
|
|
// Translate the bound expressions.
|
|
let vec[@ty.t] bound_tys = vec();
|
|
let vec[ValueRef] bound_vals = vec();
|
|
auto i = 0u;
|
|
for (@ast.expr e in bound) {
|
|
auto arg = trans_expr(bcx, e);
|
|
bcx = arg.bcx;
|
|
|
|
_vec.push[ValueRef](bound_vals, arg.val);
|
|
_vec.push[@ty.t](bound_tys, ty.expr_ty(e));
|
|
|
|
i += 1u;
|
|
}
|
|
|
|
// Synthesize a closure type.
|
|
let @ty.t bindings_ty = ty.plain_tup_ty(bound_tys);
|
|
|
|
// NB: keep this in sync with T_closure_ptr; we're making
|
|
// a ty.t structure that has the same "shape" as the LLVM type
|
|
// it constructs.
|
|
let @ty.t tydesc_ty = plain_ty(ty.ty_type);
|
|
|
|
let vec[@ty.t] captured_tys =
|
|
_vec.init_elt[@ty.t](tydesc_ty, ty_param_count);
|
|
|
|
let vec[@ty.t] closure_tys =
|
|
vec(tydesc_ty,
|
|
outgoing_fty,
|
|
bindings_ty,
|
|
ty.plain_tup_ty(captured_tys));
|
|
|
|
let @ty.t closure_ty = ty.plain_tup_ty(closure_tys);
|
|
|
|
auto r = trans_malloc_boxed(bcx, closure_ty);
|
|
auto box = r.val;
|
|
bcx = r.bcx;
|
|
auto rc = bcx.build.GEP(box,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_refcnt)));
|
|
auto closure =
|
|
bcx.build.GEP(box,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_body)));
|
|
bcx.build.Store(C_int(1), rc);
|
|
|
|
// Store bindings tydesc.
|
|
auto bound_tydesc =
|
|
bcx.build.GEP(closure,
|
|
vec(C_int(0),
|
|
C_int(abi.closure_elt_tydesc)));
|
|
auto bindings_tydesc = get_tydesc(bcx, bindings_ty);
|
|
bcx = bindings_tydesc.bcx;
|
|
bcx.build.Store(bindings_tydesc.val, bound_tydesc);
|
|
|
|
// Determine the LLVM type for the outgoing function type. This
|
|
// may be different from the type returned by trans_malloc_boxed()
|
|
// since we have more information than that function does;
|
|
// specifically, we know how many type descriptors the outgoing
|
|
// function has, which type_of() doesn't, as only we know which
|
|
// item the function refers to.
|
|
auto llfnty = type_of_fn(bcx.fcx.ccx,
|
|
ty.ty_fn_proto(outgoing_fty),
|
|
ty.ty_fn_args(outgoing_fty),
|
|
ty.ty_fn_ret(outgoing_fty),
|
|
ty_param_count);
|
|
auto llclosurety = T_ptr(T_fn_pair(bcx.fcx.ccx.tn, llfnty));
|
|
|
|
// Store thunk-target.
|
|
auto bound_target =
|
|
bcx.build.GEP(closure,
|
|
vec(C_int(0),
|
|
C_int(abi.closure_elt_target)));
|
|
auto src = bcx.build.Load(f_res.res.val);
|
|
bound_target = bcx.build.PointerCast(bound_target, llclosurety);
|
|
bcx.build.Store(src, bound_target);
|
|
|
|
// Copy expr values into boxed bindings.
|
|
i = 0u;
|
|
auto bindings =
|
|
bcx.build.GEP(closure,
|
|
vec(C_int(0),
|
|
C_int(abi.closure_elt_bindings)));
|
|
for (ValueRef v in bound_vals) {
|
|
auto bound = bcx.build.GEP(bindings,
|
|
vec(C_int(0), C_int(i as int)));
|
|
bcx = copy_ty(r.bcx, INIT, bound, v, bound_tys.(i)).bcx;
|
|
i += 1u;
|
|
}
|
|
|
|
// If necessary, copy tydescs describing type parameters into the
|
|
// appropriate slot in the closure.
|
|
alt (f_res.generic) {
|
|
case (none[generic_info]) { /* nothing to do */ }
|
|
case (some[generic_info](?ginfo)) {
|
|
auto ty_params_slot =
|
|
bcx.build.GEP(closure,
|
|
vec(C_int(0),
|
|
C_int(abi.closure_elt_ty_params)));
|
|
auto i = 0;
|
|
for (ValueRef td in ginfo.tydescs) {
|
|
auto ty_param_slot = bcx.build.GEP(ty_params_slot,
|
|
vec(C_int(0),
|
|
C_int(i)));
|
|
bcx.build.Store(td, ty_param_slot);
|
|
i += 1;
|
|
}
|
|
|
|
outgoing_fty = ginfo.item_type;
|
|
}
|
|
}
|
|
|
|
// Make thunk and store thunk-ptr in outer pair's code slot.
|
|
auto pair_code = bcx.build.GEP(pair_v,
|
|
vec(C_int(0),
|
|
C_int(abi.fn_field_code)));
|
|
|
|
let @ty.t pair_ty = node_ann_type(cx.fcx.ccx, ann);
|
|
|
|
let ValueRef llthunk =
|
|
trans_bind_thunk(cx.fcx.ccx, pair_ty, outgoing_fty,
|
|
args, closure_ty, bound_tys,
|
|
ty_param_count);
|
|
|
|
bcx.build.Store(llthunk, pair_code);
|
|
|
|
// Store box ptr in outer pair's box slot.
|
|
auto pair_box = bcx.build.GEP(pair_v,
|
|
vec(C_int(0),
|
|
C_int(abi.fn_field_box)));
|
|
bcx.build.Store
|
|
(bcx.build.PointerCast
|
|
(box,
|
|
T_opaque_closure_ptr(bcx.fcx.ccx.tn)),
|
|
pair_box);
|
|
|
|
find_scope_cx(cx).cleanups +=
|
|
vec(clean(bind drop_slot(_, pair_v, pair_ty)));
|
|
|
|
ret res(bcx, pair_v);
|
|
}
|
|
}
|
|
}
|
|
|
|
// NB: must keep 4 fns in sync:
|
|
//
|
|
// - type_of_fn_full
|
|
// - create_llargs_for_fn_args.
|
|
// - new_fn_ctxt
|
|
// - trans_args
|
|
|
|
fn trans_args(@block_ctxt cx,
|
|
ValueRef llenv,
|
|
option.t[ValueRef] llobj,
|
|
option.t[generic_info] gen,
|
|
option.t[ValueRef] lliterbody,
|
|
&vec[@ast.expr] es,
|
|
@ty.t fn_ty)
|
|
-> tup(@block_ctxt, vec[ValueRef], ValueRef) {
|
|
|
|
let vec[ty.arg] args = ty.ty_fn_args(fn_ty);
|
|
let vec[ValueRef] llargs = vec();
|
|
let vec[ValueRef] lltydescs = vec();
|
|
let @block_ctxt bcx = cx;
|
|
|
|
|
|
// Arg 0: Output pointer.
|
|
auto retty = ty.ty_fn_ret(fn_ty);
|
|
auto llretslot_res = alloc_ty(bcx, retty);
|
|
bcx = llretslot_res.bcx;
|
|
auto llretslot = llretslot_res.val;
|
|
|
|
alt (gen) {
|
|
case (some[generic_info](?g)) {
|
|
lltydescs = g.tydescs;
|
|
args = ty.ty_fn_args(g.item_type);
|
|
retty = ty.ty_fn_ret(g.item_type);
|
|
}
|
|
case (_) {
|
|
}
|
|
}
|
|
if (ty.type_has_dynamic_size(retty)) {
|
|
llargs += vec(bcx.build.PointerCast(llretslot,
|
|
T_typaram_ptr(cx.fcx.ccx.tn)));
|
|
} else if (ty.count_ty_params(retty) != 0u) {
|
|
// It's possible that the callee has some generic-ness somewhere in
|
|
// its return value -- say a method signature within an obj or a fn
|
|
// type deep in a structure -- which the caller has a concrete view
|
|
// of. If so, cast the caller's view of the restlot to the callee's
|
|
// view, for the sake of making a type-compatible call.
|
|
llargs +=
|
|
vec(cx.build.PointerCast(llretslot,
|
|
T_ptr(type_of(bcx.fcx.ccx, retty))));
|
|
} else {
|
|
llargs += vec(llretslot);
|
|
}
|
|
|
|
|
|
// Arg 1: Task pointer.
|
|
llargs += vec(bcx.fcx.lltaskptr);
|
|
|
|
// Arg 2: Env (closure-bindings / self-obj)
|
|
alt (llobj) {
|
|
case (some[ValueRef](?ob)) {
|
|
// Every object is always found in memory,
|
|
// and not-yet-loaded (as part of an lval x.y
|
|
// doted method-call).
|
|
llargs += vec(bcx.build.Load(ob));
|
|
}
|
|
case (_) {
|
|
llargs += vec(llenv);
|
|
}
|
|
}
|
|
|
|
// Args >3: ty_params ...
|
|
llargs += lltydescs;
|
|
|
|
// ... then possibly an lliterbody argument.
|
|
alt (lliterbody) {
|
|
case (none[ValueRef]) {}
|
|
case (some[ValueRef](?lli)) {
|
|
llargs += vec(lli);
|
|
}
|
|
}
|
|
|
|
// ... then explicit args.
|
|
|
|
// First we figure out the caller's view of the types of the arguments.
|
|
// This will be needed if this is a generic call, because the callee has
|
|
// to cast her view of the arguments to the caller's view.
|
|
auto arg_tys = type_of_explicit_args(cx.fcx.ccx, args);
|
|
|
|
auto i = 0u;
|
|
for (@ast.expr e in es) {
|
|
auto mode = args.(i).mode;
|
|
|
|
auto val;
|
|
if (ty.type_is_structural(ty.expr_ty(e))) {
|
|
auto re = trans_expr(bcx, e);
|
|
val = re.val;
|
|
bcx = re.bcx;
|
|
} else if (mode == ast.alias) {
|
|
let lval_result lv;
|
|
if (ty.is_lval(e)) {
|
|
lv = trans_lval(bcx, e);
|
|
} else {
|
|
auto r = trans_expr(bcx, e);
|
|
lv = lval_val(r.bcx, r.val);
|
|
}
|
|
bcx = lv.res.bcx;
|
|
|
|
if (lv.is_mem) {
|
|
val = lv.res.val;
|
|
} else {
|
|
// Non-mem but we're trying to alias; synthesize an
|
|
// alloca, spill to it and pass its address.
|
|
auto llty = val_ty(lv.res.val);
|
|
auto llptr = alloca(lv.res.bcx, llty);
|
|
lv.res.bcx.build.Store(lv.res.val, llptr);
|
|
val = llptr;
|
|
}
|
|
|
|
} else {
|
|
auto re = trans_expr(bcx, e);
|
|
val = re.val;
|
|
bcx = re.bcx;
|
|
}
|
|
|
|
if (ty.count_ty_params(args.(i).ty) > 0u) {
|
|
auto lldestty = arg_tys.(i);
|
|
if (mode == ast.val) {
|
|
// FIXME: we'd prefer to use &&, but rustboot doesn't like it
|
|
if (ty.type_is_structural(ty.expr_ty(e))) {
|
|
lldestty = T_ptr(lldestty);
|
|
}
|
|
}
|
|
|
|
val = bcx.build.PointerCast(val, lldestty);
|
|
}
|
|
|
|
if (mode == ast.val) {
|
|
// FIXME: we'd prefer to use &&, but rustboot doesn't like it
|
|
if (ty.type_is_structural(ty.expr_ty(e))) {
|
|
// Until here we've been treating structures by pointer;
|
|
// we are now passing it as an arg, so need to load it.
|
|
val = bcx.build.Load(val);
|
|
}
|
|
}
|
|
|
|
llargs += vec(val);
|
|
i += 1u;
|
|
}
|
|
|
|
ret tup(bcx, llargs, llretslot);
|
|
}
|
|
|
|
fn trans_call(@block_ctxt cx, @ast.expr f,
|
|
option.t[ValueRef] lliterbody,
|
|
vec[@ast.expr] args,
|
|
&ast.ann ann) -> result {
|
|
auto f_res = trans_lval(cx, f);
|
|
auto faddr = f_res.res.val;
|
|
auto llenv = C_null(T_opaque_closure_ptr(cx.fcx.ccx.tn));
|
|
|
|
alt (f_res.llobj) {
|
|
case (some[ValueRef](_)) {
|
|
// It's a vtbl entry.
|
|
faddr = f_res.res.bcx.build.Load(faddr);
|
|
}
|
|
case (none[ValueRef]) {
|
|
// It's a closure.
|
|
auto bcx = f_res.res.bcx;
|
|
auto pair = faddr;
|
|
faddr = bcx.build.GEP(pair, vec(C_int(0),
|
|
C_int(abi.fn_field_code)));
|
|
faddr = bcx.build.Load(faddr);
|
|
|
|
auto llclosure = bcx.build.GEP(pair,
|
|
vec(C_int(0),
|
|
C_int(abi.fn_field_box)));
|
|
llenv = bcx.build.Load(llclosure);
|
|
}
|
|
}
|
|
auto fn_ty = ty.expr_ty(f);
|
|
auto ret_ty = ty.ann_to_type(ann);
|
|
auto args_res = trans_args(f_res.res.bcx,
|
|
llenv, f_res.llobj,
|
|
f_res.generic,
|
|
lliterbody,
|
|
args, fn_ty);
|
|
|
|
auto bcx = args_res._0;
|
|
auto llargs = args_res._1;
|
|
auto llretslot = args_res._2;
|
|
|
|
/*
|
|
log "calling: " + val_str(cx.fcx.ccx.tn, faddr);
|
|
|
|
for (ValueRef arg in llargs) {
|
|
log "arg: " + val_str(cx.fcx.ccx.tn, arg);
|
|
}
|
|
*/
|
|
|
|
bcx.build.FastCall(faddr, llargs);
|
|
auto retval = C_nil();
|
|
|
|
if (!ty.type_is_nil(ret_ty)) {
|
|
retval = load_scalar_or_boxed(bcx, llretslot, ret_ty);
|
|
// Retval doesn't correspond to anything really tangible in the frame,
|
|
// but it's a ref all the same, so we put a note here to drop it when
|
|
// we're done in this scope.
|
|
find_scope_cx(cx).cleanups +=
|
|
vec(clean(bind drop_ty(_, retval, ret_ty)));
|
|
}
|
|
|
|
ret res(bcx, retval);
|
|
}
|
|
|
|
fn trans_call_self(@block_ctxt cx, @ast.expr f,
|
|
option.t[ValueRef] lliterbody,
|
|
vec[@ast.expr] args,
|
|
&ast.ann ann) -> result {
|
|
log "translating a self-call";
|
|
|
|
auto f_res = trans_lval(cx, f);
|
|
auto faddr = f_res.res.val;
|
|
auto llenv = C_null(T_opaque_closure_ptr(cx.fcx.ccx.tn));
|
|
|
|
alt (f_res.llobj) {
|
|
case (some[ValueRef](_)) {
|
|
// It's a vtbl entry.
|
|
faddr = f_res.res.bcx.build.Load(faddr);
|
|
}
|
|
case (none[ValueRef]) {
|
|
// It's a closure.
