Eduard Bopp 9982de6397 Warn about unnecessary parentheses upon assignment
Closes #12366.

Parentheses around assignment statements such as

    let mut a = (0);
    a = (1);
    a += (2);

are not necessary and therefore an unnecessary_parens warning is raised when
statements like this occur.

The warning mechanism was refactored along the way to allow for code reuse
between the routines for checking expressions and statements.

Code had to be adopted throughout the compiler and standard libraries to comply
with this modification of the lint.
2014-02-22 16:32:48 +01:00

461 lines
18 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Finds crate binaries and loads their metadata
use back::archive::{ArchiveRO, METADATA_FILENAME};
use driver::session::Session;
use lib::llvm::{False, llvm, ObjectFile, mk_section_iter};
use metadata::cstore::{MetadataBlob, MetadataVec, MetadataArchive};
use metadata::decoder;
use metadata::encoder;
use metadata::filesearch::{FileMatches, FileDoesntMatch};
use syntax::codemap::Span;
use syntax::diagnostic::SpanHandler;
use syntax::parse::token::IdentInterner;
use syntax::crateid::CrateId;
use syntax::attr;
use syntax::attr::AttrMetaMethods;
use std::c_str::ToCStr;
use std::cast;
use std::hashmap::{HashMap, HashSet};
use std::cmp;
use std::io;
use std::os::consts::{macos, freebsd, linux, android, win32};
use std::str;
use std::vec;
use flate;
use time;
pub enum Os {
OsMacos,
OsWin32,
OsLinux,
OsAndroid,
OsFreebsd
}
pub struct Context {
sess: Session,
span: Span,
ident: ~str,
name: ~str,
version: ~str,
hash: ~str,
os: Os,
intr: @IdentInterner
}
pub struct Library {
dylib: Option<Path>,
rlib: Option<Path>,
metadata: MetadataBlob,
}
pub struct ArchiveMetadata {
priv archive: ArchiveRO,
// See comments in ArchiveMetadata::new for why this is static
priv data: &'static [u8],
}
impl Context {
pub fn load_library_crate(&self, root_ident: Option<~str>) -> Library {
match self.find_library_crate() {
Some(t) => t,
None => {
self.sess.abort_if_errors();
let message = match root_ident {
None => format!("can't find crate for `{}`", self.ident),
Some(c) => format!("can't find crate for `{}` which `{}` depends on",
self.ident,
c)
};
self.sess.span_fatal(self.span, message);
}
}
}
fn find_library_crate(&self) -> Option<Library> {
let filesearch = self.sess.filesearch;
let (dyprefix, dysuffix) = self.dylibname();
// want: crate_name.dir_part() + prefix + crate_name.file_part + "-"
let dylib_prefix = format!("{}{}-", dyprefix, self.name);
let rlib_prefix = format!("lib{}-", self.name);
let mut candidates = HashMap::new();
// First, find all possible candidate rlibs and dylibs purely based on
// the name of the files themselves. We're trying to match against an
// exact crate_id and a possibly an exact hash.
//
// During this step, we can filter all found libraries based on the
// name and id found in the crate id (we ignore the path portion for
// filename matching), as well as the exact hash (if specified). If we
// end up having many candidates, we must look at the metadata to
// perform exact matches against hashes/crate ids. Note that opening up
// the metadata is where we do an exact match against the full contents
// of the crate id (path/name/id).
//
// The goal of this step is to look at as little metadata as possible.
filesearch.search(|path| {
let file = match path.filename_str() {
None => return FileDoesntMatch,
Some(file) => file,
};
if file.starts_with(rlib_prefix) && file.ends_with(".rlib") {
info!("rlib candidate: {}", path.display());
match self.try_match(file, rlib_prefix, ".rlib") {
Some(hash) => {
info!("rlib accepted, hash: {}", hash);
let slot = candidates.find_or_insert_with(hash, |_| {
(HashSet::new(), HashSet::new())
});
let (ref mut rlibs, _) = *slot;
rlibs.insert(path.clone());
FileMatches
}
None => {
info!("rlib rejected");
FileDoesntMatch
}
}
} else if file.starts_with(dylib_prefix) && file.ends_with(dysuffix){
info!("dylib candidate: {}", path.display());
match self.try_match(file, dylib_prefix, dysuffix) {
Some(hash) => {
info!("dylib accepted, hash: {}", hash);
let slot = candidates.find_or_insert_with(hash, |_| {
(HashSet::new(), HashSet::new())
});
let (_, ref mut dylibs) = *slot;
dylibs.insert(path.clone());
FileMatches
}
None => {
info!("dylib rejected");
FileDoesntMatch
}
}
} else {
FileDoesntMatch
}
});
// We have now collected all known libraries into a set of candidates
// keyed of the filename hash listed. For each filename, we also have a
// list of rlibs/dylibs that apply. Here, we map each of these lists