|
|
auto bcx = f_res.res.bcx;
|
|
auto pair = faddr;
|
|
faddr = bcx.build.GEP(pair, vec(C_int(0),
|
|
C_int(abi.fn_field_code)));
|
|
faddr = bcx.build.Load(faddr);
|
|
|
|
auto llclosure = bcx.build.GEP(pair,
|
|
vec(C_int(0),
|
|
C_int(abi.fn_field_box)));
|
|
llenv = bcx.build.Load(llclosure);
|
|
}
|
|
}
|
|
auto fn_ty = ty.expr_ty(f);
|
|
auto ret_ty = ty.ann_to_type(ann);
|
|
auto args_res = trans_args(f_res.res.bcx,
|
|
llenv, f_res.llobj,
|
|
f_res.generic,
|
|
lliterbody,
|
|
args, fn_ty);
|
|
|
|
auto bcx = args_res._0;
|
|
auto llargs = args_res._1;
|
|
auto llretslot = args_res._2;
|
|
|
|
/*
|
|
log "calling: " + val_str(cx.fcx.ccx.tn, faddr);
|
|
|
|
for (ValueRef arg in llargs) {
|
|
log "arg: " + val_str(cx.fcx.ccx.tn, arg);
|
|
}
|
|
*/
|
|
|
|
bcx.build.FastCall(faddr, llargs);
|
|
auto retval = C_nil();
|
|
|
|
if (!ty.type_is_nil(ret_ty)) {
|
|
retval = load_scalar_or_boxed(bcx, llretslot, ret_ty);
|
|
// Retval doesn't correspond to anything really tangible in the frame,
|
|
// but it's a ref all the same, so we put a note here to drop it when
|
|
// we're done in this scope.
|
|
find_scope_cx(cx).cleanups +=
|
|
vec(clean(bind drop_ty(_, retval, ret_ty)));
|
|
}
|
|
|
|
ret res(bcx, retval);
|
|
}
|
|
|
|
fn trans_tup(@block_ctxt cx, vec[ast.elt] elts,
|
|
&ast.ann ann) -> result {
|
|
auto bcx = cx;
|
|
auto t = node_ann_type(bcx.fcx.ccx, ann);
|
|
auto tup_res = alloc_ty(bcx, t);
|
|
auto tup_val = tup_res.val;
|
|
bcx = tup_res.bcx;
|
|
|
|
find_scope_cx(cx).cleanups +=
|
|
vec(clean(bind drop_ty(_, tup_val, t)));
|
|
let int i = 0;
|
|
|
|
for (ast.elt e in elts) {
|
|
auto e_ty = ty.expr_ty(e.expr);
|
|
auto src_res = trans_expr(bcx, e.expr);
|
|
bcx = src_res.bcx;
|
|
auto dst_res = GEP_tup_like(bcx, t, tup_val, vec(0, i));
|
|
bcx = dst_res.bcx;
|
|
bcx = copy_ty(src_res.bcx, INIT, dst_res.val, src_res.val, e_ty).bcx;
|
|
i += 1;
|
|
}
|
|
ret res(bcx, tup_val);
|
|
}
|
|
|
|
fn trans_vec(@block_ctxt cx, vec[@ast.expr] args,
|
|
&ast.ann ann) -> result {
|
|
auto t = node_ann_type(cx.fcx.ccx, ann);
|
|
auto unit_ty = t;
|
|
alt (t.struct) {
|
|
case (ty.ty_vec(?mt)) {
|
|
unit_ty = mt.ty;
|
|
}
|
|
case (_) {
|
|
cx.fcx.ccx.sess.bug("non-vec type in trans_vec");
|
|
}
|
|
}
|
|
|
|
auto bcx = cx;
|
|
auto unit_sz = size_of(bcx, unit_ty);
|
|
bcx = unit_sz.bcx;
|
|
auto data_sz = bcx.build.Mul(C_int(_vec.len[@ast.expr](args) as int),
|
|
unit_sz.val);
|
|
|
|
// FIXME: pass tydesc properly.
|
|
auto sub = trans_upcall(bcx, "upcall_new_vec", vec(data_sz, C_int(0)));
|
|
bcx = sub.bcx;
|
|
|
|
auto llty = type_of(bcx.fcx.ccx, t);
|
|
auto vec_val = vi2p(bcx, sub.val, llty);
|
|
find_scope_cx(bcx).cleanups +=
|
|
vec(clean(bind drop_ty(_, vec_val, t)));
|
|
|
|
auto body = bcx.build.GEP(vec_val, vec(C_int(0),
|
|
C_int(abi.vec_elt_data)));
|
|
|
|
auto pseudo_tup_ty =
|
|
ty.plain_tup_ty(_vec.init_elt[@ty.t](unit_ty,
|
|
_vec.len[@ast.expr](args)));
|
|
let int i = 0;
|
|
|
|
for (@ast.expr e in args) {
|
|
auto src_res = trans_expr(bcx, e);
|
|
bcx = src_res.bcx;
|
|
auto dst_res = GEP_tup_like(bcx, pseudo_tup_ty, body, vec(0, i));
|
|
bcx = dst_res.bcx;
|
|
|
|
// Cast the destination type to the source type. This is needed to
|
|
// make tags work, for a subtle combination of reasons:
|
|
//
|
|
// (1) "dst_res" above is derived from "body", which is in turn
|
|
// derived from "vec_val".
|
|
// (2) "vec_val" has the LLVM type "llty".
|
|
// (3) "llty" is the result of calling type_of() on a vector type.
|
|
// (4) For tags, type_of() returns a different type depending on
|
|
// on whether the tag is behind a box or not. Vector types are
|
|
// considered boxes.
|
|
// (5) "src_res" is derived from "unit_ty", which is not behind a box.
|
|
|
|
auto dst_val;
|
|
if (!ty.type_has_dynamic_size(unit_ty)) {
|
|
auto llunit_ty = type_of(cx.fcx.ccx, unit_ty);
|
|
dst_val = bcx.build.PointerCast(dst_res.val, T_ptr(llunit_ty));
|
|
} else {
|
|
dst_val = dst_res.val;
|
|
}
|
|
|
|
bcx = copy_ty(bcx, INIT, dst_val, src_res.val, unit_ty).bcx;
|
|
i += 1;
|
|
}
|
|
auto fill = bcx.build.GEP(vec_val,
|
|
vec(C_int(0), C_int(abi.vec_elt_fill)));
|
|
bcx.build.Store(data_sz, fill);
|
|
|
|
ret res(bcx, vec_val);
|
|
}
|
|
|
|
fn trans_rec(@block_ctxt cx, vec[ast.field] fields,
|
|
option.t[@ast.expr] base, &ast.ann ann) -> result {
|
|
|
|
auto bcx = cx;
|
|
auto t = node_ann_type(bcx.fcx.ccx, ann);
|
|
auto llty = type_of(bcx.fcx.ccx, t);
|
|
auto rec_res = alloc_ty(bcx, t);
|
|
auto rec_val = rec_res.val;
|
|
bcx = rec_res.bcx;
|
|
|
|
find_scope_cx(cx).cleanups +=
|
|
vec(clean(bind drop_ty(_, rec_val, t)));
|
|
let int i = 0;
|
|
|
|
auto base_val = C_nil();
|
|
|
|
alt (base) {
|
|
case (none[@ast.expr]) { }
|
|
case (some[@ast.expr](?bexp)) {
|
|
auto base_res = trans_expr(bcx, bexp);
|
|
bcx = base_res.bcx;
|
|
base_val = base_res.val;
|
|
}
|
|
}
|
|
|
|
let vec[ty.field] ty_fields = vec();
|
|
alt (t.struct) {
|
|
case (ty.ty_rec(?flds)) { ty_fields = flds; }
|
|
}
|
|
|
|
for (ty.field tf in ty_fields) {
|
|
auto e_ty = tf.mt.ty;
|
|
auto dst_res = GEP_tup_like(bcx, t, rec_val, vec(0, i));
|
|
bcx = dst_res.bcx;
|
|
|
|
auto expr_provided = false;
|
|
auto src_res = res(bcx, C_nil());
|
|
|
|
for (ast.field f in fields) {
|
|
if (_str.eq(f.ident, tf.ident)) {
|
|
expr_provided = true;
|
|
src_res = trans_expr(bcx, f.expr);
|
|
}
|
|
}
|
|
if (!expr_provided) {
|
|
src_res = GEP_tup_like(bcx, t, base_val, vec(0, i));
|
|
src_res = res(src_res.bcx,
|
|
load_scalar_or_boxed(bcx, src_res.val, e_ty));
|
|
}
|
|
|
|
bcx = src_res.bcx;
|
|
bcx = copy_ty(bcx, INIT, dst_res.val, src_res.val, e_ty).bcx;
|
|
i += 1;
|
|
}
|
|
ret res(bcx, rec_val);
|
|
}
|
|
|
|
|
|
|
|
fn trans_expr(@block_ctxt cx, @ast.expr e) -> result {
|
|
alt (e.node) {
|
|
case (ast.expr_lit(?lit, ?ann)) {
|
|
ret res(cx, trans_lit(cx.fcx.ccx, *lit, ann));
|
|
}
|
|
|
|
case (ast.expr_unary(?op, ?x, ?ann)) {
|
|
ret trans_unary(cx, op, x, ann);
|
|
}
|
|
|
|
case (ast.expr_binary(?op, ?x, ?y, _)) {
|
|
ret trans_binary(cx, op, x, y);
|
|
}
|
|
|
|
case (ast.expr_if(?cond, ?thn, ?els, _)) {
|
|
ret trans_if(cx, cond, thn, els);
|
|
}
|
|
|
|
case (ast.expr_for(?decl, ?seq, ?body, _)) {
|
|
ret trans_for(cx, decl, seq, body);
|
|
}
|
|
|
|
case (ast.expr_for_each(?decl, ?seq, ?body, _)) {
|
|
ret trans_for_each(cx, decl, seq, body);
|
|
}
|
|
|
|
case (ast.expr_while(?cond, ?body, _)) {
|
|
ret trans_while(cx, cond, body);
|
|
}
|
|
|
|
case (ast.expr_do_while(?body, ?cond, _)) {
|
|
ret trans_do_while(cx, body, cond);
|
|
}
|
|
|
|
case (ast.expr_alt(?expr, ?arms, ?ann)) {
|
|
ret trans_alt(cx, expr, arms, ann);
|
|
}
|
|
|
|
case (ast.expr_block(?blk, _)) {
|
|
auto sub_cx = new_scope_block_ctxt(cx, "block-expr body");
|
|
auto next_cx = new_sub_block_ctxt(cx, "next");
|
|
auto sub = trans_block(sub_cx, blk);
|
|
|
|
cx.build.Br(sub_cx.llbb);
|
|
sub.bcx.build.Br(next_cx.llbb);
|
|
|
|
ret res(next_cx, sub.val);
|
|
}
|
|
|
|
case (ast.expr_assign(?dst, ?src, ?ann)) {
|
|
auto lhs_res = trans_lval(cx, dst);
|
|
check (lhs_res.is_mem);
|
|
auto rhs_res = trans_expr(lhs_res.res.bcx, src);
|
|
auto t = node_ann_type(cx.fcx.ccx, ann);
|
|
// FIXME: calculate copy init-ness in typestate.
|
|
ret copy_ty(rhs_res.bcx, DROP_EXISTING,
|
|
lhs_res.res.val, rhs_res.val, t);
|
|
}
|
|
|
|
case (ast.expr_assign_op(?op, ?dst, ?src, ?ann)) {
|
|
auto t = node_ann_type(cx.fcx.ccx, ann);
|
|
auto lhs_res = trans_lval(cx, dst);
|
|
check (lhs_res.is_mem);
|
|
auto lhs_val = load_scalar_or_boxed(lhs_res.res.bcx,
|
|
lhs_res.res.val, t);
|
|
auto rhs_res = trans_expr(lhs_res.res.bcx, src);
|
|
auto v = trans_eager_binop(rhs_res.bcx, op, t,
|
|
lhs_val, rhs_res.val);
|
|
// FIXME: calculate copy init-ness in typestate.
|
|
ret copy_ty(v.bcx, DROP_EXISTING,
|
|
lhs_res.res.val, v.val, t);
|
|
}
|
|
|
|
case (ast.expr_bind(?f, ?args, ?ann)) {
|
|
ret trans_bind(cx, f, args, ann);
|
|
}
|
|
|
|
case (ast.expr_call(?f, ?args, ?ann)) {
|
|
ret trans_call(cx, f, none[ValueRef], args, ann);
|
|
}
|
|
|
|
case (ast.expr_call_self(?f, ?args, ?ann)) {
|
|
ret trans_call_self(cx, f, none[ValueRef], args, ann);
|
|
}
|
|
|
|
case (ast.expr_cast(?e, _, ?ann)) {
|
|
ret trans_cast(cx, e, ann);
|
|
}
|
|
|
|
case (ast.expr_vec(?args, _, ?ann)) {
|
|
ret trans_vec(cx, args, ann);
|
|
}
|
|
|
|
case (ast.expr_tup(?args, ?ann)) {
|
|
ret trans_tup(cx, args, ann);
|
|
}
|
|
|
|
case (ast.expr_rec(?args, ?base, ?ann)) {
|
|
ret trans_rec(cx, args, base, ann);
|
|
}
|
|
|
|
case (ast.expr_ext(_, _, _, ?expanded, _)) {
|
|
ret trans_expr(cx, expanded);
|
|
}
|
|
|
|
case (ast.expr_fail(_)) {
|
|
ret trans_fail(cx, e.span, "explicit failure");
|
|
}
|
|
|
|
case (ast.expr_log(?a, _)) {
|
|
ret trans_log(cx, a);
|
|
}
|
|
|
|
case (ast.expr_check_expr(?a, _)) {
|
|
ret trans_check_expr(cx, a);
|
|
}
|
|
|
|
case (ast.expr_break(?a)) {
|
|
ret trans_break(cx);
|
|
}
|
|
|
|
case (ast.expr_cont(?a)) {
|
|
ret trans_cont(cx);
|
|
}
|
|
|
|
case (ast.expr_ret(?e, _)) {
|
|
ret trans_ret(cx, e);
|
|
}
|
|
|
|
case (ast.expr_put(?e, _)) {
|
|
ret trans_put(cx, e);
|
|
}
|
|
|
|
case (ast.expr_be(?e, _)) {
|
|
ret trans_be(cx, e);
|
|
}
|
|
|
|
case (ast.expr_port(?ann)) {
|
|
ret trans_port(cx, ann);
|
|
}
|
|
|
|
case (ast.expr_chan(?e, ?ann)) {
|
|
ret trans_chan(cx, e, ann);
|
|
}
|
|
|
|
case (ast.expr_send(?lhs, ?rhs, ?ann)) {
|
|
ret trans_send(cx, lhs, rhs, ann);
|
|
}
|
|
|
|
case (ast.expr_recv(?lhs, ?rhs, ?ann)) {
|
|
ret trans_recv(cx, lhs, rhs, ann);
|
|
}
|
|
|
|
// lval cases fall through to trans_lval and then
|
|
// possibly load the result (if it's non-structural).
|
|
|
|
case (_) {
|
|
auto t = ty.expr_ty(e);
|
|
auto sub = trans_lval(cx, e);
|
|
ret res(sub.res.bcx,
|
|
load_scalar_or_boxed(sub.res.bcx, sub.res.val, t));
|
|
}
|
|
}
|
|
cx.fcx.ccx.sess.unimpl("expr variant in trans_expr");
|
|
fail;
|
|
}
|
|
|
|
// We pass structural values around the compiler "by pointer" and
|
|
// non-structural values (scalars and boxes) "by value". This function selects
|
|
// whether to load a pointer or pass it.