// (per hash), to a Library candidate for returning.
//
// A Library candidate is created if the metadata for the set of
// libraries corresponds to the crate id and hash criteria that this
// serach is being performed for.
let mut libraries = ~[];
for (_hash, (rlibs, dylibs)) in candidates.move_iter() {
let mut metadata = None;
let rlib = self.extract_one(rlibs, "rlib", &mut metadata);
let dylib = self.extract_one(dylibs, "dylib", &mut metadata);
match metadata {
Some(metadata) => {
libraries.push(Library {
dylib: dylib,
rlib: rlib,
metadata: metadata,
})
}
None => {}
}
}
// Having now translated all relevant found hashes into libraries, see
// what we've got and figure out if we found multiple candidates for
// libraries or not.
match libraries.len() {
0 => None,
1 => Some(libraries[0]),
_ => {
self.sess.span_err(self.span,
format!("multiple matching crates for `{}`", self.name));
self.sess.note("candidates:");
for lib in libraries.iter() {
match lib.dylib {
Some(ref p) => {
self.sess.note(format!("path: {}", p.display()));
}
None => {}
}
match lib.rlib {
Some(ref p) => {
self.sess.note(format!("path: {}", p.display()));
}
None => {}
}
let data = lib.metadata.as_slice();
let attrs = decoder::get_crate_attributes(data);
match attr::find_crateid(attrs) {
None => {}
Some(crateid) => {
note_crateid_attr(self.sess.diagnostic(), &crateid);
}
}
}
None
}
}
}
// Attempts to match the requested version of a library against the file
// specified. The prefix/suffix are specified (disambiguates between
// rlib/dylib).
//
// The return value is `None` if `file` doesn't look like a rust-generated
// library, or if a specific version was requested and it doens't match the
// apparent file's version.
//
// If everything checks out, then `Some(hash)` is returned where `hash` is
// the listed hash in the filename itself.
fn try_match(&self, file: &str, prefix: &str, suffix: &str) -> Option<~str>{
let middle = file.slice(prefix.len(), file.len() - suffix.len());
debug!("matching -- {}, middle: {}", file, middle);
let mut parts = middle.splitn('-', 1);
let hash = match parts.next() { Some(h) => h, None => return None };
debug!("matching -- {}, hash: {}", file, hash);
let vers = match parts.next() { Some(v) => v, None => return None };
debug!("matching -- {}, vers: {}", file, vers);
if !self.version.is_empty() && self.version.as_slice() != vers {
return None
}
debug!("matching -- {}, vers ok (requested {})", file,
self.version);
// hashes in filenames are prefixes of the "true hash"
if self.hash.is_empty() || self.hash.starts_with(hash) {
debug!("matching -- {}, hash ok (requested {})", file, self.hash);
Some(hash.to_owned())
} else {
None
}
}
// Attempts to extract *one* library from the set `m`. If the set has no
// elements, `None` is returned. If the set has more than one element, then
// the errors and notes are emitted about the set of libraries.
//
// With only one library in the set, this function will extract it, and then
// read the metadata from it if `*slot` is `None`. If the metadata couldn't
// be read, it is assumed that the file isn't a valid rust library (no
// errors are emitted).
//
// FIXME(#10786): for an optimization, we only read one of the library's
// metadata sections. In theory we should read both, but
// reading dylib metadata is quite slow.
fn extract_one(&self, m: HashSet<Path>, flavor: &str,
slot: &mut Option<MetadataBlob>) -> Option<Path> {
if m.len() == 0 { return None }
if m.len() > 1 {
self.sess.span_err(self.span,
format!("multiple {} candidates for `{}` \
found", flavor, self.name));
for (i, path) in m.iter().enumerate() {
self.sess.span_note(self.span,
format!(r"candidate \#{}: {}", i + 1,
path.display()));
}
return None
}
let lib = m.move_iter().next().unwrap();
if slot.is_none() {
info!("{} reading meatadata from: {}", flavor, lib.display());
match get_metadata_section(self.os, &lib) {
Some(blob) => {
if crate_matches(blob.as_slice(), self.name,
self.version, self.hash) {
*slot = Some(blob);
} else {
info!("metadata mismatch");
return None;
}
}
None => {
info!("no metadata found");
return None
}
}
}
return Some(lib);
}
// Returns the corresponding (prefix, suffix) that files need to have for
// dynamic libraries
fn dylibname(&self) -> (&'static str, &'static str) {
match self.os {
OsWin32 => (win32::DLL_PREFIX, win32::DLL_SUFFIX),
OsMacos => (macos::DLL_PREFIX, macos::DLL_SUFFIX),
OsLinux => (linux::DLL_PREFIX, linux::DLL_SUFFIX),
OsAndroid => (android::DLL_PREFIX, android::DLL_SUFFIX),
OsFreebsd => (freebsd::DLL_PREFIX, freebsd::DLL_SUFFIX),