|
|
|
|
fn load_scalar_or_boxed(@block_ctxt cx,
|
|
ValueRef v,
|
|
@ty.t t) -> ValueRef {
|
|
if (ty.type_is_scalar(t) || ty.type_is_boxed(t) || ty.type_is_native(t)) {
|
|
ret cx.build.Load(v);
|
|
} else {
|
|
ret v;
|
|
}
|
|
}
|
|
|
|
fn trans_log(@block_ctxt cx, @ast.expr e) -> result {
|
|
|
|
auto sub = trans_expr(cx, e);
|
|
auto e_ty = ty.expr_ty(e);
|
|
|
|
if (ty.type_is_fp(e_ty)) {
|
|
let TypeRef tr;
|
|
let bool is32bit = false;
|
|
alt (e_ty.struct) {
|
|
case (ty.ty_machine(util.common.ty_f32)) {
|
|
tr = T_f32();
|
|
is32bit = true;
|
|
}
|
|
case (ty.ty_machine(util.common.ty_f64)) {
|
|
tr = T_f64();
|
|
}
|
|
case (_) {
|
|
tr = T_float();
|
|
}
|
|
}
|
|
if (is32bit) {
|
|
ret trans_upcall(sub.bcx,
|
|
"upcall_log_float",
|
|
vec(sub.val));
|
|
} else {
|
|
auto tmp = alloca(sub.bcx, tr);
|
|
sub.bcx.build.Store(sub.val, tmp);
|
|
auto v = vp2i(sub.bcx, tmp);
|
|
ret trans_upcall(sub.bcx,
|
|
"upcall_log_double",
|
|
vec(v));
|
|
}
|
|
}
|
|
|
|
alt (e_ty.struct) {
|
|
case (ty.ty_str) {
|
|
auto v = vp2i(sub.bcx, sub.val);
|
|
ret trans_upcall(sub.bcx,
|
|
"upcall_log_str",
|
|
vec(v));
|
|
}
|
|
case (_) {
|
|
ret trans_upcall(sub.bcx,
|
|
"upcall_log_int",
|
|
vec(sub.val));
|
|
}
|
|
}
|
|
fail;
|
|
}
|
|
|
|
fn trans_check_expr(@block_ctxt cx, @ast.expr e) -> result {
|
|
auto cond_res = trans_expr(cx, e);
|
|
|
|
// FIXME: need pretty-printer.
|
|
auto expr_str = "<expr>";
|
|
auto fail_cx = new_sub_block_ctxt(cx, "fail");
|
|
auto fail_res = trans_fail(fail_cx, e.span, expr_str);
|
|
|
|
auto next_cx = new_sub_block_ctxt(cx, "next");
|
|
cond_res.bcx.build.CondBr(cond_res.val,
|
|
next_cx.llbb,
|
|
fail_cx.llbb);
|
|
ret res(next_cx, C_nil());
|
|
}
|
|
|
|
fn trans_fail(@block_ctxt cx, common.span sp, str fail_str) -> result {
|
|
auto V_fail_str = p2i(C_cstr(cx.fcx.ccx, fail_str));
|
|
auto V_filename = p2i(C_cstr(cx.fcx.ccx, sp.filename));
|
|
auto V_line = sp.lo.line as int;
|
|
auto args = vec(V_fail_str, V_filename, C_int(V_line));
|
|
|
|
auto sub = trans_upcall(cx, "upcall_fail", args);
|
|
sub.bcx.build.Unreachable();
|
|
ret res(sub.bcx, C_nil());
|
|
}
|
|
|
|
fn trans_put(@block_ctxt cx, &option.t[@ast.expr] e) -> result {
|
|
auto llcallee = C_nil();
|
|
auto llenv = C_nil();
|
|
|
|
alt (cx.fcx.lliterbody) {
|
|
case (some[ValueRef](?lli)) {
|
|
auto slot = alloca(cx, val_ty(lli));
|
|
cx.build.Store(lli, slot);
|
|
|
|
llcallee = cx.build.GEP(slot, vec(C_int(0),
|
|
C_int(abi.fn_field_code)));
|
|
llcallee = cx.build.Load(llcallee);
|
|
|
|
llenv = cx.build.GEP(slot, vec(C_int(0),
|
|
C_int(abi.fn_field_box)));
|
|
llenv = cx.build.Load(llenv);
|
|
}
|
|
}
|
|
auto bcx = cx;
|
|
auto dummy_retslot = alloca(bcx, T_nil());
|
|
let vec[ValueRef] llargs = vec(dummy_retslot, cx.fcx.lltaskptr, llenv);
|
|
alt (e) {
|
|
case (none[@ast.expr]) { }
|
|
case (some[@ast.expr](?x)) {
|
|
auto r = trans_expr(bcx, x);
|
|
|
|
auto llarg = r.val;
|
|
bcx = r.bcx;
|
|
if (ty.type_is_structural(ty.expr_ty(x))) {
|
|
// Until here we've been treating structures by pointer; we
|
|
// are now passing it as an arg, so need to load it.
|
|
llarg = bcx.build.Load(llarg);
|
|
}
|
|
|
|
llargs += vec(llarg);
|
|
}
|
|
}
|
|
|
|
ret res(bcx, bcx.build.FastCall(llcallee, llargs));
|
|
}
|
|
|
|
fn trans_break_cont(@block_ctxt cx, bool to_end) -> result {
|
|
auto bcx = cx;
|
|
// Locate closest loop block, outputting cleanup as we go.
|
|
auto cleanup_cx = cx;
|
|
while (true) {
|
|
bcx = trans_block_cleanups(bcx, cleanup_cx);
|
|
alt (cleanup_cx.kind) {
|
|
case (LOOP_SCOPE_BLOCK(?_cont, ?_break)) {
|
|
if (to_end) {
|
|
bcx.build.Br(_break.llbb);
|
|
} else {
|
|
alt (_cont) {
|
|
case (option.some[@block_ctxt](?_cont)) {
|
|
bcx.build.Br(_cont.llbb);
|
|
}
|
|
case (_) {
|
|
bcx.build.Br(cleanup_cx.llbb);
|
|
}
|
|
}
|
|
}
|
|
ret res(new_sub_block_ctxt(cx, "unreachable"), C_nil());
|
|
}
|
|
case (_) {
|
|
alt (cleanup_cx.parent) {
|
|
case (parent_some(?cx)) { cleanup_cx = cx; }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ret res(cx, C_nil()); // Never reached. Won't compile otherwise.
|
|
}
|
|
|
|
fn trans_break(@block_ctxt cx) -> result {
|
|
ret trans_break_cont(cx, true);
|
|
}
|
|
|
|
fn trans_cont(@block_ctxt cx) -> result {
|
|
ret trans_break_cont(cx, false);
|
|
}
|
|
|
|
|
|
fn trans_ret(@block_ctxt cx, &option.t[@ast.expr] e) -> result {
|
|
auto bcx = cx;
|
|
auto val = C_nil();
|
|
|
|
alt (e) {
|
|
case (some[@ast.expr](?x)) {
|
|
auto t = ty.expr_ty(x);
|
|
auto r = trans_expr(cx, x);
|
|
bcx = r.bcx;
|
|
val = r.val;
|
|
bcx = copy_ty(bcx, INIT, cx.fcx.llretptr, val, t).bcx;
|
|
}
|
|
case (_) { /* fall through */ }
|
|
}
|
|
|
|
// Run all cleanups and back out.
|
|
let bool more_cleanups = true;
|
|
auto cleanup_cx = cx;
|
|
while (more_cleanups) {
|
|
bcx = trans_block_cleanups(bcx, cleanup_cx);
|
|
alt (cleanup_cx.parent) {
|
|
case (parent_some(?b)) {
|
|
cleanup_cx = b;
|
|
}
|
|
case (parent_none) {
|
|
more_cleanups = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
bcx.build.RetVoid();
|
|
ret res(bcx, C_nil());
|
|
}
|
|
|
|
fn trans_be(@block_ctxt cx, @ast.expr e) -> result {
|
|
// FIXME: This should be a typestate precondition
|
|
check (ast.is_call_expr(e));
|
|
// FIXME: Turn this into a real tail call once
|
|
// calling convention issues are settled
|
|
ret trans_ret(cx, some(e));
|
|
}
|
|
|
|
fn trans_port(@block_ctxt cx, ast.ann ann) -> result {
|
|
|
|
auto t = node_ann_type(cx.fcx.ccx, ann);
|
|
auto unit_ty;
|
|
alt (t.struct) {
|
|
case (ty.ty_port(?t)) {
|
|
unit_ty = t;
|
|
}
|
|
case (_) {
|
|
cx.fcx.ccx.sess.bug("non-port type in trans_port");
|
|
fail;
|
|
}
|
|
}
|
|
|
|
auto llunit_ty = type_of(cx.fcx.ccx, unit_ty);
|
|
|
|
auto bcx = cx;
|
|
auto unit_sz = size_of(bcx, unit_ty);
|
|
bcx = unit_sz.bcx;
|
|
auto sub = trans_upcall(bcx, "upcall_new_port", vec(unit_sz.val));
|
|
bcx = sub.bcx;
|
|
auto llty = type_of(cx.fcx.ccx, t);
|
|
auto port_val = vi2p(bcx, sub.val, llty);
|
|
auto dropref = clean(bind drop_ty(_, port_val, t));
|
|
find_scope_cx(bcx).cleanups += vec(dropref);
|
|
|
|
ret res(bcx, port_val);
|
|
}
|
|
|
|
fn trans_chan(@block_ctxt cx, @ast.expr e, ast.ann ann) -> result {
|
|
|
|
auto bcx = cx;
|
|
auto prt = trans_expr(bcx, e);
|
|
bcx = prt.bcx;
|
|
|
|
auto prt_val = vp2i(bcx, prt.val);
|
|
auto sub = trans_upcall(bcx, "upcall_new_chan", vec(prt_val));
|
|
bcx = sub.bcx;
|
|
|
|
auto chan_ty = node_ann_type(bcx.fcx.ccx, ann);
|
|
auto chan_llty = type_of(bcx.fcx.ccx, chan_ty);
|
|
auto chan_val = vi2p(bcx, sub.val, chan_llty);
|
|
auto dropref = clean(bind drop_ty(_, chan_val, chan_ty));
|
|
find_scope_cx(bcx).cleanups += vec(dropref);
|
|
|
|
ret res(bcx, chan_val);
|
|
}
|
|
|
|
fn trans_send(@block_ctxt cx, @ast.expr lhs, @ast.expr rhs,
|
|
ast.ann ann) -> result {
|
|
|
|
auto bcx = cx;
|
|
auto chn = trans_expr(bcx, lhs);
|
|
bcx = chn.bcx;
|
|
auto data = trans_expr(bcx, rhs);
|
|
bcx = data.bcx;
|
|
|
|
auto chan_ty = node_ann_type(cx.fcx.ccx, ann);
|
|
auto unit_ty;
|
|
alt (chan_ty.struct) {
|
|
case (ty.ty_chan(?t)) {
|
|
unit_ty = t;
|
|
}
|
|
case (_) {
|
|
bcx.fcx.ccx.sess.bug("non-chan type in trans_send");
|
|
fail;
|
|
}
|
|
}
|
|
|
|
auto data_alloc = alloc_ty(bcx, unit_ty);
|
|
bcx = data_alloc.bcx;
|
|
auto data_tmp = copy_ty(bcx, INIT, data_alloc.val, data.val, unit_ty);
|
|
bcx = data_tmp.bcx;
|
|
|
|
find_scope_cx(bcx).cleanups +=
|
|
vec(clean(bind drop_ty(_, data_alloc.val, unit_ty)));
|
|
|
|
auto sub = trans_upcall(bcx, "upcall_send",
|
|
vec(vp2i(bcx, chn.val),
|
|
vp2i(bcx, data_alloc.val)));
|
|
bcx = sub.bcx;
|
|
|
|
ret res(bcx, chn.val);
|
|
}
|
|
|
|
fn trans_recv(@block_ctxt cx, @ast.expr lhs, @ast.expr rhs,
|
|
ast.ann ann) -> result {
|
|
|
|
auto bcx = cx;
|
|
auto data = trans_lval(bcx, lhs);
|
|
check (data.is_mem);
|
|
bcx = data.res.bcx;
|
|
auto unit_ty = node_ann_type(bcx.fcx.ccx, ann);
|
|
|
|
// FIXME: calculate copy init-ness in typestate.
|
|
ret recv_val(bcx, data.res.val, rhs, unit_ty, DROP_EXISTING);
|
|
}
|
|
|
|
fn recv_val(@block_ctxt cx, ValueRef lhs, @ast.expr rhs,
|
|
@ty.t unit_ty, copy_action action) -> result {
|
|
|
|
auto bcx = cx;
|
|
auto prt = trans_expr(bcx, rhs);
|
|
bcx = prt.bcx;
|
|
|
|
auto sub = trans_upcall(bcx, "upcall_recv",
|
|
vec(vp2i(bcx, lhs),
|
|
vp2i(bcx, prt.val)));
|
|
bcx = sub.bcx;
|
|
|
|
auto data_load = load_scalar_or_boxed(bcx, lhs, unit_ty);
|
|
auto cp = copy_ty(bcx, action, lhs, data_load, unit_ty);
|
|
bcx = cp.bcx;
|
|
|
|
// TODO: Any cleanup need to be done here?
|
|
|
|
ret res(bcx, lhs);
|
|
}
|
|
|
|
fn init_local(@block_ctxt cx, @ast.local local) -> result {
|
|
|
|
// Make a note to drop this slot on the way out.
|
|
check (cx.fcx.lllocals.contains_key(local.id));
|
|
auto llptr = cx.fcx.lllocals.get(local.id);
|
|
auto ty = node_ann_type(cx.fcx.ccx, local.ann);
|
|
auto bcx = cx;
|
|
|
|
find_scope_cx(cx).cleanups +=
|
|
vec(clean(bind drop_slot(_, llptr, ty)));
|
|
|
|
alt (local.init) {
|
|
case (some[ast.initializer](?init)) {
|
|
alt (init.op) {
|
|
case (ast.init_assign) {
|
|
auto sub = trans_expr(bcx, init.expr);
|
|
bcx = copy_ty(sub.bcx, INIT, llptr, sub.val, ty).bcx;
|
|
}
|
|
case (ast.init_recv) {
|
|
bcx = recv_val(bcx, llptr, init.expr, ty, INIT).bcx;
|
|
}
|
|
}
|
|
}
|
|
case (_) {
|
|
if (middle.ty.type_has_dynamic_size(ty)) {
|
|
auto llsz = size_of(bcx, ty);
|
|
bcx = call_bzero(llsz.bcx, llptr, llsz.val).bcx;
|
|
|
|
} else {
|
|
auto llty = type_of(bcx.fcx.ccx, ty);
|
|
auto null = lib.llvm.llvm.LLVMConstNull(llty);
|
|
bcx.build.Store(null, llptr);
|
|
}
|
|
}
|
|
}
|
|
ret res(bcx, llptr);
|
|
}
|
|
|
|
fn trans_stmt(@block_ctxt cx, &ast.stmt s) -> result {
|
|
auto bcx = cx;
|
|
alt (s.node) {
|
|
case (ast.stmt_expr(?e)) {
|
|
bcx = trans_expr(cx, e).bcx;
|
|
}
|
|
|
|
case (ast.stmt_decl(?d)) {
|
|
alt (d.node) {
|
|
case (ast.decl_local(?local)) {
|
|
bcx = init_local(bcx, local).bcx;
|
|
}
|
|
case (ast.decl_item(?i)) {
|
|
trans_item(cx.fcx.ccx, *i);
|
|
}
|
|
}
|
|
}
|
|
case (_) {
|
|
cx.fcx.ccx.sess.unimpl("stmt variant");
|
|
}
|
|
}
|
|
ret res(bcx, C_nil());
|
|
}
|
|
|
|
fn new_builder(BasicBlockRef llbb) -> builder {
|
|
let BuilderRef llbuild = llvm.LLVMCreateBuilder();
|
|
llvm.LLVMPositionBuilderAtEnd(llbuild, llbb);
|
|
ret builder(llbuild);
|
|
}
|
|
|
|
// You probably don't want to use this one. See the
|
|
// next three functions instead.
|
|
fn new_block_ctxt(@fn_ctxt cx, block_parent parent,
|
|
block_kind kind,
|
|
str name) -> @block_ctxt {
|
|
let vec[cleanup] cleanups = vec();
|
|
let BasicBlockRef llbb =
|
|
llvm.LLVMAppendBasicBlock(cx.llfn,
|
|
_str.buf(cx.ccx.names.next(name)));
|
|
|
|
ret @rec(llbb=llbb,
|
|
build=new_builder(llbb),
|
|
parent=parent,
|
|
kind=kind,
|
|
mutable cleanups=cleanups,
|
|
fcx=cx);
|
|
}
|
|
|
|
// Use this when you're at the top block of a function or the like.