}
}
}
pub fn note_crateid_attr(diag: @SpanHandler, crateid: &CrateId) {
diag.handler().note(format!("crate_id: {}", crateid.to_str()));
}
fn crate_matches(crate_data: &[u8],
name: &str,
version: &str,
hash: &str) -> bool {
let attrs = decoder::get_crate_attributes(crate_data);
match attr::find_crateid(attrs) {
None => false,
Some(crateid) => {
if !hash.is_empty() {
let chash = decoder::get_crate_hash(crate_data);
if chash.as_slice() != hash { return false; }
}
name == crateid.name &&
(version.is_empty() ||
crateid.version_or_default() == version)
}
}
}
impl ArchiveMetadata {
fn new(ar: ArchiveRO) -> Option<ArchiveMetadata> {
let data: &'static [u8] = {
let data = match ar.read(METADATA_FILENAME) {
Some(data) => data,
None => {
debug!("didn't find '{}' in the archive", METADATA_FILENAME);
return None;
}
};
// This data is actually a pointer inside of the archive itself, but
// we essentially want to cache it because the lookup inside the
// archive is a fairly expensive operation (and it's queried for
// *very* frequently). For this reason, we transmute it to the
// static lifetime to put into the struct. Note that the buffer is
// never actually handed out with a static lifetime, but rather the
// buffer is loaned with the lifetime of this containing object.
// Hence, we're guaranteed that the buffer will never be used after
// this object is dead, so this is a safe operation to transmute and
// store the data as a static buffer.
unsafe { cast::transmute(data) }
};
Some(ArchiveMetadata {
archive: ar,
data: data,
})
}
pub fn as_slice<'a>(&'a self) -> &'a [u8] { self.data }
}
// Just a small wrapper to time how long reading metadata takes.
fn get_metadata_section(os: Os, filename: &Path) -> Option<MetadataBlob> {
let start = time::precise_time_ns();
let ret = get_metadata_section_imp(os, filename);
info!("reading {} => {}ms", filename.filename_display(),
(time::precise_time_ns() - start) / 1000000);
return ret;
}
fn get_metadata_section_imp(os: Os, filename: &Path) -> Option<MetadataBlob> {
if filename.filename_str().unwrap().ends_with(".rlib") {
// Use ArchiveRO for speed here, it's backed by LLVM and uses mmap
// internally to read the file. We also avoid even using a memcpy by
// just keeping the archive along while the metadata is in use.
let archive = match ArchiveRO::open(filename) {
Some(ar) => ar,
None => {
debug!("llvm didn't like `{}`", filename.display());
return None;
}
};
return ArchiveMetadata::new(archive).map(|ar| MetadataArchive(ar));
}
unsafe {
let mb = filename.with_c_str(|buf| {
llvm::LLVMRustCreateMemoryBufferWithContentsOfFile(buf)
});
if mb as int == 0 { return None }
let of = match ObjectFile::new(mb) {
Some(of) => of,
_ => return None
};
let si = mk_section_iter(of.llof);
while llvm::LLVMIsSectionIteratorAtEnd(of.llof, si.llsi) == False {
let name_buf = llvm::LLVMGetSectionName(si.llsi);
let name = str::raw::from_c_str(name_buf);
debug!("get_metadata_section: name {}", name);
if read_meta_section_name(os) == name {
let cbuf = llvm::LLVMGetSectionContents(si.llsi);
let csz = llvm::LLVMGetSectionSize(si.llsi) as uint;
let mut found = None;
let cvbuf: *u8 = cast::transmute(cbuf);
let vlen = encoder::metadata_encoding_version.len();
debug!("checking {} bytes of metadata-version stamp",
vlen);
let minsz = cmp::min(vlen, csz);
let version_ok = vec::raw::buf_as_slice(cvbuf, minsz,
|buf0| buf0 == encoder::metadata_encoding_version);
if !version_ok { return None; }
let cvbuf1 = cvbuf.offset(vlen as int);
debug!("inflating {} bytes of compressed metadata",
csz - vlen);
vec::raw::buf_as_slice(cvbuf1, csz-vlen, |bytes| {
let inflated = flate::inflate_bytes(bytes);
found = Some(MetadataVec(inflated));
});
if found.is_some() {
return found;
}
}
llvm::LLVMMoveToNextSection(si.llsi);
}
return None;
}
}
pub fn meta_section_name(os: Os) -> &'static str {
match os {
OsMacos => "__DATA,__note.rustc",
OsWin32 => ".note.rustc",
OsLinux => ".note.rustc",
OsAndroid => ".note.rustc",
OsFreebsd => ".note.rustc"
}
}
pub fn read_meta_section_name(os: Os) -> &'static str {
match os {
OsMacos => "__note.rustc",
OsWin32 => ".note.rustc",
OsLinux => ".note.rustc",
OsAndroid => ".note.rustc",
OsFreebsd => ".note.rustc"
}
}
// A diagnostic function for dumping crate metadata to an output stream
pub fn list_file_metadata(os: Os, path: &Path,
out: &mut io::Writer) -> io::IoResult<()> {
match get_metadata_section(os, path) {
Some(bytes) => decoder::list_crate_metadata(bytes.as_slice(), out),
None => {
write!(out, "could not find metadata in {}.\n", path.display())
}
}
}