|
|
fn new_top_block_ctxt(@fn_ctxt fcx) -> @block_ctxt {
|
|
ret new_block_ctxt(fcx, parent_none, SCOPE_BLOCK,
|
|
"function top level");
|
|
}
|
|
|
|
// Use this when you're at a curly-brace or similar lexical scope.
|
|
fn new_scope_block_ctxt(@block_ctxt bcx, str n) -> @block_ctxt {
|
|
ret new_block_ctxt(bcx.fcx, parent_some(bcx), SCOPE_BLOCK, n);
|
|
}
|
|
|
|
fn new_loop_scope_block_ctxt(@block_ctxt bcx, option.t[@block_ctxt] _cont,
|
|
@block_ctxt _break, str n) -> @block_ctxt {
|
|
ret new_block_ctxt(bcx.fcx, parent_some(bcx),
|
|
LOOP_SCOPE_BLOCK(_cont, _break), n);
|
|
}
|
|
|
|
// Use this when you're making a general CFG BB within a scope.
|
|
fn new_sub_block_ctxt(@block_ctxt bcx, str n) -> @block_ctxt {
|
|
ret new_block_ctxt(bcx.fcx, parent_some(bcx), NON_SCOPE_BLOCK, n);
|
|
}
|
|
|
|
|
|
fn trans_block_cleanups(@block_ctxt cx,
|
|
@block_ctxt cleanup_cx) -> @block_ctxt {
|
|
auto bcx = cx;
|
|
|
|
if (cleanup_cx.kind == NON_SCOPE_BLOCK) {
|
|
check (_vec.len[cleanup](cleanup_cx.cleanups) == 0u);
|
|
}
|
|
|
|
auto i = _vec.len[cleanup](cleanup_cx.cleanups);
|
|
while (i > 0u) {
|
|
i -= 1u;
|
|
auto c = cleanup_cx.cleanups.(i);
|
|
alt (c) {
|
|
case (clean(?cfn)) {
|
|
bcx = cfn(bcx).bcx;
|
|
}
|
|
}
|
|
}
|
|
ret bcx;
|
|
}
|
|
|
|
iter block_locals(&ast.block b) -> @ast.local {
|
|
// FIXME: putting from inside an iter block doesn't work, so we can't
|
|
// use the index here.
|
|
for (@ast.stmt s in b.node.stmts) {
|
|
alt (s.node) {
|
|
case (ast.stmt_decl(?d)) {
|
|
alt (d.node) {
|
|
case (ast.decl_local(?local)) {
|
|
put local;
|
|
}
|
|
case (_) { /* fall through */ }
|
|
}
|
|
}
|
|
case (_) { /* fall through */ }
|
|
}
|
|
}
|
|
}
|
|
|
|
fn llallocas_block_ctxt(@fn_ctxt fcx) -> @block_ctxt {
|
|
let vec[cleanup] cleanups = vec();
|
|
ret @rec(llbb=fcx.llallocas,
|
|
build=new_builder(fcx.llallocas),
|
|
parent=parent_none,
|
|
kind=SCOPE_BLOCK,
|
|
mutable cleanups=cleanups,
|
|
fcx=fcx);
|
|
}
|
|
|
|
fn alloc_ty(@block_ctxt cx, @ty.t t) -> result {
|
|
auto val = C_int(0);
|
|
if (ty.type_has_dynamic_size(t)) {
|
|
|
|
// NB: we have to run this particular 'size_of' in a
|
|
// block_ctxt built on the llallocas block for the fn,
|
|
// so that the size dominates the array_alloca that
|
|
// comes next.
|
|
|
|
auto n = size_of(llallocas_block_ctxt(cx.fcx), t);
|
|
cx.fcx.llallocas = n.bcx.llbb;
|
|
val = array_alloca(cx, T_i8(), n.val);
|
|
} else {
|
|
val = alloca(cx, type_of(cx.fcx.ccx, t));
|
|
}
|
|
// NB: since we've pushed all size calculations in this
|
|
// function up to the alloca block, we actually return the
|
|
// block passed into us unmodified; it doesn't really
|
|
// have to be passed-and-returned here, but it fits
|
|
// past caller conventions and may well make sense again,
|
|
// so we leave it as-is.
|
|
ret res(cx, val);
|
|
}
|
|
|
|
fn alloc_local(@block_ctxt cx, @ast.local local) -> result {
|
|
auto t = node_ann_type(cx.fcx.ccx, local.ann);
|
|
auto r = alloc_ty(cx, t);
|
|
r.bcx.fcx.lllocals.insert(local.id, r.val);
|
|
ret r;
|
|
}
|
|
|
|
fn trans_block(@block_ctxt cx, &ast.block b) -> result {
|
|
auto bcx = cx;
|
|
|
|
for each (@ast.local local in block_locals(b)) {
|
|
bcx = alloc_local(bcx, local).bcx;
|
|
}
|
|
auto r = res(bcx, C_nil());
|
|
|
|
for (@ast.stmt s in b.node.stmts) {
|
|
r = trans_stmt(bcx, *s);
|
|
bcx = r.bcx;
|
|
// If we hit a terminator, control won't go any further so
|
|
// we're in dead-code land. Stop here.
|
|
if (is_terminated(bcx)) {
|
|
ret r;
|
|
}
|
|
}
|
|
|
|
alt (b.node.expr) {
|
|
case (some[@ast.expr](?e)) {
|
|
r = trans_expr(bcx, e);
|
|
bcx = r.bcx;
|
|
|
|
if (is_terminated(bcx)) {
|
|
ret r;
|
|
} else {
|
|
auto r_ty = ty.expr_ty(e);
|
|
|
|
if (ty.type_is_boxed(r_ty)) {
|
|
// The value resulting from the block gets copied into an
|
|
// alloca created in an outer scope and its refcount
|
|
// bumped so that it can escape this block. This means
|
|
// that it will definitely live until the end of the
|
|
// enclosing scope, even if nobody uses it, which may be
|
|
// something of a surprise.
|
|
|
|
// It's possible we never hit this block, so the alloca
|
|
// must be initialized to null, then when the potential
|
|
// value finally goes out of scope the drop glue will see
|
|
// that it was never used and ignore it.
|
|
|
|
// NB: Here we're building and initalizing the alloca in
|
|
// the alloca context, not this block's context.
|
|
auto res_alloca = alloc_ty(bcx, r_ty);
|
|
auto alloca_ty = type_of(bcx.fcx.ccx, r_ty);
|
|
auto builder = new_builder(bcx.fcx.llallocas);
|
|
builder.Store(C_null(alloca_ty), res_alloca.val);
|
|
|
|
// Now we're working in our own block context again
|
|
auto res_copy = copy_ty(bcx, INIT,
|
|
res_alloca.val, r.val, r_ty);
|
|
bcx = res_copy.bcx;
|
|
|
|
fn drop_hoisted_ty(@block_ctxt cx,
|
|
ValueRef alloca_val,
|
|
@ty.t t) -> result {
|
|
auto reg_val = load_scalar_or_boxed(cx,
|
|
alloca_val, t);
|
|
ret drop_ty(cx, reg_val, t);
|
|
}
|
|
|
|
auto cleanup = bind drop_hoisted_ty(_, res_alloca.val,
|
|
r_ty);
|
|
find_outer_scope_cx(bcx).cleanups += vec(clean(cleanup));
|
|
}
|
|
}
|
|
}
|
|
case (none[@ast.expr]) {
|
|
r = res(bcx, C_nil());
|
|
}
|
|
}
|
|
|
|
bcx = trans_block_cleanups(bcx, find_scope_cx(bcx));
|
|
ret res(bcx, r.val);
|
|
}
|
|
|
|
// NB: must keep 4 fns in sync:
|
|
//
|
|
// - type_of_fn_full
|
|
// - create_llargs_for_fn_args.
|
|
// - new_fn_ctxt
|
|
// - trans_args
|
|
|
|
fn new_fn_ctxt(@crate_ctxt cx,
|
|
ValueRef llfndecl) -> @fn_ctxt {
|
|
|
|
let ValueRef llretptr = llvm.LLVMGetParam(llfndecl, 0u);
|
|
let ValueRef lltaskptr = llvm.LLVMGetParam(llfndecl, 1u);
|
|
let ValueRef llenv = llvm.LLVMGetParam(llfndecl, 2u);
|
|
|
|
let hashmap[ast.def_id, ValueRef] llargs = new_def_hash[ValueRef]();
|
|
let hashmap[ast.def_id, ValueRef] llobjfields = new_def_hash[ValueRef]();
|
|
let hashmap[ast.def_id, ValueRef] lllocals = new_def_hash[ValueRef]();
|
|
let hashmap[ast.def_id, ValueRef] llupvars = new_def_hash[ValueRef]();
|
|
let hashmap[ast.def_id, ValueRef] lltydescs = new_def_hash[ValueRef]();
|
|
|
|
let BasicBlockRef llallocas =
|
|
llvm.LLVMAppendBasicBlock(llfndecl, _str.buf("allocas"));
|
|
|
|
ret @rec(llfn=llfndecl,
|
|
lltaskptr=lltaskptr,
|
|
llenv=llenv,
|
|
llretptr=llretptr,
|
|
mutable llallocas = llallocas,
|
|
mutable llself=none[ValueRef],
|
|
mutable lliterbody=none[ValueRef],
|
|
llargs=llargs,
|
|
llobjfields=llobjfields,
|
|
lllocals=lllocals,
|
|
llupvars=llupvars,
|
|
lltydescs=lltydescs,
|
|
ccx=cx);
|
|
}
|
|
|
|
// NB: must keep 4 fns in sync:
|
|
//
|
|
// - type_of_fn_full
|
|
// - create_llargs_for_fn_args.
|
|
// - new_fn_ctxt
|
|
// - trans_args
|
|
|
|
fn create_llargs_for_fn_args(&@fn_ctxt cx,
|
|
ast.proto proto,
|
|
option.t[TypeRef] ty_self,
|
|
@ty.t ret_ty,
|
|
&vec[ast.arg] args,
|
|
&vec[ast.ty_param] ty_params) {
|
|
|
|
alt (ty_self) {
|
|
case (some[TypeRef](_)) {
|
|
cx.llself = some[ValueRef](cx.llenv);
|
|
}
|
|
case (_) {
|
|
}
|
|
}
|
|
|
|
auto arg_n = 3u;
|
|
|
|
if (ty_self == none[TypeRef]) {
|
|
for (ast.ty_param tp in ty_params) {
|
|
auto llarg = llvm.LLVMGetParam(cx.llfn, arg_n);
|
|
check (llarg as int != 0);
|
|
cx.lltydescs.insert(tp.id, llarg);
|
|
arg_n += 1u;
|
|
}
|
|
}
|
|
|
|
if (proto == ast.proto_iter) {
|
|
auto llarg = llvm.LLVMGetParam(cx.llfn, arg_n);
|
|
check (llarg as int != 0);
|
|
cx.lliterbody = some[ValueRef](llarg);
|
|
arg_n += 1u;
|
|
}
|
|
|
|
for (ast.arg arg in args) {
|
|
auto llarg = llvm.LLVMGetParam(cx.llfn, arg_n);
|
|
check (llarg as int != 0);
|
|
cx.llargs.insert(arg.id, llarg);
|
|
arg_n += 1u;
|
|
}
|
|
}
|
|
|
|
// Recommended LLVM style, strange though this is, is to copy from args to
|
|
// allocas immediately upon entry; this permits us to GEP into structures we
|
|
// were passed and whatnot. Apparently mem2reg will mop up.
|
|
|
|
fn copy_any_self_to_alloca(@fn_ctxt fcx,
|
|
option.t[TypeRef] ty_self) {
|
|
|
|
auto bcx = llallocas_block_ctxt(fcx);
|
|
|
|
alt (fcx.llself) {
|
|
case (some[ValueRef](?self_v)) {
|
|
alt (ty_self) {
|
|
case (some[TypeRef](?self_t)) {
|
|
auto a = alloca(bcx, self_t);
|
|
bcx.build.Store(self_v, a);
|
|
fcx.llself = some[ValueRef](a);
|
|
}
|
|
}
|
|
}
|
|
case (_) {
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
fn copy_args_to_allocas(@fn_ctxt fcx,
|
|
vec[ast.arg] args,
|
|
vec[ty.arg] arg_tys) {
|
|
|
|
auto bcx = llallocas_block_ctxt(fcx);
|
|
|
|
let uint arg_n = 0u;
|
|
|
|
for (ast.arg aarg in args) {
|
|
if (aarg.mode != ast.alias) {
|
|
auto arg_t = type_of_arg(fcx.ccx, arg_tys.(arg_n));
|
|
auto a = alloca(bcx, arg_t);
|
|
auto argval = fcx.llargs.get(aarg.id);
|
|
bcx.build.Store(argval, a);
|
|
// Overwrite the llargs entry for this arg with its alloca.
|
|
fcx.llargs.insert(aarg.id, a);
|
|
}
|
|
|
|
arg_n += 1u;
|
|
}
|
|
|
|
fcx.llallocas = bcx.llbb;
|
|
}
|
|
|
|
fn is_terminated(@block_ctxt cx) -> bool {
|
|
auto inst = llvm.LLVMGetLastInstruction(cx.llbb);
|
|
ret llvm.LLVMIsATerminatorInst(inst) as int != 0;
|
|
}
|
|
|
|
fn arg_tys_of_fn(ast.ann ann) -> vec[ty.arg] {
|
|
alt (ty.ann_to_type(ann).struct) {
|
|
case (ty.ty_fn(_, ?arg_tys, _)) {
|
|
ret arg_tys;
|
|
}
|
|
}
|
|
fail;
|
|
}
|
|
|
|
fn ret_ty_of_fn_ty(@ty.t t) -> @ty.t {
|
|
alt (t.struct) {
|
|
case (ty.ty_fn(_, _, ?ret_ty)) {
|
|
ret ret_ty;
|
|
}
|
|
}
|
|
fail;
|
|
}
|
|
|
|
|
|
fn ret_ty_of_fn(ast.ann ann) -> @ty.t {
|
|
ret ret_ty_of_fn_ty(ty.ann_to_type(ann));
|
|
}
|
|
|
|
fn populate_fn_ctxt_from_llself(@fn_ctxt fcx, ValueRef llself) {
|
|
auto bcx = llallocas_block_ctxt(fcx);
|
|
|
|
let vec[@ty.t] field_tys = vec();
|
|
|
|
for (ast.obj_field f in bcx.fcx.ccx.obj_fields) {
|
|
field_tys += vec(node_ann_type(bcx.fcx.ccx, f.ann));
|
|
}
|
|
|
|
// Synthesize a tuple type for the fields so that GEP_tup_like() can work
|
|
// its magic.
|
|
auto fields_tup_ty = ty.plain_tup_ty(field_tys);
|
|
|
|
auto n_typarams = _vec.len[ast.ty_param](bcx.fcx.ccx.obj_typarams);
|
|
let TypeRef llobj_box_ty = T_obj_ptr(bcx.fcx.ccx.tn, n_typarams);
|
|
|
|
auto box_cell =
|
|
bcx.build.GEP(llself,
|
|
vec(C_int(0),
|
|
C_int(abi.obj_field_box)));
|
|
|
|
auto box_ptr = bcx.build.Load(box_cell);
|
|
|
|
box_ptr = bcx.build.PointerCast(box_ptr, llobj_box_ty);
|
|
|
|
auto obj_typarams = bcx.build.GEP(box_ptr,
|
|
vec(C_int(0),
|
|
C_int(abi.box_rc_field_body),
|
|
C_int(abi.obj_body_elt_typarams)));
|
|
|
|
// The object fields immediately follow the type parameters, so we skip
|
|
// over them to get the pointer.
|
|
auto obj_fields = bcx.build.Add(vp2i(bcx, obj_typarams),
|
|
llsize_of(llvm.LLVMGetElementType(val_ty(obj_typarams))));
|
|
|
|
// If we can (i.e. the type is statically sized), then cast the resulting
|
|
// fields pointer to the appropriate LLVM type. If not, just leave it as
|
|
// i8 *.
|
|
if (!ty.type_has_dynamic_size(fields_tup_ty)) {
|
|
auto llfields_ty = type_of(fcx.ccx, fields_tup_ty);
|
|
obj_fields = vi2p(bcx, obj_fields, T_ptr(llfields_ty));
|
|
} else {
|
|
obj_fields = vi2p(bcx, obj_fields, T_ptr(T_i8()));
|
|
}
|
|
|
|
|
|
let int i = 0;
|
|
|
|
for (ast.ty_param p in fcx.ccx.obj_typarams) {
|
|
let ValueRef lltyparam = bcx.build.GEP(obj_typarams,
|
|
vec(C_int(0),
|
|
C_int(i)));
|
|
lltyparam = bcx.build.Load(lltyparam);
|
|
fcx.lltydescs.insert(p.id, lltyparam);
|
|
i += 1;
|
|
}
|
|
|
|
i = 0;
|
|
for (ast.obj_field f in fcx.ccx.obj_fields) {
|
|
auto rslt = GEP_tup_like(bcx, fields_tup_ty, obj_fields, vec(0, i));
|
|
bcx = llallocas_block_ctxt(fcx);
|
|
auto llfield = rslt.val;
|
|
fcx.llobjfields.insert(f.id, llfield);
|
|
i += 1;
|
|
}
|
|
|
|
fcx.llallocas = bcx.llbb;
|
|
}
|
|
|
|
fn trans_fn(@crate_ctxt cx, &ast._fn f, ast.def_id fid,
|
|
option.t[TypeRef] ty_self,
|
|
&vec[ast.ty_param] ty_params, &ast.ann ann) {
|
|
|
|
auto llfndecl = cx.item_ids.get(fid);
|
|
|
|
auto fcx = new_fn_ctxt(cx, llfndecl);
|
|
create_llargs_for_fn_args(fcx, f.proto,
|
|
ty_self, ret_ty_of_fn(ann),
|
|
f.decl.inputs, ty_params);
|
|
|
|
copy_any_self_to_alloca(fcx, ty_self);
|
|
|
|
alt (fcx.llself) {
|
|
case (some[ValueRef](?llself)) {
|
|
populate_fn_ctxt_from_llself(fcx, llself);
|
|
}
|
|
case (_) {
|
|
}
|
|
}
|
|
|
|
copy_args_to_allocas(fcx, f.decl.inputs, arg_tys_of_fn(ann));
|
|
|
|
auto bcx = new_top_block_ctxt(fcx);
|
|
auto lltop = bcx.llbb;
|
|
|
|
auto res = trans_block(bcx, f.body);
|
|
if (!is_terminated(res.bcx)) {
|
|
// FIXME: until LLVM has a unit type, we are moving around
|
|
// C_nil values rather than their void type.
|
|
res.bcx.build.RetVoid();
|
|
}
|
|
|
|
// Tie up the llallocas -> lltop edge.
|
|
new_builder(fcx.llallocas).Br(lltop);
|
|
}
|
|
|
|
fn trans_vtbl(@crate_ctxt cx, TypeRef self_ty,
|
|
&ast._obj ob,
|
|
&vec[ast.ty_param] ty_params) -> ValueRef {
|
|
let vec[ValueRef] methods = vec();
|
|
|
|
fn meth_lteq(&@ast.method a, &@ast.method b) -> bool {
|
|
ret _str.lteq(a.node.ident, b.node.ident);
|
|
}
|
|
|
|
auto meths = std.sort.merge_sort[@ast.method](bind meth_lteq(_,_),
|
|
ob.methods);
|
|
|
|
for (@ast.method m in meths) {
|
|
|
|
auto llfnty = T_nil();
|
|
alt (node_ann_type(cx, m.node.ann).struct) {
|
|
case (ty.ty_fn(?proto, ?inputs, ?output)) {
|
|
llfnty = type_of_fn_full(cx, proto,
|
|
some[TypeRef](self_ty),
|
|
inputs, output,
|
|
_vec.len[ast.ty_param](ty_params));
|
|
}
|
|
}
|
|
|
|
let @crate_ctxt mcx = extend_path(cx, m.node.ident);
|
|
let str s = mangle_name_by_seq(mcx, "method");
|
|
let ValueRef llfn = decl_internal_fastcall_fn(cx.llmod, s, llfnty);
|
|
cx.item_ids.insert(m.node.id, llfn);
|
|
cx.item_symbols.insert(m.node.id, s);
|
|
|
|
trans_fn(mcx, m.node.meth, m.node.id, some[TypeRef](self_ty),
|
|
ty_params, m.node.ann);
|
|
methods += vec(llfn);
|
|
}
|
|
auto vtbl = C_struct(methods);
|
|
auto vtbl_name = mangle_name_by_seq(cx, "vtbl");
|
|
auto gvar = llvm.LLVMAddGlobal(cx.llmod, val_ty(vtbl),
|
|
_str.buf(vtbl_name));
|
|
llvm.LLVMSetInitializer(gvar, vtbl);
|
|
llvm.LLVMSetGlobalConstant(gvar, True);
|
|
llvm.LLVMSetLinkage(gvar, lib.llvm.LLVMInternalLinkage
|
|
as llvm.Linkage);
|
|
ret gvar;
|
|
}
|
|
|
|
fn trans_obj(@crate_ctxt cx, &ast._obj ob, ast.def_id oid,
|
|
&vec[ast.ty_param] ty_params, &ast.ann ann) {
|
|
|
|
auto llctor_decl = cx.item_ids.get(oid);
|
|
|
|
// Translate obj ctor args to function arguments.
|
|
let vec[ast.arg] fn_args = vec();
|
|
for (ast.obj_field f in ob.fields) {
|
|
fn_args += vec(rec(mode=ast.alias,
|
|
ty=f.ty,
|
|
ident=f.ident,
|
|
id=f.id));
|
|
}
|
|
|
|
auto fcx = new_fn_ctxt(cx, llctor_decl);
|
|
create_llargs_for_fn_args(fcx, ast.proto_fn,
|
|
none[TypeRef], ret_ty_of_fn(ann),
|
|
fn_args, ty_params);
|
|
|
|
let vec[ty.arg] arg_tys = arg_tys_of_fn(ann);
|
|
copy_args_to_allocas(fcx, fn_args, arg_tys);
|
|
|
|
auto bcx = new_top_block_ctxt(fcx);
|
|
auto lltop = bcx.llbb;
|
|
|
|
auto llself_ty = type_of(cx, ret_ty_of_fn(ann));
|
|
auto pair = bcx.fcx.llretptr;
|
|
auto vtbl = trans_vtbl(cx, llself_ty, ob, ty_params);
|
|
auto pair_vtbl = bcx.build.GEP(pair,
|
|
vec(C_int(0),
|
|
C_int(abi.obj_field_vtbl)));
|
|
auto pair_box = bcx.build.GEP(pair,
|
|
vec(C_int(0),
|
|
C_int(abi.obj_field_box)));
|
|
bcx.build.Store(vtbl, pair_vtbl);
|
|
|
|
let TypeRef llbox_ty = T_opaque_obj_ptr(cx.tn);
|
|
|
|
if (_vec.len[ast.ty_param](ty_params) == 0u &&
|
|
_vec.len[ty.arg](arg_tys) == 0u) {
|
|
// Store null into pair, if no args or typarams.
|
|
bcx.build.Store(C_null(llbox_ty), pair_box);
|
|
} else {
|
|
// Malloc a box for the body and copy args in.
|
|
let vec[@ty.t] obj_fields = vec();
|
|
for (ty.arg a in arg_tys) {
|
|
_vec.push[@ty.t](obj_fields, a.ty);
|
|
}
|
|
|
|
// Synthesize an obj body type.
|
|
auto tydesc_ty = plain_ty(ty.ty_type);
|
|
let vec[@ty.t] tps = vec();
|
|
for (ast.ty_param tp in ty_params) {
|
|
_vec.push[@ty.t](tps, tydesc_ty);
|
|
}
|
|
|
|
let @ty.t typarams_ty = ty.plain_tup_ty(tps);
|
|
let @ty.t fields_ty = ty.plain_tup_ty(obj_fields);
|
|
let @ty.t body_ty = ty.plain_tup_ty(vec(tydesc_ty,
|
|
typarams_ty,
|
|
fields_ty));
|
|
let @ty.t boxed_body_ty = ty.plain_box_ty(body_ty);
|
|
|
|
// Malloc a box for the body.
|
|
auto box = trans_malloc_boxed(bcx, body_ty);
|
|
bcx = box.bcx;
|
|
auto rc = GEP_tup_like(bcx, boxed_body_ty, box.val,
|
|
vec(0, abi.box_rc_field_refcnt));
|
|
bcx = rc.bcx;
|
|
auto body = GEP_tup_like(bcx, boxed_body_ty, box.val,
|
|
vec(0, abi.box_rc_field_body));
|
|
bcx = body.bcx;
|
|
bcx.build.Store(C_int(1), rc.val);
|
|
|
|
// Store body tydesc.
|
|
auto body_tydesc =
|
|
GEP_tup_like(bcx, body_ty, body.val,
|
|
vec(0, abi.obj_body_elt_tydesc));
|
|
bcx = body_tydesc.bcx;
|
|
|
|
auto body_td = get_tydesc(bcx, body_ty);
|
|
bcx = body_td.bcx;
|
|
bcx.build.Store(body_td.val, body_tydesc.val);
|
|
|
|
// Copy typarams into captured typarams.
|
|
auto body_typarams =
|
|
GEP_tup_like(bcx, body_ty, body.val,
|
|
vec(0, abi.obj_body_elt_typarams));
|
|
bcx = body_typarams.bcx;
|
|
let int i = 0;
|
|
for (ast.ty_param tp in ty_params) {
|
|
auto typaram = bcx.fcx.lltydescs.get(tp.id);
|
|
auto capture = GEP_tup_like(bcx, typarams_ty, body_typarams.val,
|
|
vec(0, i));
|
|
bcx = capture.bcx;
|
|
bcx = copy_ty(bcx, INIT, capture.val, typaram, tydesc_ty).bcx;
|
|
i += 1;
|
|
}
|
|
|
|
// Copy args into body fields.
|
|
auto body_fields =
|
|
GEP_tup_like(bcx, body_ty, body.val,
|
|
vec(0, abi.obj_body_elt_fields));
|
|
bcx = body_fields.bcx;
|
|
|
|
i = 0;
|
|
for (ast.obj_field f in ob.fields) {
|
|
auto arg = bcx.fcx.llargs.get(f.id);
|
|
arg = load_scalar_or_boxed(bcx, arg, arg_tys.(i).ty);
|
|
auto field = GEP_tup_like(bcx, fields_ty, body_fields.val,
|
|
vec(0, i));
|
|
bcx = field.bcx;
|
|
bcx = copy_ty(bcx, INIT, field.val, arg, arg_tys.(i).ty).bcx;
|
|
i += 1;
|
|
}
|
|
// Store box ptr in outer pair.
|
|
auto p = bcx.build.PointerCast(box.val, llbox_ty);
|
|
bcx.build.Store(p, pair_box);
|
|
}
|
|
bcx.build.RetVoid();
|
|
|
|
// Tie up the llallocas -> lltop edge.
|
|
new_builder(fcx.llallocas).Br(lltop);
|
|
}
|
|
|
|
fn trans_tag_variant(@crate_ctxt cx, ast.def_id tag_id,
|
|
&ast.variant variant, int index,
|
|
&vec[ast.ty_param] ty_params) {
|
|
if (_vec.len[ast.variant_arg](variant.node.args) == 0u) {
|
|
ret; // nullary constructors are just constants
|
|
}
|
|
|
|
// Translate variant arguments to function arguments.
|
|
let vec[ast.arg] fn_args = vec();
|
|
auto i = 0u;
|
|
for (ast.variant_arg varg in variant.node.args) {
|
|
fn_args += vec(rec(mode=ast.alias,
|
|
ty=varg.ty,
|
|
ident="arg" + _uint.to_str(i, 10u),
|
|
id=varg.id));
|
|
}
|
|
|
|
check (cx.item_ids.contains_key(variant.node.id));
|
|
let ValueRef llfndecl = cx.item_ids.get(variant.node.id);
|
|
|
|
auto fcx = new_fn_ctxt(cx, llfndecl);
|
|
|
|
create_llargs_for_fn_args(fcx, ast.proto_fn,
|
|
none[TypeRef], ret_ty_of_fn(variant.node.ann),
|
|
fn_args, ty_params);
|
|
|
|
let vec[@ty.t] ty_param_substs = vec();
|
|
for (ast.ty_param tp in ty_params) {
|
|
ty_param_substs += vec(plain_ty(ty.ty_param(tp.id)));
|
|
}
|
|
|
|
auto arg_tys = arg_tys_of_fn(variant.node.ann);
|
|
copy_args_to_allocas(fcx, fn_args, arg_tys);
|
|
|
|
auto bcx = new_top_block_ctxt(fcx);
|
|
auto lltop = bcx.llbb;
|
|
|
|
// Cast the tag to a type we can GEP into.
|
|
auto lltagptr = bcx.build.PointerCast(fcx.llretptr,
|
|
T_opaque_tag_ptr(fcx.ccx.tn));
|
|
|
|
auto lldiscrimptr = bcx.build.GEP(lltagptr,
|
|
vec(C_int(0), C_int(0)));
|
|
bcx.build.Store(C_int(index), lldiscrimptr);
|
|
|
|
auto llblobptr = bcx.build.GEP(lltagptr,
|
|
vec(C_int(0), C_int(1)));
|
|
|
|
i = 0u;
|
|
for (ast.variant_arg va in variant.node.args) {
|
|
auto rslt = GEP_tag(bcx, llblobptr, tag_id, variant.node.id,
|
|
ty_param_substs, i as int);
|
|
bcx = rslt.bcx;
|
|
auto lldestptr = rslt.val;
|
|
|
|
// If this argument to this function is a tag, it'll have come in to
|
|
// this function as an opaque blob due to the way that type_of()
|
|
// works. So we have to cast to the destination's view of the type.
|
|
auto llargptr = bcx.build.PointerCast(fcx.llargs.get(va.id),
|
|
val_ty(lldestptr));
|
|
|
|
auto arg_ty = arg_tys.(i).ty;
|
|
auto llargval;
|
|
if (ty.type_is_structural(arg_ty) ||
|
|
ty.type_has_dynamic_size(arg_ty)) {
|
|
llargval = llargptr;
|
|
} else {
|
|
llargval = bcx.build.Load(llargptr);
|
|
}
|
|
|
|
rslt = copy_ty(bcx, INIT, lldestptr, llargval, arg_ty);
|
|
bcx = rslt.bcx;
|
|
|
|
i += 1u;
|
|
}
|
|
|
|
bcx = trans_block_cleanups(bcx, find_scope_cx(bcx));
|
|
bcx.build.RetVoid();
|
|
|
|
// Tie up the llallocas -> lltop edge.
|
|
new_builder(fcx.llallocas).Br(lltop);
|
|
}
|
|
|
|
// FIXME: this should do some structural hash-consing to avoid
|
|
// duplicate constants. I think. Maybe LLVM has a magical mode
|
|
// that does so later on?
|
|
|
|
fn trans_const_expr(@crate_ctxt cx, @ast.expr e) -> ValueRef {
|
|
alt (e.node) {
|
|
case (ast.expr_lit(?lit, ?ann)) {
|
|
ret trans_lit(cx, *lit, ann);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_const(@crate_ctxt cx, @ast.expr e,
|
|
&ast.def_id cid, &ast.ann ann) {
|
|
auto t = node_ann_type(cx, ann);
|
|
auto v = trans_const_expr(cx, e);
|
|
|
|
// The scalars come back as 1st class LLVM vals
|
|
// which we have to stick into global constants.
|
|
auto g = cx.consts.get(cid);
|
|
llvm.LLVMSetInitializer(g, v);
|
|
llvm.LLVMSetGlobalConstant(g, True);
|
|
}
|
|
|
|
fn trans_item(@crate_ctxt cx, &ast.item item) {
|
|
alt (item.node) {
|
|
case (ast.item_fn(?name, ?f, ?tps, ?fid, ?ann)) {
|
|
auto sub_cx = extend_path(cx, name);
|
|
trans_fn(sub_cx, f, fid, none[TypeRef], tps, ann);
|
|
}
|
|
case (ast.item_obj(?name, ?ob, ?tps, ?oid, ?ann)) {
|
|
auto sub_cx = @rec(obj_typarams=tps,
|
|
obj_fields=ob.fields with
|
|
*extend_path(cx, name));
|
|
trans_obj(sub_cx, ob, oid.ctor, tps, ann);
|
|
}
|
|
case (ast.item_mod(?name, ?m, _)) {
|
|
auto sub_cx = extend_path(cx, name);
|
|
trans_mod(sub_cx, m);
|
|
}
|
|
case (ast.item_tag(?name, ?variants, ?tps, ?tag_id, _)) {
|
|
auto sub_cx = extend_path(cx, name);
|
|
auto i = 0;
|
|
for (ast.variant variant in variants) {
|
|
trans_tag_variant(sub_cx, tag_id, variant, i, tps);
|
|
i += 1;
|
|
}
|
|
}
|
|
case (ast.item_const(?name, _, ?expr, ?cid, ?ann)) {
|
|
auto sub_cx = extend_path(cx, name);
|
|
trans_const(sub_cx, expr, cid, ann);
|
|
}
|
|
case (_) { /* fall through */ }
|
|
}
|
|
}
|
|
|
|
fn trans_mod(@crate_ctxt cx, &ast._mod m) {
|
|
for (@ast.item item in m.items) {
|
|
trans_item(cx, *item);
|
|
}
|
|
}
|
|
|
|
fn get_pair_fn_ty(TypeRef llpairty) -> TypeRef {
|
|
// Bit of a kludge: pick the fn typeref out of the pair.
|
|
let vec[TypeRef] pair_tys = vec(T_nil(), T_nil());
|
|
llvm.LLVMGetStructElementTypes(llpairty,
|
|
_vec.buf[TypeRef](pair_tys));
|
|
ret llvm.LLVMGetElementType(pair_tys.(0));
|
|
}
|
|
|
|
fn decl_fn_and_pair(@crate_ctxt cx,
|
|
str flav,
|
|
vec[ast.ty_param] ty_params,
|
|
&ast.ann ann,
|
|
ast.def_id id) {
|
|
|
|
auto llfty;
|
|
auto llpairty;
|
|
alt (node_ann_type(cx, ann).struct) {
|
|
case (ty.ty_fn(?proto, ?inputs, ?output)) {
|
|
llfty = type_of_fn(cx, proto, inputs, output,
|
|
_vec.len[ast.ty_param](ty_params));
|
|
llpairty = T_fn_pair(cx.tn, llfty);
|
|
}
|
|
case (_) {
|
|
cx.sess.bug("decl_fn_and_pair(): fn item doesn't have fn type?!");
|
|
fail;
|
|
}
|
|
}
|
|
|
|
// Declare the function itself.
|
|
let str s = mangle_name_by_seq(cx, flav);
|
|
let ValueRef llfn = decl_internal_fastcall_fn(cx.llmod, s, llfty);
|
|
|
|
// Declare the global constant pair that points to it.
|
|
let str ps = mangle_name_by_type(cx, node_ann_type(cx, ann));
|
|
|
|
register_fn_pair(cx, ps, llpairty, llfn, id);
|
|
}
|
|
|
|
fn register_fn_pair(@crate_ctxt cx, str ps, TypeRef llpairty, ValueRef llfn,
|
|
ast.def_id id) {
|
|
let ValueRef gvar = llvm.LLVMAddGlobal(cx.llmod, llpairty,
|
|
_str.buf(ps));
|
|
auto pair = C_struct(vec(llfn,
|
|
C_null(T_opaque_closure_ptr(cx.tn))));
|
|
|
|
llvm.LLVMSetInitializer(gvar, pair);
|
|
llvm.LLVMSetGlobalConstant(gvar, True);
|
|
llvm.LLVMSetVisibility(gvar,
|
|
lib.llvm.LLVMProtectedVisibility
|
|
as llvm.Visibility);
|
|
|
|
cx.item_ids.insert(id, llfn);
|
|
cx.item_symbols.insert(id, ps);
|
|
cx.fn_pairs.insert(id, gvar);
|
|
}
|
|
|
|
// Returns the number of type parameters that the given native function has.
|
|
fn native_fn_ty_param_count(@crate_ctxt cx, &ast.def_id id) -> uint {
|
|
auto count;
|
|
auto native_item = cx.native_items.get(id);
|
|
alt (native_item.node) {
|
|
case (ast.native_item_ty(_,_)) {
|
|
cx.sess.bug("decl_native_fn_and_pair(): native fn isn't " +
|
|
"actually a fn?!");
|
|
fail;
|
|
}
|
|
case (ast.native_item_fn(_, _, _, ?tps, _, _)) {
|
|
count = _vec.len[ast.ty_param](tps);
|
|
}
|
|
}
|
|
ret count;
|
|
}
|
|
|
|
fn native_fn_wrapper_type(@crate_ctxt cx, uint ty_param_count, &ast.ann ann)
|
|
-> TypeRef {
|
|
auto x = node_ann_type(cx, ann);
|
|
alt (x.struct) {
|
|
case (ty.ty_native_fn(?abi, ?args, ?out)) {
|
|
ret type_of_fn(cx, ast.proto_fn, args, out, ty_param_count);
|
|
}
|
|
}
|
|
fail;
|
|
}
|
|
|
|
fn decl_native_fn_and_pair(@crate_ctxt cx,
|
|
str name,
|
|
&ast.ann ann,
|
|
ast.def_id id) {
|
|
auto num_ty_param = native_fn_ty_param_count(cx, id);
|
|
|
|
// Declare the wrapper.
|
|
auto wrapper_type = native_fn_wrapper_type(cx, num_ty_param, ann);
|
|
let str s = mangle_name_by_seq(cx, "wrapper");
|
|
let ValueRef wrapper_fn = decl_internal_fastcall_fn(cx.llmod, s,
|
|
wrapper_type);
|
|
|
|
// Declare the global constant pair that points to it.
|
|
auto wrapper_pair_type = T_fn_pair(cx.tn, wrapper_type);
|
|
let str ps = mangle_name_by_type(cx, node_ann_type(cx, ann));
|
|
|
|
register_fn_pair(cx, ps, wrapper_pair_type, wrapper_fn, id);
|
|
|
|
// Build the wrapper.
|
|
auto fcx = new_fn_ctxt(cx, wrapper_fn);
|
|
auto bcx = new_top_block_ctxt(fcx);
|
|
auto lltop = bcx.llbb;
|
|
|
|
// Declare the function itself.
|
|
auto item = cx.native_items.get(id);
|
|
auto fn_type = node_ann_type(cx, ann); // NB: has no type params
|
|
|
|
auto abi = ty.ty_fn_abi(fn_type);
|
|
auto llfnty = type_of_native_fn(cx, abi, ty.ty_fn_args(fn_type),
|
|
ty.ty_fn_ret(fn_type), num_ty_param);
|
|
|
|
let vec[ValueRef] call_args = vec();
|
|
auto arg_n = 3u;
|
|
auto pass_task;
|
|
|
|
auto lltaskptr = bcx.build.PtrToInt(fcx.lltaskptr, T_int());
|
|
alt (abi) {
|
|
case (ast.native_abi_rust) {
|
|
pass_task = true;
|
|
call_args += vec(lltaskptr);
|
|
for each (uint i in _uint.range(0u, num_ty_param)) {
|
|
auto llarg = llvm.LLVMGetParam(fcx.llfn, arg_n);
|
|
check (llarg as int != 0);
|
|
call_args += vec(bcx.build.PointerCast(llarg, T_i32()));
|
|
arg_n += 1u;
|
|
}
|
|
}
|
|
case (ast.native_abi_cdecl) {
|
|
pass_task = false;
|
|
}
|
|
case (ast.native_abi_llvm) {
|
|
pass_task = false;
|
|
// We handle this case below.
|
|
}
|
|
}
|
|
|
|
auto r;
|
|
auto rptr;
|
|
auto args = ty.ty_fn_args(fn_type);
|
|
if (abi == ast.native_abi_llvm) {
|
|
let vec[ValueRef] call_args = vec();
|
|
let vec[TypeRef] call_arg_tys = vec();
|
|
auto i = 0u;
|
|
while (i < _vec.len[ty.arg](args)) {
|
|
auto call_arg = llvm.LLVMGetParam(fcx.llfn, i + 3u);
|
|
call_args += vec(call_arg);
|
|
call_arg_tys += vec(val_ty(call_arg));
|
|
i += 1u;
|
|
}
|
|
auto llnativefnty = T_fn(call_arg_tys,
|
|
type_of(cx, ty.ty_fn_ret(fn_type)));
|
|
auto llnativefn = get_extern_fn(cx.externs, cx.llmod, name,
|
|
lib.llvm.LLVMCCallConv, llnativefnty);
|
|
r = bcx.build.Call(llnativefn, call_args);
|
|
rptr = fcx.llretptr;
|
|
} else {
|
|
for (ty.arg arg in args) {
|
|
auto llarg = llvm.LLVMGetParam(fcx.llfn, arg_n);
|
|
check (llarg as int != 0);
|
|
call_args += vec(bcx.build.PointerCast(llarg, T_i32()));
|
|
arg_n += 1u;
|
|
}
|
|
|
|
r = trans_native_call(bcx.build, cx.glues, lltaskptr, cx.externs,
|
|
cx.tn, cx.llmod, name, pass_task, call_args);
|
|
rptr = bcx.build.BitCast(fcx.llretptr, T_ptr(T_i32()));
|
|
}
|
|
|
|
bcx.build.Store(r, rptr);
|
|
bcx.build.RetVoid();
|
|
|
|
// Tie up the llallocas -> lltop edge.
|
|
new_builder(fcx.llallocas).Br(lltop);
|
|
}
|
|
|
|
fn collect_native_item(&@crate_ctxt cx, @ast.native_item i) -> @crate_ctxt {
|
|
alt (i.node) {
|
|
case (ast.native_item_fn(?name, _, _, _, ?fid, ?ann)) {
|
|
cx.native_items.insert(fid, i);
|
|
if (! cx.obj_methods.contains_key(fid)) {
|
|
decl_native_fn_and_pair(cx, name, ann, fid);
|
|
}
|
|
}
|
|
case (ast.native_item_ty(_, ?tid)) {
|
|
cx.native_items.insert(tid, i);
|
|
}
|
|
}
|
|
ret cx;
|
|
}
|
|
|
|
fn item_name(@ast.item i) -> str {
|
|
alt (i.node) {
|
|
case (ast.item_mod(?name, _, _)) {
|
|
ret name;
|
|
}
|
|
case (ast.item_tag(?name, _, _, _, _)) {
|
|
ret name;
|
|
}
|
|
case (ast.item_const(?name, _, _, _, _)) {
|
|
ret name;
|
|
}
|
|
case (ast.item_fn(?name, _, _, _, _)) {
|
|
ret name;
|
|
}
|
|
case (ast.item_native_mod(?name, _, _)) {
|
|
ret name;
|
|
}
|
|
case (ast.item_ty(?name, _, _, _, _)) {
|
|
ret name;
|
|
}
|
|
case (ast.item_obj(?name, _, _, _, _)) {
|
|
ret name;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn collect_item(&@crate_ctxt cx, @ast.item i) -> @crate_ctxt {
|
|
alt (i.node) {
|
|
case (ast.item_const(?name, _, _, ?cid, ?ann)) {
|
|
auto typ = node_ann_type(cx, ann);
|
|
auto g = llvm.LLVMAddGlobal(cx.llmod, type_of(cx, typ),
|
|
_str.buf(cx.names.next(name)));
|
|
llvm.LLVMSetLinkage(g, lib.llvm.LLVMInternalLinkage
|
|
as llvm.Linkage);
|
|
cx.items.insert(cid, i);
|
|
cx.consts.insert(cid, g);
|
|
}
|
|
|
|
case (ast.item_fn(_, _, _, ?did, _)) {
|
|
// handled below
|
|
}
|
|
|
|
case (ast.item_mod(?name, ?m, ?mid)) {
|
|
cx.items.insert(mid, i);
|
|
}
|
|
|
|
case (ast.item_native_mod(_, _, _)) {
|
|
// empty
|
|
}
|
|
|
|
case (ast.item_ty(_, _, _, ?did, _)) {
|
|
cx.items.insert(did, i);
|
|
}
|
|
|
|
case (ast.item_tag(?name, ?variants, ?tps, ?tag_id, _)) {
|
|
cx.items.insert(tag_id, i);
|
|
}
|
|
|
|
case (ast.item_obj(_, _, _, ?did, _)) {
|
|
// handled below
|
|
}
|
|
}
|
|
ret extend_path(cx, item_name(i));
|
|
}
|
|
|
|
fn collect_item_pass2(&@crate_ctxt cx, @ast.item i) -> @crate_ctxt {
|
|
alt (i.node) {
|
|
case (ast.item_fn(?name, ?f, ?tps, ?fid, ?ann)) {
|
|
cx.items.insert(fid, i);
|
|
if (! cx.obj_methods.contains_key(fid)) {
|
|
decl_fn_and_pair(extend_path(cx, name), "fn",
|
|
tps, ann, fid);
|
|
}
|
|
}
|
|
|
|
case (ast.item_obj(?name, ?ob, ?tps, ?oid, ?ann)) {
|
|
cx.items.insert(oid.ctor, i);
|
|
decl_fn_and_pair(extend_path(cx, name), "obj_ctor",
|
|
tps, ann, oid.ctor);
|
|
for (@ast.method m in ob.methods) {
|
|
cx.obj_methods.insert(m.node.id, ());
|
|
}
|
|
}
|
|
|
|
case (_) { /* fall through */ }
|
|
}
|
|
ret extend_path(cx, item_name(i));
|
|
}
|
|
|
|
|
|
fn collect_items(@crate_ctxt cx, @ast.crate crate) {
|
|
|
|
let fold.ast_fold[@crate_ctxt] fld =
|
|
fold.new_identity_fold[@crate_ctxt]();
|
|
|
|
// FIXME: It might be better to use a worklist for this. An item
|
|
// would be added to it if it depends on a not yet seen tag for example.
|
|
|
|
auto fld1 =
|
|
@rec( update_env_for_item = bind collect_item(_,_),
|
|
update_env_for_native_item = bind collect_native_item(_,_)
|
|
with *fld );
|
|
|
|
fold.fold_crate[@crate_ctxt](cx, fld1, crate);
|
|
|
|
auto fld2 = @rec( update_env_for_item = bind collect_item_pass2(_,_)
|
|
with *fld );
|
|
|
|
fold.fold_crate[@crate_ctxt](cx, fld2, crate);
|
|
}
|
|
|
|
fn collect_tag_ctor(&@crate_ctxt cx, @ast.item i) -> @crate_ctxt {
|
|
|
|
alt (i.node) {
|
|
|
|
case (ast.item_tag(_, ?variants, ?tps, _, _)) {
|
|
for (ast.variant variant in variants) {
|
|
if (_vec.len[ast.variant_arg](variant.node.args) != 0u) {
|
|
decl_fn_and_pair(extend_path(cx, variant.node.name),
|
|
"tag", tps, variant.node.ann,
|
|
variant.node.id);
|
|
}
|
|
}
|
|
}
|
|
|
|
case (_) { /* fall through */ }
|
|
}
|
|
ret cx;
|
|
}
|
|
|
|
fn collect_tag_ctors(@crate_ctxt cx, @ast.crate crate) {
|
|
|
|
let fold.ast_fold[@crate_ctxt] fld =
|
|
fold.new_identity_fold[@crate_ctxt]();
|
|
|
|
fld = @rec( update_env_for_item = bind collect_tag_ctor(_,_)
|
|
with *fld );
|
|
|
|
fold.fold_crate[@crate_ctxt](cx, fld, crate);
|
|
}
|
|
|
|
// The constant translation pass.
|
|
|
|
fn trans_constant(&@crate_ctxt cx, @ast.item it) -> @crate_ctxt {
|
|
alt (it.node) {
|
|
case (ast.item_tag(_, ?variants, _, ?tag_id, _)) {
|
|
auto i = 0u;
|
|
auto n_variants = _vec.len[ast.variant](variants);
|
|
while (i < n_variants) {
|
|
auto variant = variants.(i);
|
|
|
|
auto discrim_val = C_int(i as int);
|
|
|
|
// FIXME: better name.
|
|
auto s = cx.names.next("_rust_tag_discrim");
|
|
auto discrim_gvar = llvm.LLVMAddGlobal(cx.llmod, T_int(),
|
|
_str.buf(s));
|
|
|
|
// FIXME: Eventually we do want to export these, but we need
|
|
// to figure out what name they get first!
|
|
llvm.LLVMSetInitializer(discrim_gvar, discrim_val);
|
|
llvm.LLVMSetGlobalConstant(discrim_gvar, True);
|
|
llvm.LLVMSetLinkage(discrim_gvar, lib.llvm.LLVMInternalLinkage
|
|
as llvm.Linkage);
|
|
|
|
cx.discrims.insert(variant.node.id, discrim_gvar);
|
|
cx.discrim_symbols.insert(variant.node.id, s);
|
|
|
|
i += 1u;
|
|
}
|
|
}
|
|
|
|
case (ast.item_const(?name, _, ?expr, ?cid, ?ann)) {
|
|
// FIXME: The whole expr-translation system needs cloning to deal
|
|
// with consts.
|
|
auto v = C_int(1);
|
|
cx.item_ids.insert(cid, v);
|
|
auto s = mangle_name_by_type(extend_path(cx, name),
|
|
node_ann_type(cx, ann));
|
|
cx.item_symbols.insert(cid, s);
|
|
}
|
|
|
|
case (_) {
|
|
// empty
|
|
}
|
|
}
|
|
|
|
ret cx;
|
|
}
|
|
|
|
fn trans_constants(@crate_ctxt cx, @ast.crate crate) {
|
|
let fold.ast_fold[@crate_ctxt] fld =
|
|
fold.new_identity_fold[@crate_ctxt]();
|
|
|
|
fld = @rec(update_env_for_item = bind trans_constant(_,_) with *fld);
|
|
|
|
fold.fold_crate[@crate_ctxt](cx, fld, crate);
|
|
}
|
|
|
|
|
|
fn vp2i(@block_ctxt cx, ValueRef v) -> ValueRef {
|
|
ret cx.build.PtrToInt(v, T_int());
|
|
}
|
|
|
|
|
|
fn vi2p(@block_ctxt cx, ValueRef v, TypeRef t) -> ValueRef {
|
|
ret cx.build.IntToPtr(v, t);
|
|
}
|
|
|
|
fn p2i(ValueRef v) -> ValueRef {
|
|
ret llvm.LLVMConstPtrToInt(v, T_int());
|
|
}
|
|
|
|
fn i2p(ValueRef v, TypeRef t) -> ValueRef {
|
|
ret llvm.LLVMConstIntToPtr(v, t);
|
|
}
|
|
|
|
fn trans_exit_task_glue(@glue_fns glues,
|
|
&hashmap[str, ValueRef] externs,
|
|
type_names tn, ModuleRef llmod) {
|
|
let vec[TypeRef] T_args = vec();
|
|
let vec[ValueRef] V_args = vec();
|
|
|
|
auto llfn = glues.exit_task_glue;
|
|
let ValueRef lltaskptr = llvm.LLVMGetParam(llfn, 4u);
|
|
|
|
auto entrybb = llvm.LLVMAppendBasicBlock(llfn, _str.buf("entry"));
|
|
auto build = new_builder(entrybb);
|
|
auto tptr = build.PtrToInt(lltaskptr, T_int());
|
|
auto V_args2 = vec(tptr) + V_args;
|
|
trans_native_call(build, glues, lltaskptr,
|
|
externs, tn, llmod, "upcall_exit", true, V_args2);
|
|
build.RetVoid();
|
|
}
|
|
|
|
fn create_typedefs(@crate_ctxt cx) {
|
|
llvm.LLVMAddTypeName(cx.llmod, _str.buf("crate"), T_crate(cx.tn));
|
|
llvm.LLVMAddTypeName(cx.llmod, _str.buf("task"), T_task(cx.tn));
|
|
llvm.LLVMAddTypeName(cx.llmod, _str.buf("tydesc"), T_tydesc(cx.tn));
|
|
}
|
|
|
|
fn create_crate_constant(ValueRef crate_ptr, @glue_fns glues) {
|
|
|
|
let ValueRef crate_addr = p2i(crate_ptr);
|
|
|
|
let ValueRef activate_glue_off =
|
|
llvm.LLVMConstSub(p2i(glues.activate_glue), crate_addr);
|
|
|
|
let ValueRef yield_glue_off =
|
|
llvm.LLVMConstSub(p2i(glues.yield_glue), crate_addr);
|
|
|
|
let ValueRef exit_task_glue_off =
|
|
llvm.LLVMConstSub(p2i(glues.exit_task_glue), crate_addr);
|
|
|
|
let ValueRef crate_val =
|
|
C_struct(vec(C_null(T_int()), // ptrdiff_t image_base_off
|
|
p2i(crate_ptr), // uintptr_t self_addr
|
|
C_null(T_int()), // ptrdiff_t debug_abbrev_off
|
|
C_null(T_int()), // size_t debug_abbrev_sz
|
|
C_null(T_int()), // ptrdiff_t debug_info_off
|
|
C_null(T_int()), // size_t debug_info_sz
|
|
activate_glue_off, // size_t activate_glue_off
|
|
yield_glue_off, // size_t yield_glue_off
|
|
C_null(T_int()), // size_t unwind_glue_off
|
|
C_null(T_int()), // size_t gc_glue_off
|
|
exit_task_glue_off, // size_t main_exit_task_glue_off
|
|
C_null(T_int()), // int n_rust_syms
|
|
C_null(T_int()), // int n_c_syms
|
|
C_null(T_int()), // int n_libs
|
|
C_int(abi.abi_x86_rustc_fastcall) // uintptr_t abi_tag
|
|
));
|
|
|
|
llvm.LLVMSetInitializer(crate_ptr, crate_val);
|
|
}
|
|
|
|
fn find_main_fn(@crate_ctxt cx) -> ValueRef {
|
|
auto e = sep() + "main";
|
|
let ValueRef v = C_nil();
|
|
let uint n = 0u;
|
|
for each (@tup(ast.def_id, str) i in cx.item_symbols.items()) {
|
|
if (_str.ends_with(i._1, e)) {
|
|
n += 1u;
|
|
v = cx.item_ids.get(i._0);
|
|
}
|
|
}
|
|
alt (n) {
|
|
case (0u) {
|
|
cx.sess.err("main fn not found");
|
|
}
|
|
case (1u) {
|
|
ret v;
|
|
}
|
|
case (_) {
|
|
cx.sess.err("multiple main fns found");
|
|
}
|
|
}
|
|
fail;
|
|
}
|
|
|
|
fn trans_main_fn(@crate_ctxt cx, ValueRef llcrate) {
|
|
auto T_main_args = vec(T_int(), T_int());
|
|
auto T_rust_start_args = vec(T_int(), T_int(), T_int(), T_int());
|
|
|
|
auto main_name;
|
|
if (_str.eq(std.os.target_os(), "win32")) {
|
|
main_name = "WinMain@16";
|
|
} else {
|
|
main_name = "main";
|
|
}
|
|
|
|
auto llmain =
|
|
decl_cdecl_fn(cx.llmod, main_name, T_fn(T_main_args, T_int()));
|
|
|
|
auto llrust_start = decl_cdecl_fn(cx.llmod, "rust_start",
|
|
T_fn(T_rust_start_args, T_int()));
|
|
|
|
auto llargc = llvm.LLVMGetParam(llmain, 0u);
|
|
auto llargv = llvm.LLVMGetParam(llmain, 1u);
|
|
auto llrust_main = find_main_fn(cx);
|
|
|
|
//
|
|
// Emit the moral equivalent of:
|
|
//
|
|
// main(int argc, char **argv) {
|
|
// rust_start(&_rust.main, &crate, argc, argv);
|
|
// }
|
|
//
|
|
|
|
let BasicBlockRef llbb =
|
|
llvm.LLVMAppendBasicBlock(llmain, _str.buf(""));
|
|
auto b = new_builder(llbb);
|
|
|
|
auto start_args = vec(p2i(llrust_main), p2i(llcrate), llargc, llargv);
|
|
|
|
b.Ret(b.Call(llrust_start, start_args));
|
|
}
|
|
|
|
fn declare_intrinsics(ModuleRef llmod) -> hashmap[str,ValueRef] {
|
|
|
|
let vec[TypeRef] T_trap_args = vec();
|
|
auto trap = decl_cdecl_fn(llmod, "llvm.trap",
|
|
T_fn(T_trap_args, T_void()));
|
|
|
|
auto intrinsics = new_str_hash[ValueRef]();
|
|
intrinsics.insert("llvm.trap", trap);
|
|
ret intrinsics;
|
|
}
|
|
|
|
|
|
fn trace_str(@block_ctxt cx, str s) {
|
|
trans_upcall(cx, "upcall_trace_str", vec(p2i(C_cstr(cx.fcx.ccx, s))));
|
|
}
|
|
|
|
fn trace_word(@block_ctxt cx, ValueRef v) {
|
|
trans_upcall(cx, "upcall_trace_word", vec(v));
|
|
}
|
|
|
|
fn trace_ptr(@block_ctxt cx, ValueRef v) {
|
|
trace_word(cx, cx.build.PtrToInt(v, T_int()));
|
|
}
|
|
|
|
fn trap(@block_ctxt bcx) {
|
|
let vec[ValueRef] v = vec();
|
|
bcx.build.Call(bcx.fcx.ccx.intrinsics.get("llvm.trap"), v);
|
|
}
|
|
|
|
fn check_module(ModuleRef llmod) {
|
|
auto pm = mk_pass_manager();
|
|
llvm.LLVMAddVerifierPass(pm.llpm);
|
|
llvm.LLVMRunPassManager(pm.llpm, llmod);
|
|
|
|
// TODO: run the linter here also, once there are llvm-c bindings for it.
|
|
}
|
|
|
|
fn decl_no_op_type_glue(ModuleRef llmod, type_names tn) -> ValueRef {
|
|
auto ty = T_fn(vec(T_taskptr(tn), T_ptr(T_i8())), T_void());
|
|
ret decl_fastcall_fn(llmod, abi.no_op_type_glue_name(), ty);
|
|
}
|
|
|
|
fn make_no_op_type_glue(ValueRef fun) {
|
|
auto bb_name = _str.buf("_rust_no_op_type_glue_bb");
|
|
auto llbb = llvm.LLVMAppendBasicBlock(fun, bb_name);
|
|
new_builder(llbb).RetVoid();
|
|
}
|
|
|
|
fn decl_memcpy_glue(ModuleRef llmod) -> ValueRef {
|
|
auto p8 = T_ptr(T_i8());
|
|
|
|
auto ty = T_fn(vec(p8, p8, T_int()), T_void());
|
|
ret decl_fastcall_fn(llmod, abi.memcpy_glue_name(), ty);
|
|
}
|
|
|
|
fn make_memcpy_glue(ValueRef fun) {
|
|
// We're not using the LLVM memcpy intrinsic. It appears to call through
|
|
// to the platform memcpy in some cases, which is not terribly safe to run
|
|
// on a rust stack.
|
|
auto initbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("init"));
|
|
auto hdrbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("hdr"));
|
|
auto loopbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("loop"));
|
|
auto endbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("end"));
|
|
|
|
auto dst = llvm.LLVMGetParam(fun, 0u);
|
|
auto src = llvm.LLVMGetParam(fun, 1u);
|
|
auto count = llvm.LLVMGetParam(fun, 2u);
|
|
|
|
// Init block.
|
|
auto ib = new_builder(initbb);
|
|
auto ip = ib.Alloca(T_int());
|
|
ib.Store(C_int(0), ip);
|
|
ib.Br(hdrbb);
|
|
|
|
// Loop-header block
|
|
auto hb = new_builder(hdrbb);
|
|
auto i = hb.Load(ip);
|
|
hb.CondBr(hb.ICmp(lib.llvm.LLVMIntEQ, count, i), endbb, loopbb);
|
|
|
|
// Loop-body block
|
|
auto lb = new_builder(loopbb);
|
|
i = lb.Load(ip);
|
|
lb.Store(lb.Load(lb.GEP(src, vec(i))),
|
|
lb.GEP(dst, vec(i)));
|
|
lb.Store(lb.Add(i, C_int(1)), ip);
|
|
lb.Br(hdrbb);
|
|
|
|
// End block
|
|
auto eb = new_builder(endbb);
|
|
eb.RetVoid();
|
|
}
|
|
|
|
fn decl_bzero_glue(ModuleRef llmod) -> ValueRef {
|
|
auto p8 = T_ptr(T_i8());
|
|
|
|
auto ty = T_fn(vec(p8, T_int()), T_void());
|
|
ret decl_fastcall_fn(llmod, abi.bzero_glue_name(), ty);
|
|
}
|
|
|
|
fn make_bzero_glue(ValueRef fun) -> ValueRef {
|
|
// We're not using the LLVM memset intrinsic. Same as with memcpy.
|
|
auto initbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("init"));
|
|
auto hdrbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("hdr"));
|
|
auto loopbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("loop"));
|
|
auto endbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("end"));
|
|
|
|
auto dst = llvm.LLVMGetParam(fun, 0u);
|
|
auto count = llvm.LLVMGetParam(fun, 1u);
|
|
|
|
// Init block.
|
|
auto ib = new_builder(initbb);
|
|
auto ip = ib.Alloca(T_int());
|
|
ib.Store(C_int(0), ip);
|
|
ib.Br(hdrbb);
|
|
|
|
// Loop-header block
|
|
auto hb = new_builder(hdrbb);
|
|
auto i = hb.Load(ip);
|
|
hb.CondBr(hb.ICmp(lib.llvm.LLVMIntEQ, count, i), endbb, loopbb);
|
|
|
|
// Loop-body block
|
|
auto lb = new_builder(loopbb);
|
|
i = lb.Load(ip);
|
|
lb.Store(C_integral(0, T_i8()), lb.GEP(dst, vec(i)));
|
|
lb.Store(lb.Add(i, C_int(1)), ip);
|
|
lb.Br(hdrbb);
|
|
|
|
// End block
|
|
auto eb = new_builder(endbb);
|
|
eb.RetVoid();
|
|
ret fun;
|
|
}
|
|
|
|
fn make_vec_append_glue(ModuleRef llmod, type_names tn) -> ValueRef {
|
|
/*
|
|
* Args to vec_append_glue:
|
|
*
|
|
* 0. (Implicit) task ptr
|
|
*
|
|
* 1. Pointer to the tydesc of the vec, so that we can tell if it's gc
|
|
* mem, and have a tydesc to pass to malloc if we're allocating anew.
|
|
*
|
|
* 2. Pointer to the tydesc of the vec's stored element type, so that
|
|
* elements can be copied to a newly alloc'ed vec if one must be
|
|
* created.
|
|
*
|
|
* 3. Dst vec ptr (i.e. ptr to ptr to rust_vec).
|
|
*
|
|
* 4. Src vec (i.e. ptr to rust_vec).
|
|
*
|
|
* 5. Flag indicating whether to skip trailing null on dst.
|
|
*
|
|
*/
|
|
|
|
auto ty = T_fn(vec(T_taskptr(tn),
|
|
T_ptr(T_tydesc(tn)),
|
|
T_ptr(T_tydesc(tn)),
|
|
T_ptr(T_opaque_vec_ptr()),
|
|
T_opaque_vec_ptr(), T_bool()),
|
|
T_void());
|
|
|
|
auto llfn = decl_fastcall_fn(llmod, abi.vec_append_glue_name(), ty);
|
|
ret llfn;
|
|
}
|
|
|
|
|
|
fn vec_fill(@block_ctxt bcx, ValueRef v) -> ValueRef {
|
|
ret bcx.build.Load(bcx.build.GEP(v, vec(C_int(0),
|
|
C_int(abi.vec_elt_fill))));
|
|
}
|
|
|
|
fn put_vec_fill(@block_ctxt bcx, ValueRef v, ValueRef fill) -> ValueRef {
|
|
ret bcx.build.Store(fill,
|
|
bcx.build.GEP(v,
|
|
vec(C_int(0),
|
|
C_int(abi.vec_elt_fill))));
|
|
}
|
|
|
|
fn vec_fill_adjusted(@block_ctxt bcx, ValueRef v,
|
|
ValueRef skipnull) -> ValueRef {
|
|
auto f = bcx.build.Load(bcx.build.GEP(v,
|
|
vec(C_int(0),
|
|
C_int(abi.vec_elt_fill))));
|
|
ret bcx.build.Select(skipnull, bcx.build.Sub(f, C_int(1)), f);
|
|
}
|
|
|
|
fn vec_p0(@block_ctxt bcx, ValueRef v) -> ValueRef {
|
|
auto p = bcx.build.GEP(v, vec(C_int(0),
|
|
C_int(abi.vec_elt_data)));
|
|
ret bcx.build.PointerCast(p, T_ptr(T_i8()));
|
|
}
|
|
|
|
|
|
fn vec_p1(@block_ctxt bcx, ValueRef v) -> ValueRef {
|
|
auto len = vec_fill(bcx, v);
|
|
ret bcx.build.GEP(vec_p0(bcx, v), vec(len));
|
|
}
|
|
|
|
fn vec_p1_adjusted(@block_ctxt bcx, ValueRef v,
|
|
ValueRef skipnull) -> ValueRef {
|
|
auto len = vec_fill_adjusted(bcx, v, skipnull);
|
|
ret bcx.build.GEP(vec_p0(bcx, v), vec(len));
|
|
}
|
|
|
|
fn trans_vec_append_glue(@crate_ctxt cx) {
|
|
|
|
auto llfn = cx.glues.vec_append_glue;
|
|
|
|
let ValueRef lltaskptr = llvm.LLVMGetParam(llfn, 0u);
|
|
let ValueRef llvec_tydesc = llvm.LLVMGetParam(llfn, 1u);
|
|
let ValueRef llelt_tydesc = llvm.LLVMGetParam(llfn, 2u);
|
|
let ValueRef lldst_vec_ptr = llvm.LLVMGetParam(llfn, 3u);
|
|
let ValueRef llsrc_vec = llvm.LLVMGetParam(llfn, 4u);
|
|
let ValueRef llskipnull = llvm.LLVMGetParam(llfn, 5u);
|
|
|
|
let BasicBlockRef llallocas =
|
|
llvm.LLVMAppendBasicBlock(llfn, _str.buf("allocas"));
|
|
|
|
auto fcx = @rec(llfn=llfn,
|
|
lltaskptr=lltaskptr,
|
|
llenv=C_null(T_ptr(T_nil())),
|
|
llretptr=C_null(T_ptr(T_nil())),
|
|
mutable llallocas = llallocas,
|
|
mutable llself=none[ValueRef],
|
|
mutable lliterbody=none[ValueRef],
|
|
llargs=new_def_hash[ValueRef](),
|
|
llobjfields=new_def_hash[ValueRef](),
|
|
lllocals=new_def_hash[ValueRef](),
|
|
llupvars=new_def_hash[ValueRef](),
|
|
lltydescs=new_def_hash[ValueRef](),
|
|
ccx=cx);
|
|
|
|
auto bcx = new_top_block_ctxt(fcx);
|
|
auto lltop = bcx.llbb;
|
|
|
|
auto lldst_vec = bcx.build.Load(lldst_vec_ptr);
|
|
|
|
// First the dst vec needs to grow to accommodate the src vec.
|
|
// To do this we have to figure out how many bytes to add.
|
|
|
|
auto llcopy_dst_ptr = alloca(bcx, T_int());
|
|
auto llnew_vec_res =
|
|
trans_upcall(bcx, "upcall_vec_grow",
|
|
vec(vp2i(bcx, lldst_vec),
|
|
vec_fill_adjusted(bcx, llsrc_vec, llskipnull),
|
|
vp2i(bcx, llcopy_dst_ptr),
|
|
vp2i(bcx, llvec_tydesc)));
|
|
|
|
bcx = llnew_vec_res.bcx;
|
|
auto llnew_vec = vi2p(bcx, llnew_vec_res.val,
|
|
T_opaque_vec_ptr());
|
|
|
|
put_vec_fill(bcx, llnew_vec, C_int(0));
|
|
|
|
auto copy_dst_cx = new_sub_block_ctxt(bcx, "copy new <- dst");
|
|
auto copy_src_cx = new_sub_block_ctxt(bcx, "copy new <- src");
|
|
|
|
auto pp0 = alloca(bcx, T_ptr(T_i8()));
|
|
bcx.build.Store(vec_p0(bcx, llnew_vec), pp0);
|
|
|
|
bcx.build.CondBr(bcx.build.TruncOrBitCast
|
|
(bcx.build.Load(llcopy_dst_ptr),
|
|
T_i1()),
|
|
copy_dst_cx.llbb,
|
|
copy_src_cx.llbb);
|
|
|
|
|
|
fn copy_elts(@block_ctxt cx,
|
|
ValueRef elt_tydesc,
|
|
ValueRef dst,
|
|
ValueRef src,
|
|
ValueRef n_bytes) -> result {
|
|
|
|
auto src_lim = cx.build.GEP(src, vec(n_bytes));
|
|
|
|
auto elt_llsz =
|
|
cx.build.Load(cx.build.GEP(elt_tydesc,
|
|
vec(C_int(0),
|
|
C_int(abi.tydesc_field_size))));
|
|
|
|
fn take_one(ValueRef elt_tydesc,
|
|
@block_ctxt cx,
|
|
ValueRef dst, ValueRef src) -> result {
|
|
call_tydesc_glue_full(cx, src,
|
|
elt_tydesc,
|
|
abi.tydesc_field_take_glue_off);
|
|
ret res(cx, src);
|
|
}
|
|
|
|
auto bcx = iter_sequence_raw(cx, dst, src, src_lim,
|
|
elt_llsz, bind take_one(elt_tydesc,
|
|
_, _, _)).bcx;
|
|
|
|
ret call_memcpy(bcx, dst, src, n_bytes);
|
|
}
|
|
|
|
// Copy any dst elements in, omitting null if doing str.
|
|
auto n_bytes = vec_fill_adjusted(copy_dst_cx, lldst_vec, llskipnull);
|
|
copy_dst_cx = copy_elts(copy_dst_cx,
|
|
llelt_tydesc,
|
|
copy_dst_cx.build.Load(pp0),
|
|
vec_p0(copy_dst_cx, lldst_vec),
|
|
n_bytes).bcx;
|
|
|
|
put_vec_fill(copy_dst_cx, llnew_vec, n_bytes);
|
|
copy_dst_cx.build.Store(vec_p1(copy_dst_cx, llnew_vec), pp0);
|
|
copy_dst_cx.build.Br(copy_src_cx.llbb);
|
|
|
|
|
|
// Copy any src elements in, carrying along null if doing str.
|
|
n_bytes = vec_fill(copy_src_cx, llsrc_vec);
|
|
copy_src_cx = copy_elts(copy_src_cx,
|
|
llelt_tydesc,
|
|
copy_src_cx.build.Load(pp0),
|
|
vec_p0(copy_src_cx, llsrc_vec),
|
|
n_bytes).bcx;
|
|
|
|
put_vec_fill(copy_src_cx, llnew_vec,
|
|
copy_src_cx.build.Add(vec_fill(copy_src_cx,
|
|
llnew_vec),
|
|
n_bytes));
|
|
|
|
// Write new_vec back through the alias we were given.
|
|
copy_src_cx.build.Store(llnew_vec, lldst_vec_ptr);
|
|
copy_src_cx.build.RetVoid();
|
|
|
|
// Tie up the llallocas -> lltop edge.
|
|
new_builder(fcx.llallocas).Br(lltop);
|
|
}
|
|
|
|
|
|
fn make_glues(ModuleRef llmod, type_names tn) -> @glue_fns {
|
|
ret @rec(activate_glue = decl_glue(llmod, tn, abi.activate_glue_name()),
|
|
yield_glue = decl_glue(llmod, tn, abi.yield_glue_name()),
|
|
/*
|
|
* Note: the signature passed to decl_cdecl_fn here looks unusual
|
|
* because it is. It corresponds neither to a native signature
|
|
* nor a normal rust-ABI signature. In fact it is a fake
|
|
* signature, that exists solely to acquire the task pointer as
|
|
* an argument to the upcall. It so happens that the runtime sets
|
|
* up the task pointer as the sole incoming argument to the frame
|
|
* that we return into when returning to the exit task glue. So
|
|
* this is the signature required to retrieve it.
|
|
*/
|
|
exit_task_glue = decl_cdecl_fn(llmod, abi.exit_task_glue_name(),
|
|
T_fn(vec(T_int(),
|
|
T_int(),
|
|
T_int(),
|
|
T_int(),
|
|
T_taskptr(tn)),
|
|
T_void())),
|
|
|
|
native_glues_rust =
|
|
_vec.init_fn[ValueRef](bind decl_native_glue(llmod, tn, true,
|
|
_),
|
|
abi.n_native_glues + 1 as uint),
|
|
native_glues_cdecl =
|
|
_vec.init_fn[ValueRef](bind decl_native_glue(llmod, tn, false,
|
|
_),
|
|
abi.n_native_glues + 1 as uint),
|
|
no_op_type_glue = decl_no_op_type_glue(llmod, tn),
|
|
memcpy_glue = decl_memcpy_glue(llmod),
|
|
bzero_glue = decl_bzero_glue(llmod),
|
|
vec_append_glue = make_vec_append_glue(llmod, tn));
|
|
}
|
|
|
|
fn make_common_glue(str output) {
|
|
// FIXME: part of this is repetitive and is probably a good idea
|
|
// to autogen it, but things like the memcpy implementation are not
|
|
// and it might be better to just check in a .ll file.
|
|
auto llmod =
|
|
llvm.LLVMModuleCreateWithNameInContext(_str.buf("rust_out"),
|
|
llvm.LLVMGetGlobalContext());
|
|
|
|
llvm.LLVMSetDataLayout(llmod, _str.buf(x86.get_data_layout()));
|
|
llvm.LLVMSetTarget(llmod, _str.buf(x86.get_target_triple()));
|
|
auto td = mk_target_data(x86.get_data_layout());
|
|
auto tn = mk_type_names();
|
|
let ValueRef crate_ptr =
|
|
llvm.LLVMAddGlobal(llmod, T_crate(tn), _str.buf("rust_crate"));
|
|
|
|
auto intrinsics = declare_intrinsics(llmod);
|
|
|
|
llvm.LLVMSetModuleInlineAsm(llmod, _str.buf(x86.get_module_asm()));
|
|
|
|
auto glues = make_glues(llmod, tn);
|
|
create_crate_constant(crate_ptr, glues);
|
|
make_memcpy_glue(glues.memcpy_glue);
|
|
make_bzero_glue(glues.bzero_glue);
|
|
|
|
trans_exit_task_glue(glues, new_str_hash[ValueRef](), tn, llmod);
|
|
|
|
check_module(llmod);
|
|
llvm.LLVMWriteBitcodeToFile(llmod, _str.buf(output));
|
|
llvm.LLVMDisposeModule(llmod);
|
|
}
|
|
|
|
fn trans_crate(session.session sess, @ast.crate crate,
|
|
&ty.type_cache type_cache, str output, bool shared) {
|
|
auto llmod =
|
|
llvm.LLVMModuleCreateWithNameInContext(_str.buf("rust_out"),
|
|
llvm.LLVMGetGlobalContext());
|
|
|
|
llvm.LLVMSetDataLayout(llmod, _str.buf(x86.get_data_layout()));
|
|
llvm.LLVMSetTarget(llmod, _str.buf(x86.get_target_triple()));
|
|
auto td = mk_target_data(x86.get_data_layout());
|
|
auto tn = mk_type_names();
|
|
let ValueRef crate_ptr =
|
|
llvm.LLVMAddGlobal(llmod, T_crate(tn), _str.buf("rust_crate"));
|
|
|
|
auto intrinsics = declare_intrinsics(llmod);
|
|
|
|
auto glues = make_glues(llmod, tn);
|
|
auto hasher = ty.hash_ty;
|
|
auto eqer = ty.eq_ty;
|
|
auto tag_sizes = map.mk_hashmap[@ty.t,uint](hasher, eqer);
|
|
auto tydescs = map.mk_hashmap[@ty.t,@tydesc_info](hasher, eqer);
|
|
let vec[ast.ty_param] obj_typarams = vec();
|
|
let vec[ast.obj_field] obj_fields = vec();
|
|
|
|
let vec[str] pth = vec();
|
|
auto cx = @rec(sess = sess,
|
|
llmod = llmod,
|
|
td = td,
|
|
tn = tn,
|
|
crate_ptr = crate_ptr,
|
|
externs = new_str_hash[ValueRef](),
|
|
intrinsics = intrinsics,
|
|
item_ids = new_def_hash[ValueRef](),
|
|
items = new_def_hash[@ast.item](),
|
|
native_items = new_def_hash[@ast.native_item](),
|
|
type_cache = type_cache,
|
|
item_symbols = new_def_hash[str](),
|
|
tag_sizes = tag_sizes,
|
|
discrims = new_def_hash[ValueRef](),
|
|
discrim_symbols = new_def_hash[str](),
|
|
fn_pairs = new_def_hash[ValueRef](),
|
|
consts = new_def_hash[ValueRef](),
|
|
obj_methods = new_def_hash[()](),
|
|
tydescs = tydescs,
|
|
obj_typarams = obj_typarams,
|
|
obj_fields = obj_fields,
|
|
glues = glues,
|
|
names = namegen(0),
|
|
path = pth,
|
|
sha = std.sha1.mk_sha1());
|
|
|
|
create_typedefs(cx);
|
|
|
|
collect_items(cx, crate);
|
|
collect_tag_ctors(cx, crate);
|
|
trans_constants(cx, crate);
|
|
trans_mod(cx, crate.node.module);
|
|
trans_vec_append_glue(cx);
|
|
if (!shared) {
|
|
trans_main_fn(cx, cx.crate_ptr);
|
|
}
|
|
|
|
// Translate the metadata.
|
|
middle.metadata.write_metadata(cx, crate);
|
|
|
|
check_module(llmod);
|
|
|
|
llvm.LLVMWriteBitcodeToFile(llmod, _str.buf(output));
|
|
llvm.LLVMDisposeModule(llmod);
|
|
}
|
|
|
|
//
|
|
// Local Variables:
|
|
// mode: rust
|
|
// fill-column: 78;
|
|
// indent-tabs-mode: nil
|
|
// c-basic-offset: 4
|
|
// buffer-file-coding-system: utf-8-unix
|
|
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
|
|
// End:
|
|
//
|